JPH0271915A - Endmill - Google Patents

Endmill

Info

Publication number
JPH0271915A
JPH0271915A JP21928188A JP21928188A JPH0271915A JP H0271915 A JPH0271915 A JP H0271915A JP 21928188 A JP21928188 A JP 21928188A JP 21928188 A JP21928188 A JP 21928188A JP H0271915 A JPH0271915 A JP H0271915A
Authority
JP
Japan
Prior art keywords
cermet
end mill
layer
toughness
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21928188A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Mori
良克 森
Nobuyuki Kitagawa
信行 北川
Yuu Kagitani
夕 鍵谷
Toshio Nomura
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21928188A priority Critical patent/JPH0271915A/en
Publication of JPH0271915A publication Critical patent/JPH0271915A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/16Cermet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

PURPOSE:To eliminate any loss and breakage of an endmill and problem for the restric tion on its manufacturing in relation to a diameter by forming a rotation center part with super hard alloy with toughness and coaxially arranging on its outside circumfer ence, more than one cermet layers each of which includes more content of hard phase as it is positioned more outside. CONSTITUTION:A central part 1a is made of super hard alloy rich in toughness and Young's modulus with the composition of, for example, WC 94.5wt.%, Co 5.5wt.%, and more than one cermet layers 1b are arranged and its most outside circumferential layer is composed of the mixture of carbide and nitride belonging to IVa, Va, VIa group metal on a periodic table and/or 75-97wt.% of hard phase consisting of carbide and nitride and 3-25wt.% of combined metal phase consisting of at least Ni and/or Co and unavoidable impurities. In this case, for example, a bottom edge 2, an outside circumferential edge 3 and twisted grooves 4 are made by grinding after sintering both a reserved sintered metal of super hard alloy and the cylindrical reserved sintered metal of the cermet matching therewith simultaneously at high temperature so as to generate a diffused layer on the connected interface part of both metals. The cermet 1b is not used in the final layer because its toughness becomes poor with less than 3wt.% of combined metal content and its wear resistance is reduced when it is beyond 25wt.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、鋼材の平面加工に用いるエンドミルに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an end mill used for planar processing of steel materials.

〔従来の技術〕[Conventional technology]

エンドミルの従来技術としては、全体が高速度鋼、超硬
合金、或いはサーメットの単材料で形成されるものや、
これ等の表面に、化学気相法等によりTi化合物等の硬
質皮膜を施したものなどが一般的なものとして知られて
いる。このほが、切刃をチップで形成して着脱自在に取
付けたスローアウェイ式のエンドミルも存在する。
Conventional technology for end mills includes those made entirely of a single material such as high-speed steel, cemented carbide, or cermet;
It is generally known that a hard film of Ti compound or the like is applied to the surface of these materials by a chemical vapor deposition method or the like. There are also indexable end mills in which the cutting edge is formed of a chip and is detachably attached.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

平面、側面加工用エンドミルに対する最終的な要求性能
は、(イ)加工面粗さが良いこと、(ロ)いわゆる倒れ
などが少なくて加工精度が良いこと、(ハ)長寿命であ
ることなどである。
The final performance requirements for end mills for flat and side surface machining are (a) good machined surface roughness, (b) good machining accuracy with less so-called collapse, and (c) long life. be.

このうち、加工面粗さについてエンドミルの構成材料を
良いものからランクづけすると、被、削材である鋼との
親和性の面から■サーメット、■超硬合金、■高速度鋼
となる。
Ranking the constituent materials of end mills in terms of machined surface roughness, from the viewpoint of compatibility with the steel being the workpiece, is cermet, cemented carbide, and high-speed steel.

また、加工精度については、ヤング率の面から、■超硬
合金、■サーメット、■高速度鋼となり、更に摩耗に関
する寿命は、材料硬度の面から、■サーメット、■超硬
合金、■高速度鋼のII[i位となる。
In terms of machining accuracy, from the perspective of Young's modulus, ■Cemented carbide, ■Cermet, ■High speed steel, and the lifespan regarding wear, from the perspective of material hardness, ■Cermet, ■Cemented carbide, ■High speed steel. Ranked II [i] of steel.

