JPH0271569A - Manufacture of piezoelectric material - Google Patents

Manufacture of piezoelectric material

Info

Publication number
JPH0271569A
JPH0271569A JP63222943A JP22294388A JPH0271569A JP H0271569 A JPH0271569 A JP H0271569A JP 63222943 A JP63222943 A JP 63222943A JP 22294388 A JP22294388 A JP 22294388A JP H0271569 A JPH0271569 A JP H0271569A
Authority
JP
Japan
Prior art keywords
piezoelectric material
mixed
pretreatment
piezoelectric
pretreated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63222943A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
繁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP63222943A priority Critical patent/JPH0271569A/en
Publication of JPH0271569A publication Critical patent/JPH0271569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To manufacture a PNN-PT-PZ piezoelectric material of high performance by a method wherein a mixed material containing Ni and Nb out of Ni, Nb, Ti, and Zr is pretreated under a specified condition to be a pretreatment material, and the pretreated material and a material containing the rest elements which constitute the piezoelectric material are mixed together and heat-treated. CONSTITUTION:Specified amounts of oxides powders of Ni and Nb respectively out of Ni, Nb, Ti, and Zr are weighed and picked out to be mixed, and the mixed material is subjected to a pretreatment, where it is heated at a temperature of 850-950 deg.C for 30 minutes-10 hours in the atmosphere or an oxygen atmosphere. By this pretreatment, Ni and Nb contained in the mixed material are reacted with oxygen to form corumbite of a pretreatment material whose composition is NiNb2O6. Next, the pretreated material is mixed with oxides powder of the rest elements which constitute a piezoelectric material, which is ground and mixed. The obtained piezoelectric material is subjected to a heat treatment to enable the elements contained in the material to react on each other for the formation of a piezoelectric material composed of a single phase. By this set-up, a piezoelectric material can be improved in productivity.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、積層圧電アクチュエータなどに使用される
圧電材料の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of manufacturing a piezoelectric material used in laminated piezoelectric actuators and the like.

「従来の技術」 従来、高い圧電効果を示す圧電材料としては、B aT
 io j系、P bT 103−P bZ ro 3
系(PZTと略称される)などの材料が知られている。
"Conventional technology" Conventionally, B aT is a piezoelectric material that exhibits a high piezoelectric effect.
io j series, P bT 103-P bZ ro 3
Materials such as PZT (abbreviated as PZT) are known.

これらの圧電材料は、圧電振動子、各種セラミックフィ
ルタ、圧電トランス、ガス器具などの着火素子、マイク
ロフォン、圧電ブザーなど種々の機器に使用されてきて
いる。
These piezoelectric materials have been used in various devices such as piezoelectric vibrators, various ceramic filters, piezoelectric transformers, ignition elements for gas appliances, microphones, and piezoelectric buzzers.

また、電気−機械エネルギー変換効率の高い圧電材料と
して、P b(N i ’/3 N b’ム)Os−P
 b’l’ io 3P bZ ro 3系(以下、P
NN−FT−PZ系という)が知られており、各種機器
への応用が1試みられている。
In addition, as a piezoelectric material with high electrical-mechanical energy conversion efficiency, Pb(N i '/3 N b' )Os-P
b'l' io 3P bZ ro 3 series (hereinafter referred to as P
(NN-FT-PZ system) is known, and one attempt has been made to apply it to various devices.

ところで、圧電材料を応用した機器Z) I−)として
圧電アクチュエータがある。この圧電アクチュエータは
、消費電力、発熱、ノイズ発生などの従来より使用され
ている電磁式アクチュ」、−タC・)欠点をもたないば
かりでなく、小型で振動8i撃に強い、位置決め分解能
が高いなどの優れた特性をらっことから実用化に向けて
研究がなされており、特に駆動性の優れた圧電アクチュ
エータとして、上記PNN−PT−PZ系などの圧電材
料からなる圧電板を多数積層した構成の積層圧電アクチ
ュエータが提案されている。
By the way, there is a piezoelectric actuator as a device Z) I-) to which piezoelectric materials are applied. This piezoelectric actuator not only does not have the disadvantages of conventionally used electromagnetic actuators such as power consumption, heat generation, and noise generation, but also has a small size, high vibration resistance, and high positioning resolution. Research has been conducted toward practical application of the piezoelectric actuator, which has excellent properties such as high speed, and has been developed by laminating a large number of piezoelectric plates made of piezoelectric materials such as the PNN-PT-PZ system mentioned above. A laminated piezoelectric actuator with the following configuration has been proposed.

