JPH09210175A - Continuously variable transmission with gear ratio of infinity - Google Patents

Continuously variable transmission with gear ratio of infinity

Info

Publication number
JPH09210175A
JPH09210175A JP1544096A JP1544096A JPH09210175A JP H09210175 A JPH09210175 A JP H09210175A JP 1544096 A JP1544096 A JP 1544096A JP 1544096 A JP1544096 A JP 1544096A JP H09210175 A JPH09210175 A JP H09210175A
Authority
JP
Japan
Prior art keywords
gear
continuously variable
variable transmission
output shaft
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1544096A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamada
一浩 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1544096A priority Critical patent/JPH09210175A/en
Publication of JPH09210175A publication Critical patent/JPH09210175A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/086CVT using two coaxial friction members cooperating with at least one intermediate friction member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • F16H2015/383Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces with two or more sets of toroid gearings arranged in parallel

Abstract

PROBLEM TO BE SOLVED: To make miniaturizing and reducing the total number of of shaft in a transmission. SOLUTION: A transmission comprises a troidal type continuously variable transmission 2 and reduction gear 3 connected in parallel to a unit input shaft 1, a planetary gear mechanism 5 comprising a sun gear 5a coupled to the output gear 2a of the continuously variable transmission 2, a carrier 5b coupled to the reduction gear output shaft 3c, and a ring gear 5c couplet to the unit output shaft 6, a power cycling mode clutch 9 interposed within the power transmission path from the unit input shaft 1 to the carrier 5b, a direct coupling mode clutch 10 interposed within the power transmission path from the sun gear 5a to the unit output shaft 6. An output gear 2a of the continuous transmission mounted coaxially with the output shaft of the continuously variable transmission 2 engages to a counter gear 40 supported in parallel to the output shaft of the transmission 2 and further to the gear 4a, which is coaxially disposed on the sun gear 5a, the reduction gear 3 engages to the input gear 3a coaxially mounted to the unit input shaft 1 and an output gear 3b coaxially mounted to the carrier 5b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両などに採用さ
れる無段変速機、特にFF車に採用される変速比無限大
無段変速機の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a continuously variable transmission used in a vehicle or the like, and particularly to an infinitely variable transmission having an infinite transmission ratio used in an FF vehicle.

【0002】[0002]

【従来の技術】従来から連続的に変速比を設定可能な車
両の変速機としては、ベルト式やトロイダル型の無段変
速機が知られており、このような無段変速機の変速領域
をさらに拡大するために、無段変速機と減速機等を並列
的に配設するとともに、これらの出力軸を遊星歯車機構
へ入力して変速比を無限大まで制御可能とする変速比無
限大無段変速機が知られており、例えば、特開平6−1
01754号公報などに開示されている。
2. Description of the Related Art Conventionally, a belt type or toroidal type continuously variable transmission has been known as a transmission for a vehicle in which a gear ratio can be continuously set. For further expansion, a continuously variable transmission and a speed reducer are arranged in parallel, and the output shafts of these are input to the planetary gear mechanism so that the gear ratio can be controlled to infinity. A gear transmission is known, for example, Japanese Patent Laid-Open No. 6-1.
It is disclosed in Japanese Patent Publication No. 01754.

【0003】これは、図11に示すように、エンジンに
結合される変速比無限大無段変速機のユニット入力軸1
に、減速比をほぼ連続的に変更可能な無段変速機2と、
カウンタギヤ31を主体に構成された減速機30を並列
的に連結するとともに、無段変速機2の出力軸4と、減
速機30の出力軸3cがそれぞれ遊星歯車機構5へ入力
され、ユニット出力軸6を介して後述するように、車両
の駆動軸へ駆動力を伝達するものである。
As shown in FIG. 11, this is a unit input shaft 1 of an infinite transmission continuously variable transmission coupled to an engine.
And a continuously variable transmission 2 capable of changing the reduction ratio almost continuously,
The reduction gear 30 mainly composed of the counter gear 31 is connected in parallel, and the output shaft 4 of the continuously variable transmission 2 and the output shaft 3c of the reduction gear 30 are respectively input to the planetary gear mechanism 5 to output the unit output. As will be described later, the drive force is transmitted to the drive shaft of the vehicle via the shaft 6.

【0004】減速機3は、ユニット入力軸1に同軸的に
設けた入力ギヤ3aと、ユニット出力軸6と同軸的に軸
支された減速機出力軸3cのギヤ3bにカウンタギヤ3
1がそれぞれ歯合し、減速機3に設定された所定の減速
比に応じて減速機出力軸3cが回転する。
The reduction gear 3 has an input gear 3a provided coaxially with the unit input shaft 1 and a counter gear 3 provided on a gear 3b of a reduction gear output shaft 3c coaxially supported with the unit output shaft 6.
1 meshes with each other, and the speed reducer output shaft 3c rotates in accordance with the predetermined speed reduction ratio set in the speed reducer 3.

【0005】一方、無段変速機2の出力軸に形成された
出力ギヤ2aは、ユニット出力軸6と同軸的に軸支され
た無段変速機2の出力軸4に設けたギヤ4aと歯合し
て、無段変速機2の減速比に応じて無段変速機出力軸4
が回転する。
On the other hand, the output gear 2a formed on the output shaft of the continuously variable transmission 2 and the gear 4a provided on the output shaft 4 of the continuously variable transmission 2 which is coaxially supported by the unit output shaft 6 and teeth. The output shaft 4 of the continuously variable transmission according to the reduction ratio of the continuously variable transmission 2.
Rotates.

【0006】無段変速機2の出力軸4は遊星歯車機構5
のサンギヤ5aに、減速機3の出力軸3cは動力循環モ
ードクラッチ9を介してシングルピニオンで構成された
遊星歯車機構5のキャリア5bにそれぞれ連結され、リ
ングギヤ5cが変速比無限大無段変速機の出力軸である
ユニット出力軸6に結合される。そして、無段変速機2
の出力軸4と、ユニット出力軸6との間には、直結モー
ドクラッチ10が介装される。
The output shaft 4 of the continuously variable transmission 2 is a planetary gear mechanism 5
Of the sun gear 5a, the output shaft 3c of the speed reducer 3 is connected to the carrier 5b of the planetary gear mechanism 5 composed of a single pinion through the power circulation mode clutch 9, and the ring gear 5c is an infinitely variable transmission continuously variable transmission. Is connected to the unit output shaft 6, which is the output shaft of the. And continuously variable transmission 2
A direct coupling mode clutch 10 is provided between the output shaft 4 and the unit output shaft 6.

【0007】なお、無段変速機2としては、2組の入力
ディスク21、21と出力ディスク22、22の間に、
それぞれ一対のパワーローラ20、20を挟持するトロ
イダル型で構成した場合を示し、パワーローラ20の傾
転角に応じて変速比を連続的に変更するものである。
In the continuously variable transmission 2, two sets of input disks 21, 21 and output disks 22, 22 are provided.
A case is shown in which the pair of power rollers 20, 20 are sandwiched by a toroidal type, and the gear ratio is continuously changed according to the tilt angle of the power roller 20.

【0008】ここで、FF車に搭載される変速比無限大
変速機では、変速機ハウジングに駆動軸11a、11b
と結合した差動ギヤ8を収装しており、ユニット出力軸
6には変速機出力ギヤ7が設けられ、この変速機出力ギ
ヤ7はカウンタギヤ70を介して差動ギヤ8のファイナ
ルギヤ12と歯合して、所定の総減速比で差動ギヤ8と
結合した駆動軸11a、11bに駆動力が伝達される。
Here, in the infinite transmission ratio mounted on the FF vehicle, the drive shafts 11a and 11b are mounted on the transmission housing.
The unit output shaft 6 is provided with a transmission output gear 7, and the transmission output gear 7 is provided with a final gear 12 of the differential gear 8 via a counter gear 70. And the driving force is transmitted to the drive shafts 11a and 11b coupled to the differential gear 8 at a predetermined total reduction ratio.

【0009】このような、変速比無限大無段変速機で
は、動力循環モードクラッチ9を解放する一方、直結モ
ードクラッチ10を締結することで、無段変速機2の変
速比のみで出力を行う直結モードと、動力循環モードク
ラッチ9を締結する一方、直結モードクラッチ10を解
放することにより、無段変速機2と減速機3の変速比の
差に応じて、変速比無限大無段変速機全体のユニット変
速比Ii(ユニット入力軸1とユニット出力軸6の変速
比)を負の値から正の値まで無限大を含んでほぼ連続的
に制御を行う動力循環モードとを選択的に使用すること
ができる。
In such a continuously variable transmission with an infinite transmission ratio, the power circulation mode clutch 9 is released while the direct connection mode clutch 10 is engaged, so that output is performed only with the transmission ratio of the continuously variable transmission 2. By engaging the direct coupling mode and the power circulation mode clutch 9 and releasing the direct coupling mode clutch 10, the infinite transmission ratio continuously variable transmission according to the difference in the transmission ratio between the continuously variable transmission 2 and the speed reducer 3. The power circulation mode, which controls the entire unit speed ratio Ii (the speed ratio between the unit input shaft 1 and the unit output shaft 6) from the negative value to the positive value including infinity almost continuously, is selectively used. can do.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来の変速比無限大無段変速機では、ユニット入力軸1か
ら差動ギヤ8のファイナルギヤ12までの間に、ユニッ
ト入力軸1と同軸の無段変速機2の入出力軸、減速機3
のカウンタギヤ31の軸、ユニット出力軸6(無段変速
機2の出力軸4、減速機3の出力軸3c及び遊星歯車機
構5と同軸)、カウンタギヤ70の軸、そして、駆動軸
11a、11bと、駆動軸を含んで合計5つの軸を必要
とするため、構造が複雑になって装置全体が大型化し、
製造コストが増大するばかりでなく、軸を支持する軸受
けの数が増大することにより動力伝達効率も低下すると
いう問題点があった。
However, in the above-described conventional infinitely variable transmission continuously variable transmission, the unit input shaft 1 and the final gear 12 of the differential gear 8 are coaxial with the unit input shaft 1 between the unit input shaft 1 and the final gear 12. Input / output shaft of the speed change gear 2 and reduction gear 3
Of the counter gear 31, the unit output shaft 6 (the output shaft 4 of the continuously variable transmission 2, the output shaft 3c of the speed reducer 3 and the planetary gear mechanism 5 are coaxial), the shaft of the counter gear 70, and the drive shaft 11a. 11b and a total of five axes including the drive axis are required, so the structure becomes complicated and the size of the entire apparatus increases,
There has been a problem that not only the manufacturing cost increases, but also the power transmission efficiency decreases due to the increase in the number of bearings that support the shaft.

【0011】そこで本発明は、上記問題点に鑑みてなさ
れたもので、変速比無限大無段変速機の軸の総数を低減
することで、装置の小型、軽量化及び動力伝達効率の向
上を図ることを目的とする。
Therefore, the present invention has been made in view of the above problems. By reducing the total number of shafts of a continuously variable transmission with an infinite transmission ratio, the size and weight of the device can be reduced and the power transmission efficiency can be improved. The purpose is to plan.

【0012】[0012]

【課題を解決するための手段】第1の発明は、ユニット
入力軸にそれぞれ接続された無段変速機及び減速機と、
無段変速機の出力軸に連結したサンギヤ、シングルピニ
オンで構成されて減速機の出力軸に連結したキャリア及
びユニット出力軸に連結したリングギヤとからなる遊星
歯車機構と、前記ユニット入力軸から遊星歯車機構のキ
ャリアへの動力伝達経路の途中に介装された動力循環モ
ードクラッチと、前記無段変速機の出力軸からユニット
出力軸の動力伝達経路の途中に介装された直結モードク
ラッチとを備えて、前記動力循環モードクラッチと直結
モードクラッチとを選択的に締結、解除可能な変速比無
限大無段変速機において、前記無段変速機からの動力伝
達経路は、無段変速機の出力軸と同軸の無段変速機出力
ギヤと、この無段変速機の出力軸と平行して軸支された
カウンタギヤを介して歯合するとともに、前記遊星歯車
機構のサンギヤと同軸に配設された第1のギヤとから構
成される一方、前記減速機からの動力伝達経路は、ユニ
ット入力軸と同軸の入力ギヤと歯合するとともに、遊星
歯車機構のキャリアと同軸に配設された出力ギヤとから
構成される。
A first invention is a continuously variable transmission and a speed reducer respectively connected to a unit input shaft,
A planetary gear mechanism including a sun gear connected to the output shaft of the continuously variable transmission, a carrier composed of a single pinion and connected to the output shaft of the reduction gear, and a ring gear connected to the unit output shaft, and a planetary gear from the unit input shaft. The mechanism includes a power circulation mode clutch interposed in the power transmission path to the carrier of the mechanism, and a direct coupling mode clutch interposed in the power transmission path from the output shaft of the continuously variable transmission to the unit output shaft. In the continuously variable transmission with an infinite transmission ratio capable of selectively engaging and releasing the power circulation mode clutch and the direct connection mode clutch, the power transmission path from the continuously variable transmission is the output shaft of the continuously variable transmission. And a sun gear of the planetary gear mechanism, which meshes with a continuously variable transmission output gear that is coaxial with and a counter gear that is axially supported in parallel with the output shaft of the continuously variable transmission. The power transmission path from the speed reducer meshes with the input gear coaxial with the unit input shaft and is coaxial with the carrier of the planetary gear mechanism. It is composed of an installed output gear.