これから判るように、サーメットはエン[ミル用材料と
しての適性が高い。しかし、その一方で、脆くて欠は易
いと云う大きな弱点をもつ。そのため、サーメットの単
材料から成るエンドミルは、長さに対する径比が小さい
場合には特に敬遠され、実用に供されるのは、そのサー
メットエンドミルではなく、高速度鋼や超硬合金母材に
Ti化合物等の超硬皮膜をコーティングして母材の弱点
を補完したものが多い。しかしながら、このコーテイン
グ膜も、剥離し易く、かつ、再研削後にはその効果が半
減するなどの問題点を有している。
As can be seen, cermet is highly suitable as an en[mill material]. However, on the other hand, it has a major weakness: it is fragile and easily damaged. For this reason, end mills made of a single material, cermet, are avoided especially when the diameter to length ratio is small, and the end mills that are put into practical use are not cermet end mills, but instead are made of high-speed steel or cemented carbide base material. Many of them are coated with a super-hard film made of a compound or the like to compensate for the weaknesses of the base material. However, this coating film also has problems such as being easily peeled off and its effectiveness being reduced by half after re-grinding.

なお、スローアウェイエンドミルは、サーメットチフプ
を用いるとコーテイング膜の欠点を生しさせずに母材(
本体)の弱点をカバーできるが、スロー7ウエイ化の可
能な工具径には限界がある。
In addition, when using a cermet tip with an indexable end mill, the base material (
However, there is a limit to the tool diameter that can be converted into a 7-way throw.

この発明は、上記に鑑みてなされたものであって、サー
メットの特性を生かすと同時に欠損、折1員並びに径に
よる製造上の制約の問題を無(したエンドミルを堤供す
ることを目的としている。
The present invention has been made in view of the above, and an object thereof is to provide an end mill that takes advantage of the characteristics of cermet and at the same time eliminates the problems of manufacturing limitations due to defects, folds, and diameter.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、この発明は、エンドミル材
を、回転中心部が強靭性超硬合金で形成され、その外周
には外側の層ほど硬質相の含有量が増加するサーメット
層が1層もしくは2層以上同軸的に配置され、さらに、
それぞれの材料層は各々の接合界面部に形成された互い
の成分の熱拡散層を介して一体的に複合化された構造と
なす。
In order to achieve the above object, the present invention provides an end mill material in which the center of rotation is made of a tough cemented carbide, and the outer periphery of the end mill material has one cermet layer in which the content of the hard phase increases as the outer layer increases. Or two or more layers are arranged coaxially, and
The respective material layers are integrated into a composite structure via heat diffusion layers of mutual components formed at the respective bonding interfaces.

そして、そのエンドミル材に切屑排出溝と切刃を形成し
て完成したエンドミルとなす。
Then, chip discharge grooves and cutting blades are formed on the end mill material to produce a completed end mill.

なお、エンドミル材の最外周層に用いるサーメットは、
後述の理由から、周期律表第Na、Va、Vla族金属
の炭化物と窒化物の混合物及び/又は炭窒化物から成る
硬質相が75〜97重量%、少なくともNi及び/又は
Coと不可避不純物から成る結合金属相が3〜25重砥
%の組成のものが好ましい。
The cermet used for the outermost layer of the end mill material is
For the reasons described below, the hard phase consisting of a mixture of carbides and nitrides and/or carbonitrides of metals from groups Na, Va, and Vla of the periodic table is 75 to 97% by weight, and contains at least Ni and/or Co and unavoidable impurities. It is preferable that the binder metal phase has a composition of 3 to 25% by weight.