このPNN−FT−PZ系の圧電材料を作製するには、
Pb、Ti、Zr、Nb、Niの各元素の酸化物を所定
の比率で混合し、この混合材料を仮焼し、粉砕した後、
プレス成形して成形体とし、この後成形体を焼成して作
製している。
To produce this PNN-FT-PZ-based piezoelectric material,
After mixing oxides of each element of Pb, Ti, Zr, Nb, and Ni in a predetermined ratio, and calcining and pulverizing this mixed material,
The molded product is produced by press molding and then firing the molded product.

「発明が解決しようとする課題」 しかしながら、上記各原料を混合して熱処理を!j色−
4−と、構成元素のうちのPhとNbとが反応を起ニし
、P b:+N b40 +3(パイロタ〔lア型)な
る組成のらのが生成し、P b(N i’/、N 11
2/3)03−P bT io *PbZrO3のペロ
ブスカイト型の相の中に上記パイロクロア相が混在した
状態にな〜てしまい、このため圧′:iL材料の性能低
下を招いてしまう問題があった。
``Problem to be solved by the invention'' However, the above raw materials are mixed and heat treated! j color-
4- and the constituent elements Ph and Nb cause a reaction, and a particle with a composition of P b:+N b40 +3 (pyrota type) is generated, and P b (N i'/, N 11
2/3) 03-P bT io *There was a problem that the above pyrochlore phase was mixed in the perovskite phase of PbZrO3, leading to a decrease in the performance of the pressure':iL material. .

本発明は、上記事情に鑑みてなされたもので、上記パイ
ロクロア相の発生を抑制することによって、高性能の圧
電材料が得られる製造方法の提供を目的としている。
The present invention has been made in view of the above circumstances, and aims to provide a manufacturing method capable of obtaining a high-performance piezoelectric material by suppressing the generation of the pyrochlore phase.

「課題を解決するための手段」 上記目的達成の手段として、本発明は、PNNPT−P
Z系圧電材料の製造方法であって、NiNb、Tiおよ
びZrの各元素のうち少なくともNiとNbとを含む混
合材料に、850〜950℃で30分〜10時間加熱す
る前処理を施して前処理材料とし、次いでこの前処理材
料と、上記圧電材料を構成する残りの元素を含む材料と
を混合し、この後熱処理を施すことを特徴とする圧電材
料の製造方法である。
"Means for Solving the Problems" As a means for achieving the above object, the present invention provides PNNPT-P
A method for manufacturing a Z-based piezoelectric material, comprising pretreating a mixed material containing at least Ni and Nb among the elements NiNb, Ti, and Zr by heating it at 850 to 950°C for 30 minutes to 10 hours. This method of manufacturing a piezoelectric material is characterized in that the pretreated material is mixed with a material containing the remaining elements constituting the piezoelectric material, and then a heat treatment is performed.

「作用 」 Ni Nb Ti、Zrの各元素の−)ち少なくと乙N
iとNbとを含む混合材料に前処理を施すことにより、
N iN byo eのコランバイトを生成させ、この
後にl〕boと反応させると、次式CA)3PbO+N
1NbzOs→3Pb(Ni’/Jb”/+)Os・・
・・(A)のように反応が起こり、パイロクロア相の発
生が抑制されて P b(N i’/3N b’/3)
03−P bT io 3P bZ ro 3のペロブ
スカイト単一相が実現できる。
"Action" of each element Ni Nb Ti, Zr -) at least N
By pre-treating the mixed material containing i and Nb,
When columbite of N iN byo e is generated and then reacted with l]bo, the following formula CA)3PbO+N
1NbzOs→3Pb(Ni'/Jb"/+)Os...
...The reaction occurs as shown in (A), and the generation of the pyrochlore phase is suppressed, resulting in P b (N i'/3N b'/3)
A perovskite single phase of 03-P bT io 3P bZ ro 3 can be realized.