【0013】また、第2の発明は、ユニット入力軸にそ
れぞれ接続された無段変速機及び減速機と、無段変速機
の出力軸に連結したリングギヤ、シングルピニオンで構
成されて減速機の出力軸に連結したキャリア及びユニッ
ト出力軸に連結したサンギヤとからなる遊星歯車機構
と、前記ユニット入力軸から遊星歯車機構のキャリアへ
の動力伝達経路の途中に介装された動力循環モードクラ
ッチと、前記無段変速機の出力軸からユニット出力軸の
動力伝達経路の途中に介装された直結モードクラッチと
を備えて、前記動力循環モードクラッチと直結モードク
ラッチとを選択的に締結、解除可能な変速比無限大無段
変速機において、前記無段変速機からの動力伝達経路
は、無段変速機の出力軸と同軸の無段変速機出力ギヤ
と、この無段変速機の出力軸と平行して軸支されたカウ
ンタギヤを介して歯合するとともに、前記遊星歯車機構
のリングギヤと同軸に配設された第1のギヤとから構成
される一方、前記減速機からの動力伝達経路は、ユニッ
ト入力軸と同軸の入力ギヤと歯合するとともに、遊星歯
車機構のキャリアと同軸に配設された出力ギヤとから構
成される。
The second aspect of the present invention comprises a continuously variable transmission and a speed reducer each connected to a unit input shaft, a ring gear connected to the output shaft of the continuously variable transmission, and a single pinion to output the speed reducer. A planetary gear mechanism consisting of a carrier connected to the shaft and a sun gear connected to the unit output shaft; a power circulation mode clutch interposed in the middle of the power transmission path from the unit input shaft to the carrier of the planetary gear mechanism; And a direct connection mode clutch interposed in the power transmission path from the output shaft of the continuously variable transmission to the unit output shaft so that the power circulation mode clutch and the direct connection mode clutch can be selectively engaged and released. In the infinite ratio continuously variable transmission, the power transmission path from the continuously variable transmission is the continuously variable transmission output gear coaxial with the output shaft of the continuously variable transmission, and the output of this continuously variable transmission. A gear that meshes with a counter gear that is axially supported in parallel with the shaft and that is composed of a ring gear of the planetary gear mechanism and a first gear that is coaxially arranged, while transmitting power from the speed reducer. The path includes an output gear that meshes with an input gear that is coaxial with the unit input shaft and that is coaxially arranged with the carrier of the planetary gear mechanism.

【0014】また、第3の発明は、ユニット入力軸にそ
れぞれ接続された無段変速機及び減速機と、無段変速機
の出力軸に連結したサンギヤ、減速機の出力軸に連結し
たリングギヤ及びユニット出力軸に連結したキャリアと
からなる遊星歯車機構と、前記ユニット入力軸から遊星
歯車機構のリングギヤへの動力伝達経路の途中に介装さ
れた動力循環モードクラッチと、前記無段変速機の出力
軸からユニット出力軸の動力伝達経路の途中に介装され
た直結モードクラッチとを備えて、前記動力循環モード
クラッチと直結モードクラッチとを選択的に締結、解除
可能な変速比無限大無段変速機において、前記遊星歯車
機構のキャリアはダブルピニオンで構成されるととも
に、前記無段変速機からの動力伝達経路は、無段変速機
の出力軸と同軸の無段変速機出力ギヤと、この無段変速
機の出力軸と平行して軸支されたカウンタギヤを介して
歯合するとともに、前記遊星歯車機構のサンギヤと同軸
に配設された第1のギヤとから構成される一方、前記減
速機からの動力伝達経路は、ユニット入力軸と同軸の入
力ギヤに歯合するとともに、遊星歯車機構のリングギヤ
と同軸に配設された出力ギヤとから構成される。
A third aspect of the invention is a continuously variable transmission and a speed reducer respectively connected to the unit input shaft, a sun gear connected to the output shaft of the continuously variable transmission, a ring gear connected to the output shaft of the speed reducer, and A planetary gear mechanism consisting of a carrier coupled to the unit output shaft, a power circulation mode clutch interposed in the power transmission path from the unit input shaft to the ring gear of the planetary gear mechanism, and an output of the continuously variable transmission. A direct coupling mode clutch interposed in the power transmission path from the shaft to the unit output shaft to selectively engage and release the power circulation mode clutch and the direct coupling mode clutch. In the machine, the carrier of the planetary gear mechanism is configured by a double pinion, and a power transmission path from the continuously variable transmission is a coaxial shaft with an output shaft of the continuously variable transmission. A transmission output gear and a first gear that meshes with a counter gear that is axially supported in parallel with the output shaft of the continuously variable transmission and that is coaxial with the sun gear of the planetary gear mechanism. On the other hand, the power transmission path from the speed reducer includes an output gear that meshes with an input gear that is coaxial with the unit input shaft and that is coaxial with the ring gear of the planetary gear mechanism.

【0015】また、第4の発明は、ユニット入力軸にそ
れぞれ接続された無段変速機及び減速機と、無段変速機
の出力軸に連結したキャリア、減速機の出力軸に連結し
たリングギヤ及びユニット出力軸に連結したサンギヤと
からなる遊星歯車機構と、前記ユニット入力軸から遊星
歯車機構のリングギヤへの動力伝達経路の途中に介装さ
れた動力循環モードクラッチと、前記無段変速機の出力
軸からユニット出力軸の動力伝達経路の途中に介装され
た直結モードクラッチとを備えて、前記動力循環モード
クラッチと直結モードクラッチとを選択的に締結、解除
可能な変速比無限大無段変速機において、前記遊星歯車
機構のキャリアはダブルピニオンで構成されるととも
に、前記無段変速機からの動力伝達経路は、無段変速機
の出力軸と同軸の無段変速機出力ギヤと、この無段変速
機の出力軸と平行して軸支されたカウンタギヤを介して
歯合するとともに、前記遊星歯車機構のキャリアと同軸
に配設された第1のギヤとから構成される一方、前記減
速機からの動力伝達経路は、ユニット入力軸と同軸の入
力ギヤと歯合するとともに、遊星歯車機構のリングギヤ
と同軸に配設された出力ギヤとから構成される。
A fourth aspect of the invention is a continuously variable transmission and a speed reducer respectively connected to the unit input shaft, a carrier connected to the output shaft of the continuously variable transmission, a ring gear connected to the output shaft of the speed reducer, and A planetary gear mechanism consisting of a sun gear connected to the unit output shaft, a power circulation mode clutch interposed in the power transmission path from the unit input shaft to the ring gear of the planetary gear mechanism, and an output of the continuously variable transmission. A direct coupling mode clutch interposed in the power transmission path from the shaft to the unit output shaft to selectively engage and release the power circulation mode clutch and the direct coupling mode clutch. In the machine, the carrier of the planetary gear mechanism is configured by a double pinion, and a power transmission path from the continuously variable transmission is a coaxial shaft with an output shaft of the continuously variable transmission. A transmission output gear and a first gear that meshes with a counter gear that is axially supported in parallel with the output shaft of the continuously variable transmission and that is coaxial with the carrier of the planetary gear mechanism. On the other hand, the power transmission path from the speed reducer includes an output gear that is meshed with an input gear that is coaxial with the unit input shaft and that is coaxial with a ring gear of the planetary gear mechanism.

【0016】また、第5の発明は、前記第1ないし第4
の発明のいずれかひとつにおいて、前記減速機の減速比
Igは、無段変速機の出力軸からカウンタギヤを介して遊
星歯車機構へ入力されるカウンタギヤ列の変速比Idと、
無段変速機で設定可能な最大変速比IcLOWの積に等しい
か、または、これらの積以下で、かつ、可能な限り大き
く設定される。
A fifth aspect of the present invention is the first to fourth aspects of the invention.
The reduction ratio of the speed reducer according to any one of
Ig is the gear ratio Id of the counter gear train input from the output shaft of the continuously variable transmission to the planetary gear mechanism through the counter gear,
It is set to be equal to or less than the product of the maximum gear ratios Ic LOW that can be set in the continuously variable transmission, or less than these products and as large as possible.

【0017】また、第6の発明は、前記第1ないし第4
の発明のいずれかひとつにおいて、前記無段変速機は、
入出力軸の回転方向が反転するトロイダル型無段変速機
で構成されるとともに、前記ユニット出力軸は、駆動軸
と結合した差動ギヤを駆動するファイナルギヤと直接歯
合した変速機出力ギヤを設ける。
Further, a sixth invention is the above-mentioned first to fourth inventions.
In any one of the inventions, the continuously variable transmission is
It is composed of a toroidal type continuously variable transmission in which the rotation direction of the input / output shaft is reversed, and the unit output shaft has a transmission output gear directly meshed with a final gear that drives a differential gear connected to the drive shaft. Set up.

【0018】[0018]

【作用】したがって、第1の発明は、ユニット入力軸へ
入力された駆動力は、無段変速機と減速機へそれぞれ並
列的に伝達され、無段変速機へ入力された駆動力は、無
段変速機の出力軸と同軸の無段変速機出力ギヤに歯合す
るカウンタギヤを介して、遊星歯車機構のサンギヤと同
軸に配設された第1ギヤへ伝達される。一方、減速機へ
入力された駆動力は、無段変速機と同軸の入力ギヤか
ら、シングルピニオンで構成された遊星歯車機構のキャ
リアと同軸の出力ギヤへ伝達され、動力循環モードクラ
ッチの締結状態に応じて遊星歯車機構のキャリアが駆動
される。サンギヤの回転方向はカウンタギヤを介装した
ため、無段変速機の出力軸と同一方向となる一方、キャ
リアの回転方向はユニット入力軸とは逆転するが、無段
変速機に、例えば、ユニット入力軸と同軸的に入出力軸
を備えたトロイダル型を採用した場合には、無段変速機
の出力軸の回転方向はユニット入力軸に対して逆転する
ため、サンギヤとキャリアの回転方向は同一方向とする
ことができ、直結モードクラッチを締結、動力循環モー
ドクラッチを解放する直結モードでは、ユニット入力軸
とユニット出力軸の変速比Iiは、無段変速機で設定され
た変速比Icとカウンタギヤ列変速比Idの積に一致し、直
結モードクラッチを解放、動力循環モードクラッチを締
結した動力循環モードでは、無段変速機の変速比Icと、
減速機の減速比Igに応じたユニット変速比Iiでユニット
出力軸に連結したリングギヤが駆動される。
Therefore, in the first aspect of the present invention, the driving force input to the unit input shaft is transmitted in parallel to the continuously variable transmission and the speed reducer, respectively, and the driving force input to the continuously variable transmission is not transmitted. It is transmitted to a first gear that is arranged coaxially with the sun gear of the planetary gear mechanism, through a counter gear that meshes with a continuously variable transmission output gear that is coaxial with the output shaft of the continuously variable transmission. On the other hand, the driving force input to the speed reducer is transmitted from the input gear that is coaxial with the continuously variable transmission to the output gear that is coaxial with the carrier of the planetary gear mechanism that is configured by a single pinion, and the engaged state of the power circulation mode clutch. The carrier of the planetary gear mechanism is driven accordingly. Since the rotation direction of the sun gear is the same as that of the output shaft of the continuously variable transmission because the counter gear is interposed, the rotation direction of the carrier is opposite to that of the unit input shaft. When a toroidal type with an input / output shaft coaxial with the shaft is adopted, the rotation direction of the output shaft of the continuously variable transmission is opposite to that of the unit input shaft, so the rotation directions of the sun gear and carrier are the same. In the direct connection mode in which the direct connection mode clutch is engaged and the power circulation mode clutch is released, the gear ratio Ii between the unit input shaft and the unit output shaft is the gear ratio Ic set in the continuously variable transmission and the counter gear. In the power circulation mode in which the direct transmission mode clutch is disengaged and the power circulation mode clutch is engaged, the gear ratio Ic of the continuously variable transmission,
The ring gear connected to the unit output shaft is driven at the unit speed ratio Ii corresponding to the speed reduction ratio Ig of the speed reducer.

【0019】また、第2の発明は、ユニット入力軸へ入
力された駆動力は、無段変速機と減速機へそれぞれ並列
的に伝達され、無段変速機へ入力された駆動力は、無段
変速機の出力軸と同軸の無段変速機出力ギヤに歯合する
カウンタギヤを介して、遊星歯車機構のリングギヤと同
軸に配設された第1ギヤへ伝達される。一方、減速機へ
入力された駆動力は、無段変速機と同軸の入力ギヤか
ら、遊星歯車機構のキャリアと同軸の出力ギヤへ伝達さ
れ、動力循環モードクラッチの締結状態に応じて遊星歯
車機構のキャリアが駆動される。リングギヤの回転方向
はカウンタギヤを介装したため、無段変速機の出力軸と
同一方向となる一方、キャリアの回転方向はユニット入
力軸とは逆転するが、無段変速機に、例えば、ユニット
入力軸と同軸的に入出力軸を備えたトロイダル型を採用
した場合には、無段変速機の出力軸の回転方向はユニッ
ト入力軸に対して逆転するため、リングギヤとキャリア
の回転方向は同一方向とすることができ、直結モードク
ラッチを締結、動力循環モードクラッチを解放する直結
モードでは、ユニット入力軸とユニット出力軸の変速比
Iiは、無段変速機で設定された変速比Icとカウンタギヤ
列Idの積に一致するとともに、直結モードクラッチを解
放、動力循環モードクラッチを締結した動力循環モード
では、無段変速機の変速比Icと、減速機の減速比Igに応
じたユニット変速比Iiで、ユニット出力軸に連結したサ
ンギヤが駆動される。
According to a second aspect of the invention, the driving force input to the unit input shaft is transmitted in parallel to the continuously variable transmission and the speed reducer, respectively, and the driving force input to the continuously variable transmission is not transmitted. It is transmitted to the first gear arranged coaxially with the ring gear of the planetary gear mechanism via a counter gear that meshes with the output gear of the continuously variable transmission coaxial with the output shaft of the continuously variable transmission. On the other hand, the driving force input to the speed reducer is transmitted from the input gear that is coaxial with the continuously variable transmission to the output gear that is coaxial with the carrier of the planetary gear mechanism, and the planetary gear mechanism is selected according to the engaged state of the power circulation mode clutch. Carrier is driven. Since the rotation direction of the ring gear is the same as that of the output shaft of the continuously variable transmission because the counter gear is interposed, the rotation direction of the carrier is opposite to that of the unit input shaft. When a toroidal type that has an input / output shaft coaxial with the shaft is used, the rotation direction of the output shaft of the continuously variable transmission is opposite to that of the unit input shaft, so the ring gear and carrier rotate in the same direction. In the direct connection mode where the direct connection mode clutch is engaged and the power circulation mode clutch is released, the gear ratio between the unit input shaft and the unit output shaft
Ii is equal to the product of the gear ratio Ic set in the continuously variable transmission and the counter gear train Id, and in the power circulation mode where the direct coupling mode clutch is released and the power circulation mode clutch is engaged, the transmission of the continuously variable transmission is changed. The sun gear connected to the unit output shaft is driven at the ratio Ic and the unit speed ratio Ii corresponding to the reduction ratio Ig of the speed reducer.