〔作用〕[Effect]

エンドミル材の中心部に靭性とヤング率に冨む強靭性超
硬合金を用いると、サーメットの剛性不足が補われて切
削力によるエンドミルの挙動が小さくなる。例えば、W
C94,5wt%、Co 5.5wt%の組成で抗折力
205 kg / ta 2、ヤング率63X10’ 
kg/fi2の超硬合金を中心材とすれば、サーメット
の隼材料から成る低ヤング率(サーメットのヤング率は
高(ても45xlO3kg/m” )のエンドミルに比
べて剛性が大幅に向上し、加工時の倒れ、振動が減少す
る。
If a strong cemented carbide with high toughness and Young's modulus is used in the center of the end mill material, the lack of rigidity of the cermet will be compensated for, and the behavior of the end mill due to cutting force will be reduced. For example, W
Composition of C94.5wt%, Co 5.5wt%, transverse rupture strength 205 kg/ta 2, Young's modulus 63X10'
If a cemented carbide with a kg/fi2 is used as the core material, the rigidity will be greatly improved compared to an end mill made of a cermet Hayabusa material with a low Young's modulus (cermet's Young's modulus is high (even 45xlO3 kg/m"). Falling and vibration during machining are reduced.

その一方で、切削にあまり関与しないエンドミルの中心
部は、耐摩耗性、耐溶着性の要求が薄いため、超硬合金
を用いても切削性能には影ツしない。
On the other hand, the center part of the end mill, which is not involved much in cutting, has weak requirements for wear resistance and welding resistance, so even if cemented carbide is used, the cutting performance will not be affected.

また、TiC、、TiN 、 TaC、、TaNなどの
硬質相を主体とするサーメットで形成されたエンドミル
の外周部は、サーメットの特性である優れた耐摩耗性と
耐溶着性を発揮し、再研削後もその効果を接続するため
、加工面粗さ、寿命に関する要求性能も十分に満たされ
る。
In addition, the outer periphery of the end mill is made of cermet mainly consisting of a hard phase such as TiC, TiN, TaC, TaN, etc., which exhibits the excellent wear resistance and adhesion resistance that are the characteristics of cermet. Since the effect continues afterward, the performance requirements regarding machined surface roughness and service life are fully satisfied.

また、同軸的に配置された材料層の各々は、接合界面部
に生じた熱拡散層を介してあたかも同一材質と見なされ
るぐらい強固に結合しており、そのため、コーティング
や鑞付けに見られる剥離や接合界面部の異常摩耗等も起
こらない。
In addition, each of the coaxially arranged material layers is so firmly bonded to each other that they are considered to be the same material through the heat diffusion layer formed at the joint interface. Also, abnormal wear of the joint interface does not occur.

ここで、外周部に使用するサーメットは、結合金属相中
に少量のA1やZr等の通常添加物を含んでいてもその
特性が生かされるが、結合金属の含有量が3wL%未満
では靭性に乏しく、チッピング等の恐れがあってエンド
ミル用途には適さない。
Here, the properties of the cermet used for the outer periphery can be utilized even if the bonding metal phase contains a small amount of ordinary additives such as A1 or Zr, but if the content of the bonding metal is less than 3wL%, the toughness will deteriorate. There is a risk of chipping, etc., making it unsuitable for end mill applications.

また、その量が25−t%を越えると耐摩耗性が低下し
て耐久性の要求を満たし辛くなる。最終層のサーメット
について結合金属相の好ましい含有量を示したのはこの
ことによる。
Furthermore, if the amount exceeds 25-t%, the abrasion resistance decreases, making it difficult to meet the requirements for durability. This is why we have indicated the preferred content of bound metal phase for the final layer cermet.

なお、参考までに述べておくと、素材外径8龍の丸棒で
の撓み量の比較実験結果は次の通りであった。
For reference, the results of a comparative experiment on the amount of deflection using a round bar with an outer diameter of 8 mm were as follows.

実験は、突出量50■■で素材を片持ち支持して荷重を
加えた。比較素材は、本発明品が−C94,5%(これ
は重量比で以下も同じ) 、Co 5.5%の組成で直
径は6.5脂1の中心材外周に、TiC33%、TiN
i3%、TaC12%、Mo、C10%、WCl5%、
残部Ni、G。
In the experiment, the material was cantilevered with a protrusion of 50 mm and a load was applied. As for the comparison material, the product of the present invention has a composition of -C94.5% (this is the same below in terms of weight ratio), Co 5.5%, diameter is 6.5%, TiC 33%, TiN on the outer periphery of the core.
i3%, TaC12%, Mo, C10%, WCl5%,
The rest Ni, G.