この結果、高性能のPNN−PT−PZ系圧電材料を得
ることができるとともに、低温での焼結性が向上し、焼
成時の温度範囲を広げることができることから焼成操作
を容易化でき、圧電材料の生産性を向上させることがで
きる。
As a result, it is possible to obtain a high-performance PNN-PT-PZ piezoelectric material, improve sinterability at low temperatures, and expand the temperature range during firing, making the firing operation easier and piezoelectric Material productivity can be improved.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明による圧電材料の製造方法において、好適に使用
される原料としては、PNN−PT−PZ系圧電材料を
構成する各元素(P b、T i、Z r、N bおよ
びNiの各元素)の酸化物粉末である。これらの酸化物
粉末は、純度が99%以−1,の材料を用いろことか梁
上しくIJ 本発明方法では、まず、N i、N b、1’ i、 
7. rの各元素のうち少なくとらNiとNbの各元素
の酸化物粉末を、各々所定の分量だけ秤量採取して混合
し、次いてこの、混合材料に、人気中(つるい(ユ酸素
雰囲気中、850〜950℃で30分〜10時間加熱す
る前処理を施す。この前処理によって上記混合材料中の
NiとNbと0とが反応してN1NbtOaの組成のフ
ランバイトが生成され、前処理材料が得られる。上記前
処理温度が850〜950℃の範囲外であると上記フラ
ンバイトの生成効率が悪くなる。また、上記前処理時間
が30分未満であると各元素間の反応が不十分となり、
10時間以上加熱してもフランバイト生成量が増加せず
、前処理材料が粗粒化してしまう。
In the method for manufacturing a piezoelectric material according to the present invention, the raw materials preferably used include each element (Pb, Ti, Zr, Nb, and Ni) constituting the PNN-PT-PZ piezoelectric material. oxide powder. These oxide powders should be made of materials with a purity of 99% or more.
7. Predetermined amounts of oxide powders of at least Ni and Nb among the elements r are weighed and mixed, and then this mixed material is mixed with powdered powder in an oxygen atmosphere. , pretreatment is performed by heating at 850 to 950°C for 30 minutes to 10 hours. Through this pretreatment, Ni, Nb, and 0 in the mixed material react to generate furanbite with a composition of N1NbtOa, and the pretreated material is obtained. If the pretreatment temperature is outside the range of 850 to 950°C, the production efficiency of furanbite will be poor. In addition, if the pretreatment time is less than 30 minutes, the reaction between each element will be insufficient. Then,
Even if heated for 10 hours or more, the amount of furanbite produced does not increase, and the pretreated material becomes coarse grained.

次に、先の前処理材料に、圧電材料を構成する残りの元
素の酸化物粉末を所定量混合し、好ましくは粉砕混合処
理を施す。これによって、圧電材料を構成する全ての元
素を含む圧電素材を得る。
Next, a predetermined amount of oxide powder of the remaining elements constituting the piezoelectric material is mixed into the pretreated material, and preferably subjected to a pulverization and mixing treatment. As a result, a piezoelectric material containing all the elements constituting the piezoelectric material is obtained.

この後、得られた圧電素材に適宜な熱処理を施すことに
より、圧電素材中に含まれる各元素lよ反応を起こし、
P N N −P T −P Z系(ペロブスカイト型
)の単一相からなる圧電材料が得られる。
After that, by subjecting the obtained piezoelectric material to an appropriate heat treatment, each element contained in the piezoelectric material causes a reaction,
A piezoelectric material consisting of a single phase of PNN-PT-PZ system (perovskite type) is obtained.

この圧電素材に熱処理を施して圧電材料を得る方法の一
例を説明すると、まず、先の圧電素材に、大気中あるい
は酸素雰囲気中、800〜950°Cで30分〜数時間
加熱する仮焼を施す。
To explain an example of a method for obtaining a piezoelectric material by subjecting this piezoelectric material to heat treatment, first, the piezoelectric material is calcined by heating at 800 to 950°C for 30 minutes to several hours in the air or oxygen atmosphere. give

次に、仮焼を施した材料を粉砕処理して仮焼粉末とする
。次に、仮焼粉末を造粒し、そして所望形状にプレス成
形し、ざらにCIP(冷間静水圧加圧)処理を施して成
形体とする。
Next, the calcined material is pulverized into calcined powder. Next, the calcined powder is granulated, press-molded into a desired shape, and roughly subjected to CIP (cold isostatic pressing) treatment to form a compact.