【0020】また、第3の発明は、ユニット入力軸へ入
力された駆動力は、無段変速機と減速機へそれぞれ並列
的に伝達され、無段変速機へ入力された駆動力は、無段
変速機の出力軸と同軸の無段変速機出力ギヤに歯合する
カウンタギヤを介して、遊星歯車機構のサンギヤと同軸
に配設された第1ギヤへ伝達される。一方、減速機へ入
力された駆動力は、無段変速機と同軸の入力ギヤから遊
星歯車機構のリングギヤと同軸の出力ギヤへ伝達され、
動力循環モードクラッチの締結状態に応じて遊星歯車機
構のリングギヤが駆動される。サンギヤの回転方向はカ
ウンタギヤを介装したため、無段変速機の出力軸と同一
方向となる一方、リングギヤの回転方向はユニット入力
軸とは逆転するが、無段変速機に、例えば、ユニット入
力軸と同軸的に入出力軸を備えたトロイダル型を採用し
た場合には、無段変速機の出力軸の回転方向はユニット
入力軸に対して逆転するため、サンギヤとリングギヤの
回転方向は同一方向とすることができ、直結モードクラ
ッチを締結、動力循環モードクラッチを解放する直結モ
ードでは、ユニット入力軸とユニット出力軸の変速比Ii
は、無段変速機で設定された変速比Icとカウンタギヤ列
変速比Idの積に一致するとともに、直結モードクラッチ
を解放、動力循環モードクラッチを締結した動力循環モ
ードでは、無段変速機の変速比Icと減速機の減速比Igに
応じたユニット変速比Iiでダブルピニオンで構成された
キャリアに連結されたユニット出力軸が駆動される。
According to the third aspect of the invention, the driving force input to the unit input shaft is transmitted in parallel to the continuously variable transmission and the speed reducer, respectively, and the driving force input to the continuously variable transmission is not transmitted. It is transmitted to a first gear that is arranged coaxially with the sun gear of the planetary gear mechanism, through a counter gear that meshes with a continuously variable transmission output gear that is coaxial with the output shaft of the continuously variable transmission. On the other hand, the driving force input to the reduction gear is transmitted from the input gear coaxial with the continuously variable transmission to the output gear coaxial with the ring gear of the planetary gear mechanism,
The ring gear of the planetary gear mechanism is driven according to the engagement state of the power circulation mode clutch. Since the rotation direction of the sun gear is the same as that of the output shaft of the continuously variable transmission because the counter gear is interposed, the rotation direction of the ring gear is opposite to that of the unit input shaft. When a toroidal type with an input / output shaft coaxial with the shaft is adopted, the rotation direction of the output shaft of the continuously variable transmission is opposite to that of the unit input shaft, so the sun gear and ring gear rotate in the same direction. In the direct connection mode in which the direct connection mode clutch is engaged and the power circulation mode clutch is released, the gear ratio Ii between the unit input shaft and the unit output shaft is
Is equal to the product of the gear ratio Ic and the counter gear train gear ratio Id set in the continuously variable transmission, the direct connection mode clutch is released, and the power circulation mode clutch is engaged. The unit output shaft connected to the carrier constituted by the double pinion is driven at the unit speed ratio Ii corresponding to the speed ratio Ic and the speed reduction ratio Ig of the speed reducer.

【0021】また、第4の発明は、ユニット入力軸へ入
力された駆動力は、無段変速機と減速機へそれぞれ並列
的に伝達され、無段変速機へ入力された駆動力は、無段
変速機の出力軸と同軸の無段変速機出力ギヤに歯合する
カウンタギヤを介して、ダブルピニオンで構成された遊
星歯車機構のキャリアと同軸に配設された第1ギヤへ伝
達される。一方、減速機へ入力された駆動力は、無段変
速機と同軸の入力ギヤから遊星歯車機構のリングギヤと
同軸の出力ギヤへ伝達され、動力循環モードクラッチの
締結状態に応じて遊星歯車機構のリングギヤが駆動され
る。キャリアの回転方向はカウンタギヤを介装したた
め、無段変速機の出力軸と同一方向となる一方、リング
ギヤの回転方向はユニット入力軸とは逆転するが、無段
変速機に、例えば、ユニット入力軸と同軸的に入出力軸
を備えたトロイダル型を採用した場合には、無段変速機
の出力軸の回転方向はユニット入力軸に対して逆転する
ため、キャリアとリングギヤの回転方向は同一方向とす
ることができ、直結モードクラッチを締結、動力循環モ
ードクラッチを解放する直結モードでは、ユニット入力
軸とユニット出力軸の変速比Iiが無段変速機で設定され
た変速比Icとカウンタギヤ列変速比Idの積に一致すると
ともに、直結モードクラッチを解放、動力循環モードク
ラッチを締結した動力循環モードでは、無段変速機の変
速比Icと減速機の減速比Igに応じたユニット変速比Iiで
サンギヤに連結されたユニット出力軸が駆動される。
According to a fourth aspect of the invention, the driving force input to the unit input shaft is transmitted in parallel to the continuously variable transmission and the speed reducer, respectively, and the driving force input to the continuously variable transmission is zero. Through a counter gear that meshes with the output gear of the continuously variable transmission coaxial with the output shaft of the continuously variable transmission, it is transmitted to the first gear that is arranged coaxially with the carrier of the planetary gear mechanism configured by the double pinion. . On the other hand, the driving force input to the speed reducer is transmitted from the input gear that is coaxial with the continuously variable transmission to the output gear that is coaxial with the ring gear of the planetary gear mechanism, and the drive force of the planetary gear mechanism is changed according to the engaged state of the power circulation mode clutch. The ring gear is driven. Since the rotation direction of the carrier is the same as that of the output shaft of the continuously variable transmission because the counter gear is interposed, the rotation direction of the ring gear is opposite to that of the unit input shaft. When a toroidal type with an input / output shaft coaxial with the shaft is adopted, the rotation direction of the output shaft of the continuously variable transmission is opposite to that of the unit input shaft, so the rotation directions of the carrier and ring gear are the same. In the direct connection mode in which the direct connection mode clutch is engaged and the power circulation mode clutch is released, the gear ratio Ii between the unit input shaft and the unit output shaft is the gear ratio Ic set in the continuously variable transmission and the counter gear train. In the power circulation mode in which the direct transmission mode clutch is released and the power circulation mode clutch is engaged, the gear ratio Ic of the continuously variable transmission and the reduction gear ratio Ig of the reduction gear are matched with the product of the gear ratio Id. The unit output shaft connected to the sun gear is driven at the corresponding unit speed ratio Ii.

【0022】また、第5の発明は、減速機の減速比Ig
は、無段変速機の出力軸からカウンタギヤを介して遊星
歯車機構へ入力されるカウンタギヤ列の変速比Idと、無
段変速機で設定可能な最大変速比IcLOWの積に等しく設
定することで、無段変速機の最大変速比IcLOWにおい
て、直結モードと動力循環モードのユニット変速比を一
致させることができ、変速比に段差を生じることなく直
結モードと動力循環モードの切り換えを円滑に行うこと
ができ、無段変速機の変速比をIcLOWからIcHiまで有効
に利用することができる。また、減速比Igが、Ig=カウ
ンタギヤ列変速比Id×最大変速比IcLOWに設定できない
場合には、この積以下で設定可能な最大の減速比Igとす
ることで、無段変速機の最大変速比IcLOW付近におい
て、直結モードと動力循環モードのユニット変速比を一
致させることができ、変速比に段差を生じることなく直
結モードと動力循環モードの切り換えを円滑に行うこと
ができ、無段変速機の変速比をIcLOWからIcHiまで有効
に利用することができる。
A fifth aspect of the present invention is the reduction gear ratio Ig of the speed reducer.
Is set equal to the product of the gear ratio Id of the counter gear train input from the output shaft of the continuously variable transmission to the planetary gear mechanism through the counter gear and the maximum gear ratio Ic LOW that can be set by the continuously variable transmission. As a result, at the maximum speed ratio Ic LOW of the continuously variable transmission, the unit speed ratios of the direct drive mode and the power circulation mode can be matched, and the direct drive mode and the power circulation mode can be smoothly switched without causing a step difference in the speed ratio. The speed ratio of the continuously variable transmission can be effectively used from Ic LOW to Ic Hi . If the reduction gear ratio Ig cannot be set to Ig = counter gear train gear ratio Id × maximum gear ratio Ic LOW , the maximum reduction ratio Ig that can be set below this product is set to obtain the continuously variable transmission. In the vicinity of the maximum gear ratio Ic LOW , the unit gear ratios of the direct drive mode and the power circulation mode can be matched, and the direct drive mode and the power circulation mode can be smoothly switched without causing a step in the gear ratio. The gear ratio of the multi-speed transmission can be effectively used from Ic LOW to Ic Hi .

【0023】また、第6の発明は、無段変速機を入出力
軸の回転方向が反転するトロイダル型無段変速機で構成
することで、ユニット入力軸と同軸上に無段変速機の入
出力軸を配置することができ、ユニット出力軸は変速機
出力ギヤを介して、駆動軸と結合した差動ギヤを駆動す
るファイナルギヤと直接歯合するため、変速機全体の軸
数を、無段変速機と同軸のユニット入力軸、カウンタギ
ヤの軸、遊星歯車機構と同軸のユニット出力軸と、駆動
軸の合計4つの軸で構成することができる。
According to a sixth aspect of the present invention, the continuously variable transmission is a toroidal type continuously variable transmission in which the rotation direction of the input / output shaft is reversed, so that the continuously variable transmission is installed coaxially with the unit input shaft. The output shaft can be arranged, and the unit output shaft directly meshes with the final gear that drives the differential gear connected to the drive shaft via the transmission output gear. A unit input shaft coaxial with the step transmission, a counter gear shaft, a unit output shaft coaxial with the planetary gear mechanism, and a drive shaft can be included in total of four shafts.

【0024】[0024]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the accompanying drawings.

【0025】図1は、無段変速機2として前記従来例の
図11に示したトロイダル型無段変速機を用いて、FF
車に搭載される変速比無限大無段変速機を構成した一例
を示しており、前記従来例のカウンタギヤ31を廃止す
る一方、無段変速機2の出力ギヤ2aと出力軸4のギヤ
4aとの間にカウンタギヤ40aを新たに設けたもの
で、その他は前記従来例とほぼ同様に構成されており、
同一のものに同一の符号を付して重複説明を省略する。
FIG. 1 shows an FF using the toroidal type continuously variable transmission shown in FIG. 11 of the conventional example as the continuously variable transmission 2.
1 shows an example of a continuously variable transmission having an infinite transmission ratio mounted on a vehicle, in which the counter gear 31 of the conventional example is eliminated and the output gear 2a of the continuously variable transmission 2 and the gear 4a of the output shaft 4 are shown. A counter gear 40a is newly provided between the above and other parts, and the other parts are configured in substantially the same manner as the conventional example,
The same components are denoted by the same reference numerals, and redundant description will be omitted.

【0026】前記従来例と異なる点は、カウンタギヤ3
1を廃止して、減速機3をユニット入力軸1に設けた入
力ギヤ3aと、減速機出力軸3cに結合した出力ギヤと
してのギヤ3bを直接歯合させる構成とする一方、無段
変速機2の出力ギヤ2aと遊星歯車機構5と同軸上に軸
支された無段変速機出力軸4のギヤ4aとの間にカウン
タギヤ40aを介装し、これら出力ギヤ2a、カウンタ
ギヤ40、ギヤ4aからカウンタギヤ列40が構成され
る。なお、無段変速機出力軸4のギヤ4aが第1のギヤ
を構成する。
The difference from the conventional example is that the counter gear 3
1 is eliminated and the input gear 3a provided on the unit input shaft 1 of the speed reducer 3 and the gear 3b as an output gear connected to the speed reducer output shaft 3c are directly meshed with each other, while the continuously variable transmission is used. A counter gear 40a is interposed between the output gear 2a of the second gear 2 and the gear 4a of the continuously variable transmission output shaft 4 which is coaxially supported by the planetary gear mechanism 5, and these output gear 2a, the counter gear 40, the gear A counter gear train 40 is composed of 4a. The gear 4a of the continuously variable transmission output shaft 4 constitutes a first gear.