の組成のサーメット層を複合化しfこもの、サーメノ1
−品は上記組成のザーメy t・の単品、超微粒合金は
WC87%、Co13%の組成のijt品である。
Composite cermet layer with the composition of cermet 1
- The product is a single product of ZERMEYT with the above composition, and the ultrafine grain alloy is an IJT product with a composition of 87% WC and 13% Co.

[実施例] 第1図及び第2図に、この発明のエンドミルの一例を示
す。このエンドミル1は、第3図のエンドミル材1′を
研削加工して底力2、外周刃3、外周刃に沿うねしれ溝
4をもつ2枚方タイプるこ仕上げたものである。
[Example] FIGS. 1 and 2 show an example of the end mill of the present invention. This end mill 1 is made by grinding the end mill material 1' shown in FIG. 3 and finishing it with a two-sided type gluing having a bottom force 2, an outer circumferential edge 3, and a undulating groove 4 along the outer circumferential edge.

第3図のエンドミル材1′は、中心部1aを強靭性超硬
合金で、外周部1bをサーメットで各々形成してその両
者を熱拡散接合により一体的に復合化しである。
In the end mill material 1' shown in FIG. 3, the central portion 1a is made of a tough cemented carbide, the outer peripheral portion 1b is made of cermet, and both are integrally bonded together by thermal diffusion bonding.

このような複合化は、次の90き方法によって実現でき
る。その方法の1つは、前述の材料の組合せを例に採る
と、先ず、WC94,5wL%、Co 5.5wt%の
成分の超硬合金を用いて円柱体の予備焼結晶(低温で軽
く焼結したもの)を作り、次に、これらに合うようにサ
ーメットの円筒状の予備焼結晶を作る。そして、これ等
を同時に高温で焼結して両者の接合界面部にコバルトや
炭素などの拡散層を生しさせセる方法である。
Such compositing can be realized by the following 90-fold method. One of the methods is to take the above-mentioned combination of materials as an example. First, a cylindrical pre-sintered crystal (lightly sintered at a low temperature) is prepared using a cemented carbide containing 94.5 wL% of WC and 5.5 wt% of Co. Then, cylindrical pre-sintered crystals of cermet are made to fit these. Then, these are simultaneously sintered at high temperature to form a diffusion layer of cobalt, carbon, etc. at the bonding interface between the two.

また、2つ目の方法は、最外層のサーメソ1〜はに備焼
結せずに形成して直接本焼結し、このときに熱拡+B!
を生しさせる方法である。
In addition, the second method is to form the outermost layer Thermeso 1 to 1 without pre-sintering and directly sinter it, and at this time thermal expansion +B!
This is a way to make life come true.

以下に、史に詳細な実施例について述べる。Below, detailed examples will be described.

撓み竹の比較実験に用いた0;1述の材t4を加工して
外径8厘−1有効刃長15m5、全長55+nの第1図
に示すクロき2枚刃のスパイラルエンドミルを製作し7
た。
A spiral end mill with two black blades as shown in Fig. 1 with an outer diameter of 8 rin - 1 effective blade length of 15 m and a total length of 55 + n was manufactured by processing the material t4 used in the comparison experiment of flexible bamboo.
Ta.

次に、この3種のエンドミルを一ド記の条件で切削に供
した。
Next, these three types of end mills were subjected to cutting under the following conditions.

被削材: 5C)l 435 u、 300切削条件:
切削速度V−100m/min 、送り速度F =20
0 am/min 、送り星r =0.05u/rev
、切込みAd=5mm、1ン(1−05曹謙、乾式切削 この実験により、摩耗量が0.15tmになるまでの加
工時間表仕上面粗さを調べた結果を下表に示す。
Work material: 5C) l 435 u, 300 Cutting conditions:
Cutting speed V-100m/min, feed rate F = 20
0 am/min, sending star r = 0.05u/rev
, depth of cut Ad=5 mm, 1 inch (1-05 Cao Qian, dry cutting) Through this experiment, the machining time until the wear amount reached 0.15 tm and the finished surface roughness were investigated, and the results are shown in the table below.