次に、得られた成形体を焼成し、圧電材料を作製する。Next, the obtained molded body is fired to produce a piezoelectric material.

このときの焼成条件は、1100〜1300℃で30分
〜10時間程度が好適である。以上の各操作により、所
定の形状に焼結された圧電材料が得られる。このように
して得られた圧電材料は、使用用途に応じて研摩処理を
施しても良い。
The firing conditions at this time are preferably 1100 to 1300°C for about 30 minutes to 10 hours. Through each of the above operations, a piezoelectric material sintered into a predetermined shape is obtained. The piezoelectric material thus obtained may be subjected to a polishing treatment depending on the intended use.

次に、本発明の実施例を記し、本発明による圧電材料の
製造方法の作用効果を明確化する。
Next, examples of the present invention will be described to clarify the effects of the piezoelectric material manufacturing method according to the present invention.

「実施例」 P b、T i、 7. r、Xb、N i//)3元
素の酸化物粉末(純1炬99%以上)を完T4として用
い、す、下に示オニF5:碩に、(050)Pb(N+
’/3Nb’/3)03−(0,38)PbT+03(
0,12)PbZrO,ζろ組成の圧電材木4のペレッ
トを1′]  装 し f二。
"Example" P b, T i, 7. An oxide powder of three elements (r,
'/3Nb'/3)03-(0,38)PbT+03(
0,12) Loaded with pellets of piezoelectric material 4 of PbZrO, zeta composition.

(工程) (前処理−)混合−仮焼一扮砕一造粒一プレスーcrp
→焼成 そして、前処理の有無および前処理時の混合元素、仮焼
条件、ゴミぬきの有無の各項目のいずれかが異なる8種
類の試料を作製しfこ。前処理を行イつない4種類の試
料を比較例1ないし比較例4とし、詳細を第1表に示し
た。また前処理を行った4種類の試料を実施例1ないし
実施例4とし、詳細を第2表に示した。
(Process) (Pretreatment-) Mixing - Calcination - Crushing - Granulation - Press - CRP
→Calcination Then, eight types of samples were prepared that differed in any of the following items: presence or absence of pretreatment, mixed elements during pretreatment, calcination conditions, and presence or absence of dust removal. Four types of samples subjected to pretreatment were designated as Comparative Examples 1 to 4, and details are shown in Table 1. Furthermore, the four types of samples subjected to pretreatment were designated as Examples 1 to 4, and the details are shown in Table 2.

以下余白 第1表および第2表に示す各試料を用い、各試料毎に1
180℃〜1300°Cの間の異なる焼成温度で焼成し
て圧電材料のベレット(以下、試験品という)を作製し
、■密度、■E”/Eo(誘電率)、■tanδ(誘電
損失)、■R,(直列抵抗)、■Qm(I械的品質係数
)、■Kr(表面波結合係数)、■電歪特性、■ヒステ
リシス、■X線回折、りΦサーマルエツチングによる粒
子観察の各試験を行った。各試験の結果を以下に記す。
Using each sample shown in Tables 1 and 2 in the margin below, 1
Piezoelectric material pellets (hereinafter referred to as test products) were produced by firing at different firing temperatures between 180°C and 1300°C, and the following properties were determined: ■density, ■E''/Eo (permittivity), and ■tanδ (dielectric loss). , ■R, (series resistance), ■Qm (I mechanical quality factor), ■Kr (surface wave coupling coefficient), ■electrostrictive characteristics, ■hysteresis, ■X-ray diffraction, and particle observation by thermal etching. Tests were conducted.The results of each test are described below.

以下余白 ■密度 各試験品の密度を水中法で測定した。結果を第3表に示
す。
The following margin is ■Density The density of each test product was measured by an underwater method. The results are shown in Table 3.

■ E”/ E a (誘電率) 各試験品を研摩し、電極焼付けを行い、誘電率(ポーリ
ング前の誘電率)を測定した。結果を第4表に示す。
■ E"/E a (permittivity) Each test piece was polished, electrodes were baked, and the dielectric constant (permittivity before poling) was measured. The results are shown in Table 4.