【0027】そして、ユニット出力軸6に設けた変速機
出力ギヤ7と差動ギヤ8のファイナルギヤ12を直接歯
合させて、変速比無限大無段変速機の軸を、無段変速機
2の入出力軸、カウンタギヤ40の軸、ユニット出力軸
6、そして、駆動軸11a、11bの合計4つの軸から
構成したもので、前記従来例に比して装置全体の軸数は
1つ低減される。
Then, the transmission output gear 7 provided on the unit output shaft 6 and the final gear 12 of the differential gear 8 are directly meshed with each other, so that the shaft of the continuously variable transmission with an infinite transmission ratio is changed to the continuously variable transmission 2. The input / output shaft, the shaft of the counter gear 40, the unit output shaft 6, and the drive shafts 11a and 11b, which are a total of four shafts, reduce the total number of shafts by one compared with the conventional example. To be done.

【0028】遊星歯車機構5は前記従来と同様に、サン
ギヤ5aが無段変速機出力軸4に、シングルピニオンで
構成されたキャリア5bが減速機3の出力軸3cに連結
され、リングギヤ5cがユニット出力軸6に結合され
る。
In the planetary gear mechanism 5, the sun gear 5a is connected to the output shaft 4 of the continuously variable transmission, the carrier 5b formed of a single pinion is connected to the output shaft 3c of the speed reducer 3, and the ring gear 5c is a unit, as in the conventional case. It is coupled to the output shaft 6.

【0029】このような構成の変速比無限大無段変速機
の作用について、以下に詳述する。
The operation of the infinitely variable transmission continuously variable transmission having such a configuration will be described in detail below.

【0030】まず、動力循環モードクラッチ9を締結す
る一方、直結モードクラッチ10を解放した動力循環モ
ードについて考える。なお、ユニット入力軸1と無段変
速機2やカウンタギヤ40等の個々の要素の回転方向が
異なる場合は回転数を負の値で示す一方、同一の場合は
回転数を正の値で示す。
First, consider the power circulation mode in which the direct circulation mode clutch 10 is released while the power circulation mode clutch 9 is engaged. When the unit input shaft 1 and the individual elements such as the continuously variable transmission 2 and the counter gear 40 have different rotational directions, the rotational speed is indicated by a negative value, while the same is indicated by a positive value. .

【0031】いま、キャリア5bには、ユニット入力軸
1の回転方向に対して減速機3で反転された回転数が入
力されるため、キャリア5bの回転数NCは、
Now, since the rotation speed inverted by the speed reducer 3 with respect to the rotation direction of the unit input shaft 1 is input to the carrier 5b, the rotation speed N C of the carrier 5b is

【0032】[0032]

【数1】 [Equation 1]

【0033】ただし、NIN;ユニット入力軸回転数 Ig;減速機3の減速比 である。Here, N IN is the unit input shaft rotation speed Ig, and the reduction ratio of the speed reducer 3.

【0034】一方、無段変速機2の出力軸4と結合した
サンギヤ5aの回転方向は、無段変速機2がトロイダル
型で構成されるため、出力ギヤ2aの回転方向はユニッ
ト入力軸1に対して反転され、この回転方向がカウンタ
ギヤ40aを介装したため、そのまま出力軸4へ入力さ
れ、サンギヤ5aの回転方向もユニット入力軸1に対し
て逆方向となり、サンギヤ5aの回転数NSは次式のよ
うになる。
On the other hand, the rotation direction of the sun gear 5a coupled to the output shaft 4 of the continuously variable transmission 2 is the toroidal type of the continuously variable transmission 2. Therefore, the rotation direction of the output gear 2a is the same as that of the unit input shaft 1. is inverted for, since this direction of rotation is interposed the counter gears 40a, is input directly to the output shaft 4 becomes a direction opposite to the rotation direction unit input shaft 1 of the sun gear 5a, the rotation speed N S of the sun gear 5a It becomes like the following formula.

【0035】[0035]

【数2】 [Equation 2]

【0036】ただし、Ic;無段変速機2の変速比 Id;カウンタギヤ列変速比、すなわち、カウンタギヤ4
0と歯合する出力ギヤ2a〜ギヤ4aの減速比を示す。
However, Ic: gear ratio of the continuously variable transmission Id: counter gear train gear ratio, that is, the counter gear 4
The reduction ratio of the output gears 2a-4a which mesh with 0 is shown.

【0037】そして、ユニット出力軸6はリングギヤ5
cに結合されるため、ユニット出力軸6の回転数NOUT
は、次式で表現される。
The unit output shaft 6 is the ring gear 5
Since it is coupled to c, the rotation speed N OUT of the unit output shaft 6
Is expressed by the following equation.

【0038】[0038]

【数3】 (Equation 3)

【0039】ただし、NR;リングギヤ5cの回転数 α;サンギヤ5aの歯数/リングギヤ5cの歯数であ
る。
Where N R is the number of revolutions of the ring gear 5c α is the number of teeth of the sun gear 5a / the number of teeth of the ring gear 5c.

【0040】ユニット出力軸6に設けた変速機出力ギヤ
7とファイナルギヤ12は直接歯合するため、駆動軸1
1a、11bの回転数NVは、次式で表現できる。ただ
し、駆動軸回転数NVは、差動ギヤ8がロック状態(左
右の駆動軸11a、11bの回転数が同一)の場合を示
す。
Since the transmission output gear 7 and the final gear 12 provided on the unit output shaft 6 are directly meshed with each other, the drive shaft 1
The rotation speed N V of 1a and 11b can be expressed by the following equation. However, the drive shaft rotational speed N V indicates the case where the differential gear 8 is in the locked state (the rotational speeds of the left and right drive shafts 11a and 11b are the same).

【0041】[0041]

【数4】 (Equation 4)

【0042】ただし、If;ファイナルギヤ列の減速比。However, If; reduction ratio of the final gear train.

【0043】したがって、動力循環モードでは、図2に
示すように、無段変速機2の変速比Icが増速側から減速
側への変速により、ファイナルギヤ減速比を含んだユニ
ット総変速比Ivは逆転(変速比<0)から停止(ギヤ
ードニュートラル)を経て正転側のモード切換点Pまで
円滑に変速を行うことができる。なお、この図2におい
て、ユニット総変速比Ivの逆数は、ユニット入力軸1
の回転数NIN=1としたときの駆動軸回転数NVを示し
ており、各変速比を次のように設定した一例を示す。
Therefore, in the power circulation mode, as shown in FIG. 2, the gear ratio Ic of the continuously variable transmission 2 is changed from the speed increasing side to the speed reducing side by the gear change ratio Iv including the final gear speed reducing ratio. Can smoothly shift from the reverse rotation (gear ratio <0) to the stop (geared neutral) to the mode switching point P on the forward rotation side. In FIG. 2, the reciprocal of the unit total speed ratio Iv is the unit input shaft 1
The drive shaft rotational speed N V when the rotational speed N IN = 1 is shown, and an example in which each gear ratio is set as follows is shown.

【0044】無段変速機変速比 Ic=0.5〜2.0 カウンタギヤ列変速比 Id=1.0 減速機減速比 Ig=2.0 ファイナルギヤ減速比 If=3.5 遊星歯車減速比(サンギヤ5aの歯数/リングギヤ5c
の歯数) α=36/67 一方、動力循環モードクラッチ9を解放するとともに、
直結モードクラッチ10を締結する無段変速機直結モー
ドでは、減速機3及び遊星歯車機構5は動力伝達経路か
ら切り放されるため、ユニット出力軸6の回転数NOUT
は、
Continuously variable transmission gear ratio Ic = 0.5 to 2.0 Counter gear train gear ratio Id = 1.0 Reduction gear reduction ratio Ig = 2.0 Final gear reduction ratio If = 3.5 Planetary gear reduction ratio (Number of teeth of sun gear 5a / ring gear 5c
On the other hand, while releasing the power circulation mode clutch 9,
The CVT direct mode to enter into a direct mode clutch 10, since the reduction gear 3 and the planetary gear mechanism 5 is split off from the power transmission path, the rotational speed N OUT of the unit output shaft 6
Is

【0045】[0045]

【数5】 (Equation 5)

【0046】となり、同様に、駆動軸回転数NVも、Similarly, the drive shaft speed N V is also

【0047】[0047]

【数6】 (Equation 6)

【0048】となる。Is as follows.

【0049】すなわち、駆動軸回転数NVは、図2に示
す直結モードのように、無段変速機2の変速比Icが減速
側から増速側へ減少すると、1/IdIcLOWIfから1/IdI
cHiIfまでの間で連続的に変速を行うことができる。
That is, the drive shaft speed N V is 1 / IdIc LOW If to 1 when the gear ratio Ic of the continuously variable transmission 2 decreases from the deceleration side to the acceleration side as in the direct connection mode shown in FIG. / IdI
c It is possible to continuously shift gears up to Hi If.

【0050】ただし、IcLOWは、無段変速機2で設定可
能な最Low変速比。IcHiは無段変速機2で設定可能な
最Hi変速比である。
However, Ic LOW is the maximum Low gear ratio that can be set by the continuously variable transmission 2. Ic Hi is the maximum Hi gear ratio that can be set by the continuously variable transmission 2.

【0051】ここで、無段変速機2の最Low変速比
で、直結モードから動力循環モードへ切り換えることに
より、前進から後進(正転から逆転)の間で、停止を含
む任意の変速比を得ながら、変速機全体の軸の数を駆動
軸を含んで前記従来例に比して5軸から4軸へ低減する
ことができ、変速機全体の小型、軽量化を図るととも
に、前記従来例に比して軸受けの総数を低減すること
で、動力伝達効率の向上を推進できるのである。
Here, by switching from the direct coupling mode to the power circulation mode at the lowest Low gear ratio of the continuously variable transmission 2, any gear ratio including stop can be set between forward movement and reverse movement (forward rotation to reverse rotation). In the meantime, the number of shafts of the entire transmission including the drive shafts can be reduced from 5 to 4 shafts as compared with the conventional example, and the overall size and weight of the transmission can be reduced. By reducing the total number of bearings as compared with, it is possible to promote the improvement of power transmission efficiency.

【0052】図3は第2の実施形態を示し、前記第1実
施形態のカウンタギヤ列変速比Idが増速となるようなカ
ウンタギヤ列40’に置き換えたもので、その他の構成
は前記第1実施形態と同様である。
FIG. 3 shows a second embodiment, which is replaced with a counter gear train 40 'which increases the speed ratio Id of the counter gear train of the first embodiment, and other structures are the same as those of the first embodiment. This is similar to that of the first embodiment.

【0053】ここで、各変速比を次のように設定した場
合の、無段変速機変速比Icとユニット変速比Iiの逆数の
関係を図4のグラフに示す。
The graph of FIG. 4 shows the relationship between the reciprocal of the continuously variable transmission gear ratio Ic and the unit gear ratio Ii when the respective gear ratios are set as follows.

【0054】 無段変速機変速比 Ic=0.5〜2.0 カウンタギヤ列変速比 Id=0.8 減速機減速比 Ig=1.6 ファイナルギヤ減速比 If=3.5 遊星歯車減速比(サンギヤ5aの歯数/リングギヤ5c
の歯数) α=36/67 なお、ここでは、減速機3の減速比Igをカウンタギヤ列
40の変速比Idと無段変速機2の最Low変速比IcLOW
の積に等しくなる、Ig=Id×IcLOWとなるように設定す
る。
Continuously variable transmission gear ratio Ic = 0.5 to 2.0 Counter gear train gear ratio Id = 0.8 Reduction gear reduction ratio Ig = 1.6 Final gear reduction ratio If = 3.5 Planetary gear reduction ratio (Number of teeth of sun gear 5a / ring gear 5c
Here, the reduction ratio Ig of the reduction gear 3 is set to the gear ratio Id of the counter gear train 40 and the maximum Low gear ratio Ic LOW of the continuously variable transmission 2 here.
It is set to be equal to the product of, Ig = Id × Ic LOW .

【0055】すなわち、本実施形態では、 Ig=0.8×2.0=1.6 となる。That is, in this embodiment, Ig = 0.8 × 2.0 = 1.6.

【0056】図4に示すように、モード切換点Pとなる
無段変速機2の最Low変速比IcLOWにおいて、直結モ
ードと動力循環モードのユニット変速比Iiが同一とな
り、直結モードと動力循環モードの切り換えを、この変
速比IcLOWにおいて段差を生ずることなく滑らかに行う
ことができると共に、無段変速機2の変速比Icを最Hi
変速比から最Low変速比まで有効に利用することがで
きる。
As shown in FIG. 4, at the maximum Low gear ratio Ic LOW of the continuously variable transmission 2 at the mode switching point P, the unit gear ratio Ii in the direct coupling mode and the power circulation mode become the same, and the direct coupling mode and the power circulation The mode can be switched smoothly at this gear ratio Ic LOW without causing a step, and the gear ratio Ic of the continuously variable transmission 2 can be set to the maximum Hi.
It is possible to effectively utilize from the gear ratio to the lowest Low gear ratio.

【0057】動力循環モードでは、Ic=IcLOWにおい
て、駆動軸回転数NVが次式のように表される。
In the power circulation mode, when Ic = Ic LOW , the drive shaft rotational speed N V is expressed by the following equation.

【0058】[0058]

【数7】 (Equation 7)

【0059】一方、直結モードでは、Ic=IcLOWにおい
て、駆動軸回転数NVが次式のように表される。
On the other hand, in the direct connection mode, when Ic = Ic LOW , the drive shaft rotational speed N V is expressed by the following equation.