〔効果] 以上述べたように、この発明によれば、耐摩耗性、耐溶
着性に関するサーメットの優れた特性を/しかしてサー
メットソリッドエンドミルに見られろ剛性不足の問題を
解消できるため、剛性不足に起因したチッピング、折損
の問題が1−くなる。また、従来の2倍程度の高速切削
を行なってもにノF命を維持でき、かつ、仕上げ面相さ
も充分に向トし、そのため、エンドミル加工の安定化、
高化・ド化、後工程の仕上研磨の簡略化等が計れると云
う効果が得られる。このほか、単材料のソリッド晶と同
様の加工が可能なため、小径のものも製造上の制約なし
に容易に製作し得る。
[Effects] As described above, according to the present invention, the excellent properties of cermet in terms of wear resistance and welding resistance can be used to solve the problem of lack of rigidity found in cermet solid end mills. The problem of chipping and breakage caused by this is reduced to 1-. In addition, it is possible to maintain the cutting life even when cutting at twice the speed of conventional methods, and the finished surface consistency is also sufficiently improved, resulting in stable end mill processing.
It is possible to obtain the effects of increasing the height, increasing the hardness, and simplifying the final polishing in the post-process. In addition, since it can be processed in the same way as solid crystal made of a single material, small-diameter products can be easily manufactured without any manufacturing restrictions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ごの発明のエンドミルの一例を示す側面図、
第2図はその正面図、第3図は例示のエンドミルに用い
たエンドミル材の斜視図である。 1・・・・・エンドミル、  2・・・・・・底力、3
・・・・・・外周刃、      4・・・・・・ねじ
ね溝、1′・・・・・・エンドミル材、 1a・・・・・・、J靭性超硬合金から成る中心部、1
b・・・・・・サーメットから成る外周部。 特許出願人 住友電気工業株式会社 同 代理人 鎌 田 文
FIG. 1 is a side view showing an example of an end mill invented by Mr.
FIG. 2 is a front view thereof, and FIG. 3 is a perspective view of the end mill material used in the exemplary end mill. 1... End mill, 2... Potential power, 3
......Peripheral blade, 4...Thread groove, 1'... End mill material, 1a... Central part made of J-toughness cemented carbide, 1
b...Outer periphery made of cermet. Patent applicant Sumitomo Electric Industries Co., Ltd. Agent Fumi Kamata

Claims (2)

【特許請求の範囲】[Claims] (1)回転中心部が強靭性超硬合金で形成され、その外
周には外側の層ほど硬質相の含有量が増加するサーメッ
ト層が1層もしくは2層以上同軸的に配置され、さらに
、それぞれの材料層は各々の接合界面部に形成された互
いの成分の熱拡散層を介して一体的に複合化された構造
のエンドミル材に切削排出溝と切刃を形成して成るエン
ドミル。
(1) The center of rotation is formed of a tough cemented carbide, and one or more cermet layers are arranged coaxially around the outer periphery, and the content of the hard phase increases as the outer layer increases. The material layer of the end mill is formed by forming a cutting discharge groove and a cutting blade on the end mill material, which has an integrally composite structure through a heat diffusion layer of each component formed at each joint interface.
(2)周期律表第IVa、Va、VIa族金属の炭化物と窒
化物の混合物及び/又は炭窒化物から成る硬質相が75
〜97重量%、少なくともNi及び/又はCoと不可避
不純物から成る結合金属相が3〜25重量%の組成のサ
ーメットを上記エンドミル材の最外周層に用いた請求項
(1)記載のエンドミル。
(2) A hard phase consisting of a mixture of carbides and nitrides and/or carbonitrides of metals from groups IVa, Va, and VIa of the periodic table is 75
2. The end mill according to claim 1, wherein a cermet having a composition of 3 to 25 weight % of a binder metal phase consisting of at least Ni and/or Co and unavoidable impurities is used for the outermost layer of the end mill material.
JP21928188A 1988-09-01 1988-09-01 Endmill Pending JPH0271915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21928188A JPH0271915A (en) 1988-09-01 1988-09-01 Endmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21928188A JPH0271915A (en) 1988-09-01 1988-09-01 Endmill