また、各試験品を研摩し、?Itl!lii焼付けを行
い、さらにポーリング処理を行った後、誘電率(ポーリ
ング後の誘電率)を測定した。結果を第5表に示す。
Also, each test item was polished and? Itl! After performing lii baking and further performing poling treatment, the dielectric constant (dielectric constant after poling) was measured. The results are shown in Table 5.

第5表 ■tanδ(誘電損失) 各試験品を研摩し、電極焼付けを行い、誘電損失(ポー
リング前の誘電損失)を測定した。結果を第6表に示す
Table 5 - tan δ (dielectric loss) Each test piece was polished, electrode baked, and dielectric loss (dielectric loss before poling) was measured. The results are shown in Table 6.

また、各試験品を研摩し、電極焼付けを行い、さらにポ
ーリング処理を行った後、誘電損失(ポーリング後の誘
電損失)を測定した。結果を第7表に示す。
In addition, each test piece was polished, electrode baked, and further subjected to poling treatment, and then the dielectric loss (dielectric loss after poling) was measured. The results are shown in Table 7.

■ R,(直列抵抗) 各試験品を研摩し、電極焼付けを行い、直列抵抗を測定
した。結果を第8表に示す。
■R, (Series Resistance) Each test piece was polished, electrodes were baked, and the series resistance was measured. The results are shown in Table 8.

■QI11(機械的品質係数) 各試験品を@摩し、電極焼付けを行い、機械的品質特性
を測定した。結果を第9表に示す。
■QI11 (Mechanical Quality Factor) Each test product was polished, electrode baked, and mechanical quality characteristics were measured. The results are shown in Table 9.

第8表 (単位 Ω) ■Kr(表面波結合係数) 各試験品を研摩し、電極焼付けを行い、表面波結合係数
を測定した。結果を第10表に示す。
Table 8 (unit: Ω) ■Kr (Surface Wave Coupling Coefficient) Each test piece was polished, electrodes were baked, and the surface wave coupling coefficient was measured. The results are shown in Table 10.

■電歪特性(0→10 K V / c m )各試験
品を研摩し、電極焼付けを行い、電歪特性(ポーリング
前の電歪特性)を測定した。結果を第11表に示す。
■Electrostrictive properties (0→10 KV/cm) Each test piece was polished, electrode baked, and the electrostrictive properties (electrostrictive properties before poling) were measured. The results are shown in Table 11.

また、各試験品を研摩し、電極焼付けを行い、さらにポ
ーリング処理を行った後、電歪特性(ポーリング後の電
歪特性)を測定した。結果を第12表に示す。
In addition, each test piece was polished, electrode baked, and further subjected to poling treatment, and then the electrostrictive properties (electrostrictive properties after poling) were measured. The results are shown in Table 12.

■ ヒステリシス 各試験品を研摩し、電極焼付けを行い、ヒステリシス(
ポーリング前のヒステリシス)を測定した。
■ Hysteresis Each test item is polished, electrode baked, and hysteresis (
(hysteresis before polling) was measured.

結果を第13表に示す。なお、ヒステリシス(%)は、
第1図の図中△UおよびUmaxより、ヒステリシス(
%)=△U/ Umax (ただし、Vmax=10に
V/cta、 1/2VIIlax=5KV/all)
により求めた。
The results are shown in Table 13. In addition, hysteresis (%) is
From △U and Umax in Figure 1, the hysteresis (
%)=△U/Umax (However, Vmax=10 and V/cta, 1/2VIIlax=5KV/all)
It was determined by

また、各試験品を研摩し、電極焼付けを行い、さらにポ
ーリング処理を行った後、ヒステリツス(ポーリング後
のヒステリツス)を測定した。結果を第14表に示す。
In addition, each test piece was polished, electrode baked, and further subjected to poling treatment, and then the hysteresis (hysteresis after poling) was measured. The results are shown in Table 14.

第14表 (単位9% ) ■X線回折 焼成館の各試料(各試料の仮焼粉末)を用い、X線回折
でそれらの結晶構造を調べた。
Table 14 (Unit: 9%) ■X-ray diffraction Using each sample (calcined powder of each sample) from the calcining chamber, their crystal structures were investigated by X-ray diffraction.