【0060】[0060]

【数8】 (Equation 8)

【0061】したがって、上記(7)式と(8)式は等
しくなることからも、モード切換点Pとなる最Low変
速比IcLOWでは、直結モードと動力循環モードのユニッ
ト変速比Iiが等しくなることが解る。
Therefore, since the above equations (7) and (8) are equal, the unit low gear ratio Ii in the direct connection mode and the power circulation mode is equal at the maximum Low gear ratio Ic LOW which is the mode switching point P. I understand.

【0062】なお、カウンタギヤ列40’の変速比Id=
1(等速)、Id>1(減速)の場合でも、上記と同様に Ig=Id×IcLOW に設定すれば、モード切換点Pとなる無段変速機2の最
Low変速比IcLOWにおいて、直結モードと動力循環モ
ードのユニット変速比Iiが同一になって、変速比無限大
無段変速機の構成を4軸としながら、総減速比に段差を
生じることなく円滑に切り換えを行え、無段変速機2の
変速比をIcHiからIcLOWまで有効に利用することができ
る。
The gear ratio Id = of the counter gear train 40 '
Even if 1 (constant speed) and Id> 1 (deceleration), if Ig = Id × Ic LOW is set in the same manner as above, at the lowest Low gear ratio Ic LOW of the continuously variable transmission 2 at the mode switching point P. Since the unit speed ratio Ii in the direct connection mode and the power circulation mode are the same, and the infinite speed ratio continuously variable transmission has four axes, smooth switching can be performed without causing a step difference in the total reduction ratio. The gear ratio of the stage transmission 2 can be effectively used from Ic Hi to Ic LOW .

【0063】また、入力ギヤ3aの歯数と出力ギヤ3b
の歯数の関係によって、Ig=Id×IcLOWに設定できない
場合では、減速機3の減速比Igをカウンタギヤ列変速比
Id×最Low変速比IcLOW以下で、可能な限り大きな値
に設定する。
Further, the number of teeth of the input gear 3a and the output gear 3b
If Ig = Id × Ic LOW cannot be set due to the relationship of the number of teeth of, the speed reduction ratio Ig of the speed reducer 3 is set to the counter gear train speed change ratio.
Id × Maximum Low Gear ratio Ic LOW or less, and set to a value as large as possible.

【0064】この場合においては、モード切換点(言い
換えると、モード切換時の無段変速機変速比)Ig/Idに
おいて、総減速比に段差を生じることなく、直結モード
と動力循環モードとを円滑に接続することができる。
In this case, at the mode switching point (in other words, the gear ratio of the continuously variable transmission at the time of mode switching) Ig / Id, the direct reduction mode and the power circulation mode are smoothly operated without causing a step difference in the total reduction ratio. Can be connected to.

【0065】この時、減速比Igは、Id×IcLOW以下で可
能な限り大きな値であるから、モード切換点Ig/Idは、
IcLOW以下で、IcLOWに近い値となるため、無段変速機2
の変速比Icを最Hi変速比から、ほぼ最Low変速比ま
で、有効に利用することができる。
At this time, the reduction ratio Ig is a value as large as possible below Id × Ic LOW , and therefore the mode switching point Ig / Id is
Since the value is close to Ic LOW when Ic LOW or less, continuously variable transmission 2
The gear ratio Ic can be effectively used from the highest Hi gear ratio to almost the lowest Gear ratio.

【0066】図5は、第3の実施形態を示し、前記第1
実施形態の遊星歯車機構5を105に変更したもので、
その他の構成は、前記第1実施形態と同様である。
FIG. 5 shows a third embodiment, in which the first
By changing the planetary gear mechanism 5 of the embodiment to 105,
Other configurations are the same as those of the first embodiment.

【0067】遊星歯車機構105は、シングルピニオン
のキャリア105bを備え、このキャリア105bを減
速機3の出力軸3cに結合し、サンギヤ105aをユニ
ット出力軸6に、リングギヤ105cを無段変速機2と
連結された出力軸4にそれぞれ結合したものであり、第
1ギヤとしてのギヤ4aは、リングギヤ5cと同軸的に
配設される。
The planetary gear mechanism 105 includes a single pinion carrier 105b, which is coupled to the output shaft 3c of the speed reducer 3, the sun gear 105a serving as the unit output shaft 6, and the ring gear 105c serving as the continuously variable transmission 2. The gears 4a as the first gears are respectively coupled to the coupled output shafts 4 and are arranged coaxially with the ring gear 5c.

【0068】直結モードクラッチ10を解放する一方、
循環モードクラッチ9を締結する動力循環モードでは、
減速機3からの入力により回転するキャリア105bの
回転数NC及び、無段変速機2からの入力により回転す
るリングギヤ105cの回転数NRは、
While the direct coupling mode clutch 10 is released,
In the power circulation mode in which the circulation mode clutch 9 is engaged,
The rotation speed N C of the carrier 105b rotated by the input from the speed reducer 3 and the rotation speed N R of the ring gear 105c rotated by the input from the continuously variable transmission 2 are

【0069】[0069]

【数9】 [Equation 9]

【0070】となり、ユニット出力軸3の回転数NOUT
は、次式で表現される。
The rotation speed of the unit output shaft 3 N OUT
Is expressed by the following equation.

【0071】[0071]

【数10】 (Equation 10)

【0072】したがって、駆動軸11a、11bの回転
数NVは、
Therefore, the rotation speed N V of the drive shafts 11a and 11b is

【0073】[0073]

【数11】 [Equation 11]

【0074】となる。Is obtained.

【0075】一方、動力循環モードクラッチ9を解放す
るとともに、直結モードクラッチ10を締結する、直結
モードではユニット出力軸6の回転数NOUTは、
On the other hand, the power circulation mode clutch 9 is released and the direct coupling mode clutch 10 is engaged. In the direct coupling mode, the rotation speed N OUT of the unit output shaft 6 is

【0076】[0076]

【数12】 (Equation 12)

【0077】となって、駆動軸回転数NVは、Thus, the drive shaft speed N V is

【0078】[0078]

【数13】 (Equation 13)

【0079】となる。Is obtained.

【0080】ここで、 無段変速機変速比 Ic=0.5〜2.0 カウンタギヤ列変速比 Id=1.0 減速機減速比 Ig=2.0=Id×IcLOW=1.0×2.
0 ファイナルギヤ減速比 If=3.5 遊星歯車減速比(サンギヤ5aの歯数/リングギヤ5c
の歯数) α=36/67 にそれぞれ設定した場合の、無段変速機変速比Icとファ
イナルギヤ減速比を含んだユニット総変速比Ivの逆数
の関係を、図6のグラフに示す。
Here, the continuously variable transmission gear ratio Ic = 0.5 to 2.0, the counter gear train gear ratio Id = 1.0, the reduction gear reduction ratio Ig = 2.0 = Id × Ic LOW = 1.0 × 2.
0 Final gear reduction ratio If = 3.5 Planetary gear reduction ratio (number of teeth of sun gear 5a / ring gear 5c
The number of teeth of α) is set to 36/67, and the relationship between the continuously variable transmission gear ratio Ic and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio is shown in the graph of FIG.

【0081】この実施形態では、動力循環モード及び直
結モードにおいて、変速比無限大無段変速機として機能
することができ、加えて、Ig=Id×IcLOWに設定したた
め、総減速比に段差のない円滑なモード切換を行うこと
ができる。
In this embodiment, in the power circulation mode and the direct connection mode, it is possible to function as an infinitely variable transmission continuously variable transmission. In addition, since Ig = Id × Ic LOW is set, there is a step in the total reduction ratio. Smooth mode switching can be performed.

【0082】図7は第4の実施形態を示し、前記第1実
施形態の遊星歯車機構5の入出力の関係を変更した遊星
歯車機構205に置き換えたもので、その他の構成は、
前記第1実施形態と同様である。
FIG. 7 shows a fourth embodiment, which is replaced with a planetary gear mechanism 205 in which the input / output relationship of the planetary gear mechanism 5 of the first embodiment is changed, and other configurations are as follows.
This is the same as the first embodiment.

【0083】遊星歯車機構205は、ダブルピニオンで
構成されたキャリア205bを備え、このキャリア20
5bをユニット出力軸6に結合し、減速機3の出力軸3
cをリングギヤ205cに、無段変速機2と連結した出
力軸4をサンギヤ205aにそれぞれ結合したものであ
る。
The planetary gear mechanism 205 includes a carrier 205b composed of a double pinion.
5b is connected to the unit output shaft 6, and the output shaft 3 of the speed reducer 3 is connected.
c is connected to the ring gear 205c, and the output shaft 4 connected to the continuously variable transmission 2 is connected to the sun gear 205a.

【0084】直結モードクラッチ10を解放する一方、
循環モードクラッチ9を締結する動力循環モードでは、
減速機3からの入力により回転するリングギヤ205c
の回転数NR及び、無段変速機2からの入力により回転
するサンギヤ205aの回転数NSは、
While the direct coupling mode clutch 10 is released,
In the power circulation mode in which the circulation mode clutch 9 is engaged,
Ring gear 205c rotated by input from the speed reducer 3
The rotational speed N R and the rotational speed N S of the sun gear 205a which is rotated by the input from the continuously variable transmission 2,

【0085】[0085]

【数14】 [Equation 14]

【0086】であり、ユニット出力軸3の回転数NOUT
は、
Is the number of rotations N OUT of the unit output shaft 3.
Is

【0087】[0087]

【数15】 (Equation 15)

【0088】したがって、駆動軸11a、11bの回転
数NVは、
Therefore, the rotational speed N V of the drive shafts 11a and 11b is

【0089】[0089]

【数16】 (Equation 16)

【0090】となる。## EQU10 ##

【0091】一方、動力循環モードクラッチ9を解放す
るとともに、直結モードクラッチ10を締結する、直結
モードにおけるユニット出力軸6の回転数NOUTは、
On the other hand, the rotational speed N OUT of the unit output shaft 6 in the direct coupling mode in which the power circulation mode clutch 9 is released and the direct coupling mode clutch 10 is engaged is

【0092】[0092]

【数17】 [Equation 17]

【0093】となって、駆動軸回転数NVは、Therefore, the drive shaft speed N V is

【0094】[0094]

【数18】 (Equation 18)

【0095】となる。Is obtained.

【0096】ここで、無段変速機変速比 Ic=0.5〜
2.0 カウンタギヤ列変速比 Id=1.0 減速機減速比 Ig=2.0=Id×IcLOW=1.0×2.
0 ファイナルギヤ減速比 If=3.5 遊星歯車減速比(サンギヤ5aの歯数/リングギヤ5c
の歯数) α=29/67 にそれぞれ設定した場合の、無段変速機変速比Icとファ
イナルギヤ減速比を含んだユニット総変速比Ivの逆数
の関係を、図8のグラフに示す。
Here, the continuously variable transmission gear ratio Ic = 0.5-
2.0 Counter gear train gear ratio Id = 1.0 Reduction gear reduction ratio Ig = 2.0 = Id × Ic LOW = 1.0 × 2.
0 Final gear reduction ratio If = 3.5 Planetary gear reduction ratio (number of teeth of sun gear 5a / ring gear 5c
The number of teeth of α) is set to 29/67, and the relationship between the continuously variable transmission gear ratio Ic and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio is shown in the graph of FIG.

【0097】この実施形態においても、動力循環モード
及び直結モードにおいて、変速比無限大無段変速機とし
て機能することができ、加えて、Ig=Id×IcLOWに設定
したため、総減速比に段差のない円滑なモード切換を行
うことができる。
Also in this embodiment, in the power circulation mode and the direct connection mode, it is possible to function as an infinitely variable transmission continuously variable transmission, and in addition, since Ig = Id × Ic LOW is set, there is a step in the total reduction ratio. It is possible to smoothly switch modes.

【0098】図9は第5の実施形態を示し、前記第3実
施形態の遊星歯車機構105の入出力の関係を変更する
とともに、キャリアをダブルピニオンで構成した遊星歯
車機構305に置き換えたもので、その他の構成は、前
記第3実施形態と同様である。
FIG. 9 shows a fifth embodiment, in which the input / output relationship of the planetary gear mechanism 105 of the third embodiment is changed and the carrier is replaced with a planetary gear mechanism 305 constituted by a double pinion. The other configurations are the same as those in the third embodiment.

【0099】遊星歯車機構305は、ダブルピニオンで
構成されたキャリア305bを無段変速機2と連結した
出力軸4に結合し、リングギヤ305cを減速機3の出
力軸3cに、ユニット出力軸6をサンギヤ305aにそ
れぞれ結合したものである。
In the planetary gear mechanism 305, the carrier 305b composed of a double pinion is connected to the output shaft 4 connected to the continuously variable transmission 2, the ring gear 305c is connected to the output shaft 3c of the speed reducer 3, and the unit output shaft 6 is connected. They are respectively connected to the sun gear 305a.

【0100】直結モードクラッチ10を解放する一方、
循環モードクラッチ9を締結する動力循環モードでは、
減速機3からの入力により回転するリングギヤ305c
の回転数NR及び無段変速機2からの入力により回転す
るキャリア305bの回転数NCは、
While the direct coupling mode clutch 10 is released,
In the power circulation mode in which the circulation mode clutch 9 is engaged,
Ring gear 305c rotated by input from the speed reducer 3
The rotational speed N C of the carrier 305b which is rotated by the input from the rotational speed N R and the continuously variable transmission 2,

【0101】[0101]

【数19】 [Equation 19]

【0102】であり、ユニット出力軸3の回転数NOUT
は、
And the rotational speed N OUT of the unit output shaft 3
Is

【0103】[0103]

【数20】 (Equation 20)

【0104】したがって、駆動軸11a、11bの回転
数NVは、
Therefore, the rotational speed N V of the drive shafts 11a and 11b is

【0105】[0105]

【数21】 (Equation 21)

【0106】となる。The following is obtained.