Publications (1)

Publication Number Publication Date
JPH0271915A true JPH0271915A (en) 1990-03-12

Family

ID=16733055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21928188A Pending JPH0271915A (en) 1988-09-01 1988-09-01 Endmill

Country Status (1)

Country Link
JP (1) JPH0271915A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347824A (en) * 1998-06-05 1999-12-21 Gn Tool Kk Ball end mill
JP2005224914A (en) * 2004-02-16 2005-08-25 Mitsubishi Materials Kobe Tools Corp Shaft cutting tool capable of high-speed cutting of hard-to-cut material
JP2007021654A (en) * 2005-07-15 2007-02-01 Hitachi Tool Engineering Ltd Coated small-diameter member and manufacturing method of coated small-diameter member
US7731458B2 (en) 2004-02-12 2010-06-08 Joerg Guehring Clamping element for tool holders
US7740428B2 (en) * 2004-06-25 2010-06-22 Joerg Guehring Rotor
US8333132B2 (en) 2007-12-27 2012-12-18 Osg Corporation Carbide rotary tool
ITAN20130190A1 (en) * 2013-10-16 2015-04-17 Cruing Italy Srl CUTTING TOOL FOR MACHINE TOOLS.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347824A (en) * 1998-06-05 1999-12-21 Gn Tool Kk Ball end mill
JP4560687B2 (en) * 1998-06-05 2010-10-13 ジーエヌツール株式会社 Ball end mill manufacturing method
US7731458B2 (en) 2004-02-12 2010-06-08 Joerg Guehring Clamping element for tool holders
JP2005224914A (en) * 2004-02-16 2005-08-25 Mitsubishi Materials Kobe Tools Corp Shaft cutting tool capable of high-speed cutting of hard-to-cut material
US7740428B2 (en) * 2004-06-25 2010-06-22 Joerg Guehring Rotor
JP2007021654A (en) * 2005-07-15 2007-02-01 Hitachi Tool Engineering Ltd Coated small-diameter member and manufacturing method of coated small-diameter member
US8333132B2 (en) 2007-12-27 2012-12-18 Osg Corporation Carbide rotary tool
JP5230653B2 (en) * 2007-12-27 2013-07-10 オーエスジー株式会社 Carbide rotary tool and method of manufacturing carbide rotary tool
ITAN20130190A1 (en) * 2013-10-16 2015-04-17 Cruing Italy Srl CUTTING TOOL FOR MACHINE TOOLS.

Similar Documents

Publication Publication Date Title
JP2890592B2 (en) Carbide alloy drill
CN102858482A (en) Superhard tool tip, method for making same and tool comprising same
US5558475A (en) Ball nose end mills
WO1990010090A1 (en) Nitrogen-containing cermet
JPH0623615A (en) Cutting tool using diamond film
JPH0271915A (en) Endmill
JP2004358580A (en) Cutting tool and its manufacturing method
JPH0343112A (en) Drill made of sintered hard alloy
JPS6310201B2 (en)
JPS6365722B2 (en)
JPH0321856Y2 (en)
JP2007038379A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in heavy cutting of difficult-to-cut material
JPS629808A (en) Composite machining tip
JP4857506B2 (en) WC-based cemented carbide multilayer chip
WO2023188875A1 (en) Sintered body and cutting tool
WO2023188871A1 (en) Sintered body and cutting tool
JP2877254B2 (en) High hardness composite sintered body for tools
JP2012254486A (en) Extra-high pressure sintered rotary cutting tool
JP3878334B2 (en) Cemented carbide and coated cemented carbide
JP2005288640A (en) End mill made of cemented carbide to exert excellent anti-abrasiveness in high-speed machining of hard-to-machine material
JPH08243822A (en) Raw material used for cutting tool and manufacture thereof
JPH03131412A (en) Sintered hard alloy made drill
JPH04217414A (en) Throw away drill
JP4771200B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2007038386A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of hard-to-cut-material