その結果、比較例Iおよび比較例2では、まだPNN−
PT−PZ系(ペロブスカイト型)まで成長しておらず
、各成分が固溶体を形成していない状態であった。また
比較例3および比較例4では、PNN−PT−PZらし
きペロブスカイト状のピークが見られろが、同時にr’
 bsN !+4013(パイロクロア型)のピーク6
見らメ1f二。
As a result, in Comparative Example I and Comparative Example 2, PNN−
It was not grown to a PT-PZ system (perovskite type), and each component did not form a solid solution. In addition, in Comparative Examples 3 and 4, a perovskite peak that seems to be PNN-PT-PZ is observed, but at the same time r'
bsN! +4013 (pyrochlore type) peak 6
Look at me 1f2.

一方、実施例また゛いし実施例4 y) h試料に!j
いては、このP bs N b4o 、 、のピークは
見ら、4tなか−、た。
On the other hand, Example 4 y) h sample! j
However, this peak of P bs N b4o , , was not observed at 4t.

[株]サーマルエツチングによる粒子観察サーマルエツ
チングにより、谷試験品のTIr−i−状態を観察した
[Co., Ltd.] Particle Observation by Thermal Etching The TIr-i state of the Tani test product was observed by thermal etching.

その結果、前処理時に添加する元素がNiとNbだけで
あった試験品(実施例2および実施例4の各試験品)の
方が、Ni、Nb、Ti、7.rを添加しf二番試験品
よりら粒径が大きくなっf二。(第15表)以」二の各
試験の結果、実施例1ないし実施例4の各試験品は、前
処理を施さない比較例1ないし比較例4の各試験品に比
べ、電気特性などが良好であった。
As a result, the test products in which only Ni and Nb were added at the time of pretreatment (the test products of Example 2 and Example 4) were better than those in which Ni, Nb, Ti, and 7. When r was added, the particle size became larger than that of the f2 test product. (Table 15) As a result of the following tests, the test products of Examples 1 to 4 had better electrical properties than the test products of Comparative Examples 1 to 4, which were not subjected to pretreatment. It was good.

第15表 粒径(71m) 「発明の効果」 以上説明したように、本発明による圧電材料の製造方法
は、I) N N −P ’I’ −1) Z系11:
、電M1゛’lを製造するに際し、N i、Nb、’l
” i、Z rの6元素のうし少なくともNiとNbと
を含む混合材料に前処理を施して、N1NbtOsのコ
ランバイトを生成させ、この後にPbOと反応させるこ
とによって、パイロクロア相の発生を抑制してP b(
N i’/3N b2/3)o 3P bT + Os
−P bZ ro 3のペロブスカイト単一用からなる
圧電材料を製造することかでき、高性能のPNN−PT
−PZ系圧電材料を得ることができる。
Table 15 Particle Size (71 m) "Effects of the Invention" As explained above, the method for manufacturing a piezoelectric material according to the present invention is based on I) N N -P 'I' -1) Z system 11:
, Nb,'l when manufacturing electric M1''l
” A mixed material containing six elements i, Zr and at least Ni and Nb is pretreated to produce columbite of N1NbtOs, and then reacted with PbO to suppress the generation of the pyrochlore phase. teP b(
N i'/3N b2/3) o 3P bT + Os
- A piezoelectric material consisting of a single perovskite of P bZ ro 3 can be manufactured, and a high performance PNN-PT
- A PZ-based piezoelectric material can be obtained.

また、上記前処理を行うことによって、低温での焼結性
が向上し、焼成温度範囲を広く設定することができるこ
とから、圧電材料製造の際の焼成操作を容易化でき、圧
電材料の生産性を向上させることができる。
In addition, by performing the above pretreatment, sinterability at low temperatures is improved, and the firing temperature range can be set over a wide range, making it easier to perform the firing operation when manufacturing piezoelectric materials, thereby increasing the productivity of piezoelectric materials. can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヒステリツスの求め方を説明tろためのグラフ
である。
FIG. 1 is a graph for explaining how to obtain hysteresis.