【0107】一方、動力循環モードクラッチ9を解放す
るとともに、直結モードクラッチ10を締結する、直結
モードにおけるユニット出力軸6の回転数NOUTは、
On the other hand, the rotational speed N OUT of the unit output shaft 6 in the direct coupling mode in which the power circulation mode clutch 9 is released and the direct coupling mode clutch 10 is engaged is

【0108】[0108]

【数22】 (Equation 22)

【0109】となって、駆動軸回転数NVは、Therefore, the drive shaft speed N V is

【0110】[0110]

【数23】 (Equation 23)

【0111】となる。Is obtained.

【0112】ここで、 無段変速機変速比 Ic=0.5〜2.0 カウンタギヤ列変速比 Id=1.0 減速機減速比 Ig=2.0=Id×IcLOW=1.0×2.
0 ファイナルギヤ減速比 If=3.5 遊星歯車減速比(サンギヤ5aの歯数/リングギヤ5c
の歯数) α=29/67 にそれぞれ設定した場合の、無段変速機変速比Icとファ
イナルギヤ減速比を含んだユニット総変速比Ivの逆数
の関係を、図10のグラフに示す。
Here, the continuously variable transmission gear ratio Ic = 0.5 to 2.0, the counter gear train gear ratio Id = 1.0, the reduction gear reduction ratio Ig = 2.0 = Id × Ic LOW = 1.0 × 2.
0 Final gear reduction ratio If = 3.5 Planetary gear reduction ratio (number of teeth of sun gear 5a / ring gear 5c
The graph of FIG. 10 shows the relationship between the continuously variable transmission gear ratio Ic and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio when α = 29/67 is set.

【0113】この実施形態においても、動力循環モード
及び直結モードにおいて、変速比無限大無段変速機とし
て機能することができ、加えて、Ig=Id×IcLOWに設定
したため、総減速比に段差のない円滑なモード切換を行
うことができる。
Also in this embodiment, in the power circulation mode and the direct connection mode, it is possible to function as an infinitely variable transmission continuously variable transmission, and in addition, since Ig = Id × Ic LOW is set, there is a step in the total reduction ratio. It is possible to smoothly switch modes.

【0114】こうして、FF車に適用される変速比無限
大無段変速機の軸数(駆動軸11a,11bを含んだ軸
数)を前記従来例の5軸から4軸に低減することで、装
置の小型軽量化を図ることが可能となり、軸数の低減に
伴って軸受の数を削減することで、動力伝達効率の向上
を実現することができ、さらに、減速機3の減速比Ig
を、カウンタギヤ列40の変速比Idと無段変速機2の最
Low変速比IcLOWの積にほぼ等しく設定することによ
り、直結モードと動力循環モードの切換点において、総
減速比(ユニット変速比Ii)に段差を生じることなく滑
らかに切り換えを行い、同時に、無段変速機2の変速比
Icを最Low変速比IcLOWから最Hi変速比IcHiまで、
有効に利用することができる。
Thus, by reducing the number of shafts (the number of shafts including the drive shafts 11a and 11b) of the continuously variable transmission having an infinite transmission ratio applied to the FF vehicle from the five shafts of the conventional example to four shafts, The size and weight of the device can be reduced, and the number of bearings can be reduced as the number of shafts is reduced, so that the power transmission efficiency can be improved and the reduction ratio Ig of the reduction gear 3 can be improved.
Is set to be approximately equal to the product of the gear ratio Id of the counter gear train 40 and the maximum Low gear ratio Ic LOW of the continuously variable transmission 2 so that the total reduction ratio (unit gear ratio) at the switching point between the direct coupling mode and the power circulation mode. The ratio Ii) is smoothly switched without causing a step, and at the same time, the gear ratio of the continuously variable transmission 2 is changed.
Ic from the lowest Low gear ratio Ic LOW to the highest Hi gear ratio Ic Hi ,
It can be used effectively.

【0115】[0115]

【発明の効果】以上説明したように第1の発明は、無段
変速機の出力軸から駆動力を伝達されるサンギヤの回転
方向は、遊星歯車機構と同軸のユニット出力軸と無段変
速機の出力軸との間にカウンタギヤを介装したため、無
段変速機の出力軸と同一方向となる一方、キャリアの回
転方向は減速機によってユニット入力軸とは逆転する
が、無段変速機に、例えば、ユニット入力軸と同軸的に
入出力軸を備えたトロイダル型を採用した場合には、無
段変速機の出力軸の回転方向はユニット入力軸に対して
逆転するため、サンギヤとキャリアの回転方向は同一方
向とすることができ、直結モードクラッチを締結、動力
循環モードクラッチを解放する直結モードでは、ユニッ
ト入力軸とユニット出力軸の変速比Iiは、無段変速機で
設定された変速比Icとカウンタギヤ列変速比Idの積と一
致し、直結モードクラッチを解放、動力循環モードクラ
ッチを締結した動力循環モードでは、無段変速機の変速
比Icと、減速機の減速比Igに応じたユニット変速比Iiで
ユニット出力軸に連結したリングギヤが駆動され、この
ユニット出力軸に駆動軸と連結した差動ギヤを歯合させ
れば、変速機全体の軸数は、ユニット入力軸、カウンタ
ギヤの軸、ユニット出力軸となり、駆動軸を合わせて4
軸の構成となり、前記従来例の5軸に比して軸数を低減
する事が可能となって、変速比無限大変速機の小型軽量
化を推進するとともに、軸受の数を低減することで、動
力伝達効率を向上させることができる。
As described above, according to the first aspect of the invention, the rotation direction of the sun gear to which the driving force is transmitted from the output shaft of the continuously variable transmission is such that the unit output shaft coaxial with the planetary gear mechanism and the continuously variable transmission. Since a counter gear is installed between the output shaft of the unit and the output shaft of the continuously variable transmission, the direction of rotation of the carrier is reverse to that of the unit input shaft by the speed reducer. , For example, when a toroidal type with an input / output shaft coaxial with the unit input shaft is adopted, the rotation direction of the output shaft of the continuously variable transmission is reversed with respect to the unit input shaft. The rotation directions can be the same, and in the direct connection mode in which the direct connection mode clutch is engaged and the power circulation mode clutch is released, the gear ratio Ii between the unit input shaft and the unit output shaft is the gear ratio set by the continuously variable transmission. Ratio Ic and In the power circulation mode where the product of the counter gear train gear ratio Id matches, the direct coupling mode clutch is disengaged, and the power circulation mode clutch is engaged, the unit corresponding to the gear ratio Ic of the continuously variable transmission and the reduction ratio Ig of the speed reducer. If the ring gear connected to the unit output shaft is driven at the gear ratio Ii and the differential gear connected to the drive shaft is meshed with this unit output shaft, the number of shafts of the entire transmission will be the same as that of the unit input shaft and counter gear. Axis, unit output axis, including drive axis 4
With the shaft configuration, it is possible to reduce the number of shafts compared to the conventional five shafts. By promoting reduction in size and weight of an infinite transmission ratio transmission and reducing the number of bearings. The power transmission efficiency can be improved.

【0116】また、第2の発明は、ユニット入力軸へ入
力された駆動力は、無段変速機と減速機へそれぞれ並列
的に伝達され、無段変速機へ入力された駆動力は、無段
変速機の出力軸と同軸の無段変速機出力ギヤに歯合する
カウンタギヤを介して、遊星歯車機構のリングギヤと同
軸に配設された第1ギヤへ伝達される一方、減速機へ入
力された駆動力は、無段変速機と同軸の入力ギヤから、
遊星歯車機構のキャリアと同軸の出力ギヤへ伝達され、
直結モードクラッチを締結、動力循環モードクラッチを
解放する直結モードでは、ユニット入力軸とユニット出
力軸の変速比Iiは、無段変速機で設定された変速比I
cとカウンタギヤ列変速比Idの積と一致し、直結モード
クラッチを解放、動力循環モードクラッチを締結した動
力循環モードでは、無段変速機の変速比Icと、減速機の
減速比Igに応じたユニット変速比Iiで、ユニット出力軸
に連結したサンギヤが駆動され、このユニット出力軸に
駆動軸と連結した差動ギヤを歯合させれば、変速機全体
の軸数は、ユニット入力軸、カウンタギヤの軸、ユニッ
ト出力軸となり、駆動軸を合わせて4軸の構成となり、
前記従来例の5軸に比して軸数を低減する事が可能とな
って、変速比無限大変速機の小型軽量化を推進するとと
もに、軸受の数を低減することで、動力伝達効率の向上
が可能となる。
According to the second aspect of the invention, the driving force input to the unit input shaft is transmitted in parallel to the continuously variable transmission and the speed reducer, respectively, and the driving force input to the continuously variable transmission is zero. It is transmitted to the first gear, which is arranged coaxially with the ring gear of the planetary gear mechanism, through the counter gear that meshes with the output gear of the continuously variable transmission that is coaxial with the output shaft of the stepped transmission, while being input to the reduction gear. The generated driving force is from the input gear coaxial with the continuously variable transmission,
It is transmitted to the output gear that is coaxial with the carrier of the planetary gear mechanism,
In the direct coupling mode in which the direct coupling mode clutch is engaged and the power circulation mode clutch is released, the gear ratio Ii between the unit input shaft and the unit output shaft is the gear ratio I set in the continuously variable transmission.
In the power circulation mode where the product of c and the gear ratio Id of the counter gear train matches, the direct connection mode clutch is disengaged, and the power circulation mode clutch is engaged, depending on the gear ratio Ic of the continuously variable transmission and the reduction ratio Ig of the speed reducer. With the unit gear ratio Ii, the sun gear connected to the unit output shaft is driven, and if the differential gear connected to the drive shaft is engaged with this unit output shaft, the number of shafts of the entire transmission is It becomes the counter gear shaft and unit output shaft, and the drive shaft is combined into a four-axis configuration.
It is possible to reduce the number of shafts as compared with the conventional five shafts, which promotes downsizing and weight reduction of a transmission with an infinite transmission ratio, and also reduces the number of bearings to improve power transmission efficiency. It is possible to improve.

【0117】また、第3の発明は、ユニット入力軸へ入
力された駆動力は、無段変速機と減速機へそれぞれ並列
的に伝達され、無段変速機へ入力された駆動力は、無段
変速機の出力軸と同軸の無段変速機出力ギヤに歯合する
カウンタギヤを介して、遊星歯車機構のサンギヤと同軸
に配設された第1ギヤへ伝達される一方、減速機へ入力
された駆動力は、無段変速機と同軸の入力ギヤから遊星
歯車機構のリングギヤと同軸の出力ギヤへ伝達され、動
力循環モードクラッチの締結状態に応じて遊星歯車機構
のリングギヤが駆動され、直結モードクラッチを締結、
動力循環モードクラッチを解放する直結モードでは、ユ
ニット入力軸とユニット出力軸の変速比Iiは、無段変速
機で設定された変速比Icとカウンタギヤ列変速比Idの積
と一致し、直結モードクラッチを解放、動力循環モード
クラッチを締結した動力循環モードでは、無段変速機の
変速比Icと減速機の減速比Igに応じたユニット変速比Ii
でダブルピニオンで構成されたキャリアに連結されたユ
ニット出力軸が駆動される。このユニット出力軸に駆動
軸と連結した差動ギヤを歯合させれば、変速機全体の軸
数は、ユニット入力軸、カウンタギヤの軸、ユニット出
力軸となり、駆動軸を合わせて4軸の構成となり、前記
従来例の5軸に比して軸数を低減する事が可能となっ
て、変速比無限大変速機の小型軽量化を推進するととも
に、軸受の数を低減することで、動力伝達効率の向上が
可能となる。
According to the third aspect of the invention, the driving force input to the unit input shaft is transmitted in parallel to the continuously variable transmission and the speed reducer, respectively, and the driving force input to the continuously variable transmission is zero. It is transmitted to the first gear, which is arranged coaxially with the sun gear of the planetary gear mechanism, through the counter gear that meshes with the output gear of the continuously variable transmission that is coaxial with the output shaft of the stepped transmission, while being input to the reduction gear. The generated driving force is transmitted from the input gear that is coaxial with the continuously variable transmission to the output gear that is coaxial with the ring gear of the planetary gear mechanism, and the ring gear of the planetary gear mechanism is driven according to the engagement state of the power circulation mode clutch to directly connect the gears. Fasten the mode clutch,
Power circulation mode In the direct connection mode where the clutch is released, the gear ratio Ii between the unit input shaft and the unit output shaft matches the product of the gear ratio Ic set in the continuously variable transmission and the counter gear train gear ratio Id, and the direct connection mode In the power circulation mode with the clutch disengaged and the clutch engaged, in the power circulation mode Ic of the continuously variable transmission and the unit speed ratio Ii according to the reduction ratio Ig of the speed reducer.
The unit output shaft connected to the carrier composed of the double pinion is driven by. If the differential gear connected to the drive shaft is meshed with this unit output shaft, the number of shafts of the entire transmission becomes the unit input shaft, the counter gear shaft, and the unit output shaft. With this structure, the number of shafts can be reduced compared to the conventional five shafts, and the size and weight of a transmission with an infinite transmission ratio can be reduced, and the number of bearings can be reduced to reduce power consumption. It is possible to improve the transmission efficiency.