Claims (1)

【特許請求の範囲】 Pb(Ni_1_/_3Nb_2_/_3)O_3−P
bTiO_3−PbZrO_3系圧電材料の製造方法で
あって、 Ni,Nb,TiおよびZrの各元素のうち少なくとも
NiとNbとを含む混合材料に、850〜950℃で3
0分〜10時間加熱する前処理を施して前処理材料とし
、次いでこの前処理材料と、上記圧電材料を構成する残
りの元素を含む材料とを混合し、この後熱処理を施すこ
とを特徴とする圧電材料の製造方法。
[Claims] Pb(Ni_1_/_3Nb_2_/_3)O_3-P
bTiO_3-PbZrO_3-based piezoelectric material manufacturing method, comprising: heating a mixed material containing at least Ni and Nb among the elements Ni, Nb, Ti, and Zr at 850 to 950°C.
The piezoelectric material is characterized by performing a pretreatment of heating for 0 minutes to 10 hours to obtain a pretreatment material, then mixing this pretreatment material with a material containing the remaining elements constituting the piezoelectric material, and then subjecting the piezoelectric material to a heat treatment. A method for manufacturing a piezoelectric material.
JP63222943A 1988-09-06 1988-09-06 Manufacture of piezoelectric material Pending JPH0271569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222943A JPH0271569A (en) 1988-09-06 1988-09-06 Manufacture of piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222943A JPH0271569A (en) 1988-09-06 1988-09-06 Manufacture of piezoelectric material

Publications (1)

Publication Number Publication Date
JPH0271569A true JPH0271569A (en) 1990-03-12

Family

ID=16790301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222943A Pending JPH0271569A (en) 1988-09-06 1988-09-06 Manufacture of piezoelectric material

Country Status (1)

Country Link
JP (1) JPH0271569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133152A (en) * 1993-11-04 1995-05-23 Nec Corp Production of piezoelectric porcelain composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133152A (en) * 1993-11-04 1995-05-23 Nec Corp Production of piezoelectric porcelain composition

Similar Documents

Publication Publication Date Title
JP4541985B2 (en) Method for producing polycrystal
US8269402B2 (en) BNT-BKT-BT piezoelectric composition, element and methods of manufacturing
CN100509703C (en) Method for preparing ferrite bismuth lanthanum-titanate lead solid solution ceramic under strong magnetic field action
JP2518703B2 (en) Laminated composite piezoelectric body and manufacturing method thereof
JP4450636B2 (en) Method for manufacturing piezoelectric ceramics
Kim et al. Fabrication of fine-grain piezoelectric ceramics using reactive calcination
CN109553413B (en) Textured piezoelectric ceramic and preparation method and application thereof
CN106518070B (en) A kind of polynary system high-voltage electricity active piezoelectric ceramic material and preparation method thereof
CN111269009A (en) Bismuth zirconate manganate-bismuth scandate-lead titanate series piezoelectric ceramic material and preparation method thereof
JP3666182B2 (en) Method for producing crystal-oriented ceramics
JPH10139552A (en) Crystal oriented ceramics and its production
JP5937774B1 (en) Piezoelectric ceramic and manufacturing method thereof, and electronic component
US5788876A (en) Complex substituted lanthanum-lead-zirconium-titanium perovskite, ceramic composition and actuator
EP1358137A2 (en) Method for making lead zirconate titanate-based ceramic powder, piezoelectric ceramic and method for making same
Pang et al. A lead-reduced ferrolectric solid solution with high curie temperature: BiScO3–Pb (Zn1/3Nb2/3) O3–PbTiO3
GB2550887A (en) Temperature stable lead-free piezoelectric/electrostrictive materials with enhanced fatigue resistance
CN115894020B (en) PMNZT-based piezoelectric ceramic with high piezoelectric coefficient and preparation method and application thereof
JPH0271569A (en) Manufacture of piezoelectric material
CN114213121A (en) High-voltage, high-dielectric and high-curie piezoelectric ceramic piece
CN102351535B (en) Low-loss sodium potassium niobate-based lead-free piezoelectric ceramic material and preparation method thereof
JP2010222185A (en) Anisotropic-shape powder and method for manufacturing of crystal-oriented ceramic
JP6627440B2 (en) Piezoelectric ceramic, piezoelectric ceramic electronic component, and method of manufacturing piezoelectric ceramic
Tunkasiri Properties of PZT ceramics prepared from aqueous solutions
CN114804874B (en) Quaternary piezoelectric ceramic and preparation method and application thereof
CN117326866B (en) Cerium-manganese co-doped lead zirconate titanate-based piezoelectric ceramic material and preparation method thereof