【0118】また、第4の発明は、ユニット入力軸へ入
力された駆動力は、無段変速機と減速機へそれぞれ並列
的に伝達され、無段変速機へ入力された駆動力は、無段
変速機の出力軸と同軸の無段変速機出力ギヤに歯合する
カウンタギヤを介して、ダブルピニオンで構成された遊
星歯車機構のキャリアと同軸に配設された第1ギヤへ伝
達される一方、減速機へ入力された駆動力は、無段変速
機と同軸の入力ギヤから遊星歯車機構のリングギヤと同
軸の出力ギヤへ伝達され、動力循環モードクラッチの締
結状態に応じて遊星歯車機構のリングギヤが駆動され、
直結モードクラッチを締結、動力循環モードクラッチを
解放する直結モードでは、ユニット入力軸とユニット出
力軸の変速比Iiは、無段変速機で設定された変速比Icと
カウンタギヤ列変速比Idの積と一致し、直結モードクラ
ッチを解放、動力循環モードクラッチを締結した動力循
環モードでは、無段変速機の変速比Icと減速機の減速比
Igの差に応じたユニット変速比Iiでサンギヤに連結され
たユニット出力軸が駆動される。このユニット出力軸に
駆動軸と連結した差動ギヤを歯合させれば、変速機全体
の軸数は、ユニット入力軸、カウンタギヤの軸、ユニッ
ト出力軸となり、駆動軸を合わせて4軸の構成となり、
前記従来例の5軸に比して軸数を低減する事が可能とな
って、変速比無限大変速機の小型軽量化を推進するとと
もに、軸受の数を低減することで、動力伝達効率の向上
が可能となる。
According to the fourth aspect of the invention, the driving force input to the unit input shaft is transmitted in parallel to the continuously variable transmission and the speed reducer, respectively, and the driving force input to the continuously variable transmission is zero. Through a counter gear that meshes with the output gear of the continuously variable transmission coaxial with the output shaft of the continuously variable transmission, it is transmitted to the first gear that is arranged coaxially with the carrier of the planetary gear mechanism configured by the double pinion. On the other hand, the driving force input to the speed reducer is transmitted from the input gear that is coaxial with the continuously variable transmission to the output gear that is coaxial with the ring gear of the planetary gear mechanism, and the drive force of the planetary gear mechanism is changed according to the engaged state of the power circulation mode clutch. The ring gear is driven,
In the direct connection mode in which the direct connection mode clutch is engaged and the power circulation mode clutch is released, the gear ratio Ii between the unit input shaft and the unit output shaft is the product of the gear ratio Ic set in the continuously variable transmission and the counter gear train gear ratio Id. In the power circulation mode in which the direct connection mode clutch is disengaged and the power circulation mode clutch is engaged, the gear ratio Ic of the continuously variable transmission and the reduction ratio of the speed reducer
The unit output shaft connected to the sun gear is driven at the unit speed ratio Ii according to the difference in Ig. If the differential gear connected to the drive shaft is meshed with this unit output shaft, the number of shafts of the entire transmission becomes the unit input shaft, the counter gear shaft, and the unit output shaft. It becomes the composition,
It is possible to reduce the number of shafts as compared with the conventional five shafts, which promotes downsizing and weight reduction of a transmission with an infinite transmission ratio, and also reduces the number of bearings to improve power transmission efficiency. It is possible to improve.

【0119】また、第5の発明は、減速機の減速比Ig
は、無段変速機の出力軸からカウンタギヤを介して遊星
歯車機構へ入力されるカウンタギヤ列の変速比Idと、
無段変速機で設定可能な最大変速比IcLOWの積に等しく
設定することで、無段変速機の最大変速比IcLOWにおい
て、直結モードと動力循環モードのユニット変速比を一
致させることができ、変速比に段差を生じることなく直
結モードと動力循環モードの切り換えを円滑に行うこと
ができ、無段変速機の変速比をIcLOWからIcHiまで、有
効に利用することができる。また、減速比Igが、Ig=カ
ウンタギヤ列変速比Id×最大変速比IcLOWに設定できな
い場合には、これらの積以下で設定可能な最大の減速比
Igとすることで、無段変速機の最大変速比IcLOW付近に
おいて、直結モードと動力循環モードのユニット変速比
をほぼ一致させることができ、変速比に段差を生じるこ
となく直結モードと動力循環モードの切り換えを円滑に
行うことができ、無段変速機の変速比をIcLOWからIcHi
まで有効に利用することができる。
The fifth aspect of the present invention is the reduction gear ratio Ig of the speed reducer.
Is a gear ratio Id of the counter gear train input from the output shaft of the continuously variable transmission to the planetary gear mechanism via the counter gear,
By setting it equal to the product of the maximum gear ratio Ic LOW that can be set in the continuously variable transmission, the unit gear ratios of the direct coupling mode and the power circulation mode can be made to match at the maximum gear ratio Ic LOW of the continuously variable transmission. It is possible to smoothly switch between the direct coupling mode and the power circulation mode without causing a step in the gear ratio, and it is possible to effectively use the gear ratio of the continuously variable transmission from Ic LOW to Ic Hi . If the gear ratio Ig cannot be set to Ig = counter gear train gear ratio Id x maximum gear ratio Ic LOW , the maximum gear ratio that can be set below the product of these
By setting Ig, it is possible to make the unit speed ratios of the direct drive mode and the power circulation mode almost match in the vicinity of the maximum speed ratio Ic LOW of the continuously variable transmission. The mode can be switched smoothly, and the gear ratio of the continuously variable transmission can be changed from Ic LOW to Ic Hi.
Can be used effectively.

【0120】また、第6の発明は、無段変速機を入出力
軸の回転方向が反転するトロイダル型無段変速機で構成
することで、ユニット入力軸と同軸上に無段変速機の入
出力軸を配置することができ、ユニット出力軸は変速機
出力ギヤを介して、駆動軸と結合した差動ギヤを駆動す
るファイナルギヤと直接歯合するため、前記従来例のよ
うにユニット出力軸とファイナルギヤとの間にカウンタ
ギヤを介装する必要がなくなって、変速機全体の軸数
を、前記従来例のような5軸構成から無段変速機と同軸
のユニット入力軸、カウンタギヤの軸、遊星歯車機構と
同軸のユニット出力軸と、駆動軸の合計4つの軸で構成
することができ、軸数を低減することで変速機の小型軽
量化を図るとともに、軸受の総数を低減することで動力
伝達効率を向上させることが可能となる。
The sixth aspect of the present invention is that the continuously variable transmission is a toroidal type continuously variable transmission in which the rotation direction of the input / output shaft is reversed, so that the continuously variable transmission can be installed coaxially with the unit input shaft. The output shaft can be arranged, and the unit output shaft directly meshes with the final gear that drives the differential gear coupled to the drive shaft through the transmission output gear. Since it is not necessary to provide a counter gear between the final gear and the final gear, the number of shafts of the entire transmission can be changed from the five-shaft configuration as in the conventional example to the unit input shaft coaxial with the continuously variable transmission and the counter gear. A total of four shafts, a shaft, a unit output shaft coaxial with the planetary gear mechanism, and a drive shaft, can be configured. By reducing the number of shafts, the transmission can be made smaller and lighter, and the total number of bearings can be reduced. To improve power transmission efficiency It becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示す変速比無限大無段変
速機の概念図。
FIG. 1 is a conceptual diagram of an infinitely variable transmission continuously variable transmission according to an embodiment of the present invention.

【図2】同じく無段変速機の変速比Icとファイナルギヤ
減速比を含んだユニット総変速比Ivの逆数との関係を
示すグラフ。
FIG. 2 is a graph showing the relationship between the gear ratio Ic of the continuously variable transmission and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio.

【図3】第2の実施形態を示す変速比無限大無段変速機
の概念図。
FIG. 3 is a conceptual diagram of an infinitely variable transmission continuously variable transmission according to a second embodiment.

【図4】同じく無段変速機の変速比Icとファイナルギヤ
減速比を含んだユニット総変速比Ivの逆数との関係を
示すグラフ。
FIG. 4 is a graph showing the relationship between the gear ratio Ic of the continuously variable transmission and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio.

【図5】第3の実施形態を示す変速比無限大無段変速機
の概念図。
FIG. 5 is a conceptual diagram of an infinitely variable transmission continuously variable transmission according to a third embodiment.

【図6】同じく無段変速機の変速比Icとファイナルギヤ
減速比を含んだユニット総変速比Ivの逆数との関係を
示すグラフ。
FIG. 6 is a graph showing the relationship between the gear ratio Ic of the continuously variable transmission and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio.

【図7】第4の実施形態を示す変速比無限大無段変速機
の概念図。
FIG. 7 is a conceptual diagram of an infinitely variable transmission continuously variable transmission according to a fourth embodiment.

【図8】同じく無段変速機の変速比Icとファイナルギヤ
減速比を含んだユニット総変速比Ivの逆数との関係を
示すグラフ。
FIG. 8 is a graph showing the relationship between the gear ratio Ic of the continuously variable transmission and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio.

【図9】第5の実施形態を示す変速比無限大無段変速機
の概念図。
FIG. 9 is a conceptual diagram of an infinitely variable transmission ratio continuously variable transmission according to a fifth embodiment.

【図10】同じく無段変速機の変速比Icとファイナルギ
ヤ減速比を含んだユニット総変速比Ivの逆数との関係
を示すグラフ。
FIG. 10 is a graph showing the relationship between the gear ratio Ic of the continuously variable transmission and the reciprocal of the unit total gear ratio Iv including the final gear reduction ratio.

【図11】従来の変速比無限大無段変速機を示す概念
図。
FIG. 11 is a conceptual diagram showing a conventional infinitely variable transmission continuously variable transmission.

【符号の説明】[Explanation of symbols]

1 ユニット入力軸 2 無段変速機 2a 出力ギヤ 3 減速機 3a 入力ギヤ 3b ギヤ 3c 減速機出力軸 4 無段変速機出力軸 4a ギヤ 5 遊星歯車機構 5a サンギヤ 5b キャリア 5c リングギヤ 6 ユニット出力軸 7 変速機出力ギヤ 8 差動ギヤ 9 動力循環モードクラッチ 10 直結モードクラッチ 11a、11b 駆動軸 12 ファイナルギヤ 20 パワーローラ 21 入力ディスク 22 出力ディスク 40 カウンタギヤ 105 遊星歯車機構 105a サンギヤ 105b キャリア 105c リングギヤ 205 遊星歯車機構 205a サンギヤ 205b キャリア 205c リングギヤ 305 遊星歯車機構 305a サンギヤ 305b キャリア 305c リングギヤ 1 unit input shaft 2 continuously variable transmission 2a output gear 3 reduction gear 3a input gear 3b gear 3c reduction gear output shaft 4 continuously variable transmission output shaft 4a gear 5 planetary gear mechanism 5a sun gear 5b carrier 5c ring gear 6 unit output shaft 7 speed Machine output gear 8 Differential gear 9 Power circulation mode clutch 10 Direct coupling mode clutch 11a, 11b Drive shaft 12 Final gear 20 Power roller 21 Input disk 22 Output disk 40 Counter gear 105 Planetary gear mechanism 105a Sun gear 105b Carrier 105c Ring gear 205 Planetary gear mechanism 205a Sun gear 205b Carrier 205c Ring gear 305 Planetary gear mechanism 305a Sun gear 305b Carrier 305c Ring gear

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ユニット入力軸にそれぞれ接続された無
段変速機及び減速機と、無段変速機の出力軸に連結した
サンギヤ、シングルピニオンで構成されて減速機の出力
軸に連結したキャリア及びユニット出力軸に連結したリ
ングギヤとからなる遊星歯車機構と、前記ユニット入力
軸から遊星歯車機構のキャリアへの動力伝達経路の途中
に介装された動力循環モードクラッチと、前記無段変速
機の出力軸からユニット出力軸の動力伝達経路の途中に
介装された直結モードクラッチとを備えて、前記動力循
環モードクラッチと直結モードクラッチとを選択的に締
結、解除可能な変速比無限大無段変速機において、前記
無段変速機からの動力伝達経路は、無段変速機の出力軸
と同軸の無段変速機出力ギヤと、この無段変速機の出力
軸と平行して軸支されたカウンタギヤを介して歯合する
とともに、前記遊星歯車機構のサンギヤと同軸に配設さ
れた第1のギヤとから構成される一方、前記減速機から
の動力伝達経路は、ユニット入力軸と同軸の入力ギヤと
歯合するとともに、遊星歯車機構のキャリアと同軸に配
設された出力ギヤとから構成されたことを特徴とする変
速比無限大無段変速機。
1. A continuously variable transmission and a speed reducer respectively connected to a unit input shaft, a sun gear connected to an output shaft of the continuously variable transmission, a carrier composed of a single pinion and connected to an output shaft of the speed reducer, A planetary gear mechanism consisting of a ring gear connected to the unit output shaft, a power circulation mode clutch interposed in the power transmission path from the unit input shaft to the carrier of the planetary gear mechanism, and an output of the continuously variable transmission. A direct coupling mode clutch interposed in the power transmission path from the shaft to the unit output shaft to selectively engage and release the power circulation mode clutch and the direct coupling mode clutch. In the machine, the power transmission path from the continuously variable transmission is supported by an output gear of the continuously variable transmission coaxial with the output shaft of the continuously variable transmission and a shaft supported in parallel with the output shaft of the continuously variable transmission. And a sun gear of the planetary gear mechanism and a first gear arranged coaxially with the sun gear of the planetary gear mechanism, and a power transmission path from the speed reducer to a unit input shaft. An infinitely variable transmission continuously variable transmission comprising an output gear that meshes with a coaxial input gear and is coaxially arranged with a carrier of a planetary gear mechanism.
【請求項2】 ユニット入力軸にそれぞれ接続された無
段変速機及び減速機と、無段変速機の出力軸に連結した
リングギヤ、シングルピニオンで構成されて減速機の出
力軸に連結したキャリア及びユニット出力軸に連結した
サンギヤとからなる遊星歯車機構と、前記ユニット入力
軸から遊星歯車機構のキャリアへの動力伝達経路の途中
に介装された動力循環モードクラッチと、前記無段変速
機の出力軸からユニット出力軸の動力伝達経路の途中に
介装された直結モードクラッチとを備えて、前記動力循
環モードクラッチと直結モードクラッチとを選択的に締
結、解除可能な変速比無限大無段変速機において、前記
無段変速機からの動力伝達経路は、無段変速機の出力軸
と同軸の無段変速機出力ギヤと、この無段変速機の出力
軸と平行して軸支されたカウンタギヤを介して歯合する
とともに、前記遊星歯車機構のリングギヤと同軸に配設
された第1のギヤとから構成される一方、前記減速機か
らの動力伝達経路は、ユニット入力軸と同軸の入力ギヤ
と歯合するとともに、遊星歯車機構のキャリアと同軸に
配設された出力ギヤとから構成されたことを特徴とする
変速比無限大無段変速機。
2. A continuously variable transmission and a speed reducer respectively connected to the unit input shaft, a ring gear connected to the output shaft of the continuously variable transmission, a carrier composed of a single pinion and connected to the output shaft of the speed reducer, A planetary gear mechanism consisting of a sun gear connected to the unit output shaft, a power circulation mode clutch interposed in the power transmission path from the unit input shaft to the carrier of the planetary gear mechanism, and an output of the continuously variable transmission. A direct coupling mode clutch interposed in the power transmission path from the shaft to the unit output shaft to selectively engage and release the power circulation mode clutch and the direct coupling mode clutch. In the machine, the power transmission path from the continuously variable transmission is supported by an output gear of the continuously variable transmission coaxial with the output shaft of the continuously variable transmission and a shaft supported in parallel with the output shaft of the continuously variable transmission. And a first gear arranged coaxially with the ring gear of the planetary gear mechanism, while the power transmission path from the speed reducer is connected to the unit input shaft. An infinitely variable transmission continuously variable transmission comprising an output gear that meshes with a coaxial input gear and is coaxially arranged with a carrier of a planetary gear mechanism.
【請求項3】 ユニット入力軸にそれぞれ接続された無
段変速機及び減速機と、無段変速機の出力軸に連結した
サンギヤ、減速機の出力軸に連結したリングギヤ及びユ
ニット出力軸に連結したキャリアとからなる遊星歯車機
構と、前記ユニット入力軸から遊星歯車機構のリングギ
ヤへの動力伝達経路の途中に介装された動力循環モード
クラッチと、前記無段変速機の出力軸からユニット出力
軸の動力伝達経路の途中に介装された直結モードクラッ
チとを備えて、前記動力循環モードクラッチと直結モー
ドクラッチとを選択的に締結、解除可能な変速比無限大
無段変速機において、前記遊星歯車機構のキャリアはダ
ブルピニオンで構成されるとともに、前記無段変速機か
らの動力伝達経路は、無段変速機の出力軸と同軸の無段
変速機出力ギヤと、この無段変速機の出力軸と平行して
軸支されたカウンタギヤを介して歯合するとともに、前
記遊星歯車機構のサンギヤと同軸に配設された第1のギ
ヤとから構成される一方、前記減速機からの動力伝達経
路は、ユニット入力軸と同軸の入力ギヤに歯合するとと
もに、遊星歯車機構のリングギヤと同軸に配設された出
力ギヤとから構成されたことを特徴とする変速比無限大
無段変速機。
3. A continuously variable transmission and a speed reducer respectively connected to the unit input shaft, a sun gear connected to the output shaft of the continuously variable transmission, a ring gear connected to the output shaft of the speed reducer, and a unit output shaft. A planetary gear mechanism including a carrier, a power circulation mode clutch interposed in the power transmission path from the unit input shaft to the ring gear of the planetary gear mechanism, and an output shaft of the continuously variable transmission from the unit output shaft of the continuously variable transmission. A planetary gear in a continuously variable transmission having an infinite transmission ratio capable of selectively engaging and disengaging the power circulation mode clutch and the direct connection mode clutch, including a direct connection mode clutch interposed in the middle of a power transmission path. The mechanism carrier is configured by a double pinion, and the power transmission path from the continuously variable transmission is a continuously variable transmission output gear coaxial with the output shaft of the continuously variable transmission, While being meshed with a counter gear axially supported in parallel with the output shaft of the continuously variable transmission, the sun gear of the planetary gear mechanism and a first gear arranged coaxially with the sun gear are provided. The power transmission path from the speed reducer meshes with an input gear that is coaxial with the unit input shaft, and comprises a ring gear of the planetary gear mechanism and an output gear that is coaxially arranged. Infinity continuously variable transmission.
【請求項4】 ユニット入力軸にそれぞれ接続された無
段変速機及び減速機と、無段変速機の出力軸に連結した
キャリア、減速機の出力軸に連結したリングギヤ及びユ
ニット出力軸に連結したサンギヤとからなる遊星歯車機
構と、前記ユニット入力軸から遊星歯車機構のリングギ
ヤへの動力伝達経路の途中に介装された動力循環モード
クラッチと、前記無段変速機の出力軸からユニット出力
軸の動力伝達経路の途中に介装された直結モードクラッ
チとを備えて、前記動力循環モードクラッチと直結モー
ドクラッチとを選択的に締結、解除可能な変速比無限大
無段変速機において、前記遊星歯車機構のキャリアはダ
ブルピニオンで構成されるとともに、前記無段変速機か
らの動力伝達経路は、無段変速機の出力軸と同軸の無段
変速機出力ギヤと、この無段変速機の出力軸と平行して
軸支されたカウンタギヤを介して歯合するとともに、前
記遊星歯車機構のキャリアと同軸に配設された第1のギ
ヤとから構成される一方、前記減速機からの動力伝達経
路は、ユニット入力軸と同軸の入力ギヤと歯合するとと
もに、遊星歯車機構のリングギヤと同軸に配設された出
力ギヤとから構成されたことを特徴とする変速比無限大
無段変速機。
4. A continuously variable transmission and a speed reducer respectively connected to the unit input shaft, a carrier connected to the output shaft of the continuously variable transmission, a ring gear connected to the output shaft of the speed reducer and a unit output shaft. A planetary gear mechanism composed of a sun gear, a power circulation mode clutch interposed in the power transmission path from the unit input shaft to the ring gear of the planetary gear mechanism, and an output shaft of the continuously variable transmission from the unit output shaft of the continuously variable transmission. A planetary gear in a continuously variable transmission having an infinite transmission ratio capable of selectively engaging and disengaging the power circulation mode clutch and the direct connection mode clutch, including a direct connection mode clutch interposed in the middle of a power transmission path. The mechanism carrier is configured by a double pinion, and the power transmission path from the continuously variable transmission is a continuously variable transmission output gear coaxial with the output shaft of the continuously variable transmission, While being meshed with a counter gear that is axially supported in parallel with the output shaft of the continuously variable transmission, the first gear is arranged coaxially with the carrier of the planetary gear mechanism. The power transmission path from the speed reducer meshes with an input gear coaxial with the unit input shaft, and comprises a ring gear of the planetary gear mechanism and an output gear coaxially arranged. Infinity continuously variable transmission.
【請求項5】 前記減速機の減速比Igは、無段変速機の
出力軸からカウンタギヤを介して遊星歯車機構へ入力さ
れるカウンタギヤ列の変速比Idと、無段変速機で設定可
能な最大変速比IcLOWの積に等しいか、または、これら
の積以下で、かつ、可能な限り大きく設定されたことを
特徴とする請求項1ないし請求項4のいずれかひとつに
記載の変速比無限大無段変速機。
5. The reduction gear ratio Ig of the reduction gear can be set by the transmission gear ratio Id of the counter gear train input from the output shaft of the continuously variable transmission to the planetary gear mechanism through the counter gear and the continuously variable transmission. 5. The gear ratio according to any one of claims 1 to 4, wherein the gear ratio is equal to or less than a product of the maximum gear ratio Ic LOW , and is set to be equal to or less than these products and as large as possible. Infinity continuously variable transmission.
【請求項6】 前記無段変速機は、入出力軸の回転方向
が反転するトロイダル型無段変速機で構成されるととも
に、前記ユニット出力軸は、駆動軸と結合した差動ギヤ
を駆動するファイナルギヤと直接歯合した変速機出力ギ
ヤを設けたことを特徴とする請求項1ないし請求項4の
いずれかひとつに記載の変速比無限大無段変速機。
6. The continuously variable transmission comprises a toroidal type continuously variable transmission in which a rotation direction of an input / output shaft is reversed, and the unit output shaft drives a differential gear coupled to a drive shaft. The infinitely variable transmission continuously variable transmission according to any one of claims 1 to 4, further comprising a transmission output gear directly meshed with the final gear.
JP1544096A 1996-01-31 1996-01-31 Continuously variable transmission with gear ratio of infinity Pending JPH09210175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1544096A JPH09210175A (en) 1996-01-31 1996-01-31 Continuously variable transmission with gear ratio of infinity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1544096A JPH09210175A (en) 1996-01-31 1996-01-31 Continuously variable transmission with gear ratio of infinity

Publications (1)

Publication Number Publication Date
JPH09210175A true JPH09210175A (en) 1997-08-12

Family

ID=11888872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1544096A Pending JPH09210175A (en) 1996-01-31 1996-01-31 Continuously variable transmission with gear ratio of infinity

Country Status (1)

Country Link
JP (1) JPH09210175A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266154A (en) * 1999-03-18 2000-09-26 Nissan Motor Co Ltd Continuously variable transmission with infinite gear ratio
EP1188956A2 (en) 2000-09-14 2002-03-20 Nissan Motor Co., Ltd. Infinitely variable transmission
US6393349B1 (en) 1999-09-09 2002-05-21 Nissan Motor Co., Ltd. Vehicle drive force control device
US6723016B2 (en) 2001-09-27 2004-04-20 Jatco Ltd Torque split infinitely variable transmission
US6958029B2 (en) 2002-11-28 2005-10-25 Nsk Ltd. Continuously variable transmission apparatus
US7094171B2 (en) 2002-12-05 2006-08-22 Nsk Ltd. Continuously variable transmission apparatus
JP2007271057A (en) * 2006-03-31 2007-10-18 Equos Research Co Ltd Continuously variable transmission
JP2013148153A (en) * 2012-01-19 2013-08-01 Honda Motor Co Ltd Transmission
CN110285194A (en) * 2019-07-01 2019-09-27 南京航空航天大学 A kind of input and output coaxial speed-down mechanism with coupling in the same direction

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266154A (en) * 1999-03-18 2000-09-26 Nissan Motor Co Ltd Continuously variable transmission with infinite gear ratio
US6393349B1 (en) 1999-09-09 2002-05-21 Nissan Motor Co., Ltd. Vehicle drive force control device
EP1188956A2 (en) 2000-09-14 2002-03-20 Nissan Motor Co., Ltd. Infinitely variable transmission
US6517461B2 (en) 2000-09-14 2003-02-11 Nissan Motor Co., Ltd. Infinitely variable transmission
US6723016B2 (en) 2001-09-27 2004-04-20 Jatco Ltd Torque split infinitely variable transmission
US6958029B2 (en) 2002-11-28 2005-10-25 Nsk Ltd. Continuously variable transmission apparatus
US7094171B2 (en) 2002-12-05 2006-08-22 Nsk Ltd. Continuously variable transmission apparatus
US7217216B2 (en) 2002-12-05 2007-05-15 Nsk Ltd. Continuously variable transmission apparatus
JP2007271057A (en) * 2006-03-31 2007-10-18 Equos Research Co Ltd Continuously variable transmission
JP2013148153A (en) * 2012-01-19 2013-08-01 Honda Motor Co Ltd Transmission
CN110285194A (en) * 2019-07-01 2019-09-27 南京航空航天大学 A kind of input and output coaxial speed-down mechanism with coupling in the same direction

Similar Documents

Publication Publication Date Title
JP4330528B2 (en) Continuously variable ratio transmission
US6723016B2 (en) Torque split infinitely variable transmission
US6726590B2 (en) Speed change transmission arrangement including a continuously variable toroidal transmission
JP4062809B2 (en) Continuously variable transmission
US6059685A (en) Coaxial traction drive automatic transmission for automotive vehicles
JP2004068933A (en) Power split type continuously variable transmission
JP2004183825A (en) Continuously variable transmission
JPH06506042A (en) Improvements in or relating to toroidal race rolling traction continuously variable ratio transmissions
WO2006032870A1 (en) Continuously variable ratio transmission system
JP3335179B2 (en) Continuously variable transmission
JPH09210175A (en) Continuously variable transmission with gear ratio of infinity
JP2001271905A (en) Torque split type continuously variable transmission
JPH1026211A (en) Automatic transmission
JPH06331000A (en) Continuously variable transmission device for vehicle
JP3579981B2 (en) Infinitely variable transmission
GB2410302A (en) Multi-regime CVT with coaxial input and output shafts
JP3702597B2 (en) Toroidal type continuously variable transmission
JP3738535B2 (en) Toroidal type continuously variable transmission
JPH06174033A (en) Toroidal type continuously variable transmission
JPH06174036A (en) Toroidal type continuously variable transmission
JPH10264895A (en) Power transmission device for helicopter
JPH09210176A (en) Ring gear self-revering driving type fully automatic continuously variable transmission
CN219492961U (en) Stepless differential speed variator
JP3468060B2 (en) Transmission ratio infinitely variable transmission
JPH09196129A (en) Continuously variable transmission

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040217