JPH0270961A - Indicated average effective pressure computing device for engine - Google Patents

Indicated average effective pressure computing device for engine

Info

Publication number
JPH0270961A
JPH0270961A JP22287588A JP22287588A JPH0270961A JP H0270961 A JPH0270961 A JP H0270961A JP 22287588 A JP22287588 A JP 22287588A JP 22287588 A JP22287588 A JP 22287588A JP H0270961 A JPH0270961 A JP H0270961A
Authority
JP
Japan
Prior art keywords
crank angle
engine
cylinder internal
circuit
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22287588A
Other languages
Japanese (ja)
Inventor
Kuniaki Sawamoto
沢本 国章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP22287588A priority Critical patent/JPH0270961A/en
Publication of JPH0270961A publication Critical patent/JPH0270961A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a computing method by a method wherein a change amount of a cylinder internal pressure at a given crank angle is determined, and the change amount is corrected by means of a correction factor responding to a change in a stroke volume during an explosion stroke to compute an indicated average effective pressure. CONSTITUTION:By means of signals from a cylinder internal pressure sensor 2 and a crank angle sensor 3, a cylinder internal pressure detecting circuit 4 detects a cylinder internal pressure at each given crank angle, for example, 30 deg.CA. A factor computing circuit 5 computes a correction factor by means of which a cylinder internal pressure at a crank angle symmetrical to a compression top dead center TDC is corrected to output it to a deviation computing circuit 6. The deviation computing circuit 6 computes a deviation between cylinder internal pressures at respective given crank angles to output a computing result to a total sum circuit 7. The total sum circuit 7 computes a total sum at a given crank angle section of computing results, inputted from the deviation computing circuit 6, as a current indicated average effective pressure (torque). As a result, an indicated average effective pressure in a conventional computer for controlling an engine can be computed, and a cost can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等エンジンの図示平均有効圧演算装置
に係り、詳しくは、図示平均有効圧の演算方法を単純化
し、その演算時間を短縮する装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an indicated mean effective pressure calculation device for an engine such as an automobile, and more specifically, it simplifies the method for calculating the indicated mean effective pressure and shortens the calculation time. related to a device for

(従来の技術) 近時、エンジンの各種電子制御技術が急速に発展し普及
しはじめている。このような回転動力機関の電子制御で
はトルク制御が重要な位置を占める場合が少なくない。
(Prior Art) In recent years, various electronic control technologies for engines have rapidly developed and become popular. Torque control often plays an important role in the electronic control of such rotary power engines.

すなわち、トルクは回転駆動系の制御を行う際の最も基
本的かつ重要なパラメータの1つであり、トルクと回転
数の情報を得るとそれらの積が馬力に比例するので動力
の発生状態および伝達状態を把握することが可能になる
In other words, torque is one of the most basic and important parameters when controlling a rotational drive system, and when information on torque and rotation speed is obtained, the product of them is proportional to horsepower, so it is difficult to determine the state of power generation and transmission. It becomes possible to grasp the status.

従来のこの種のエンジンの図示平均有効圧演算装置とし
ては、例えば、rcB−210エンジンPiメータJ 
 (@小野側層、1987年9月発行)に記載のものが
ある。この装置では第5図に示すような気筒のモデルを
設定し、21はピストン、22はコンロッド、23はク
ランクシャフトをそれぞれ示している。第5図において
、ストローク長をS、コンロンド長を2とした場合にピ
ストン21からコンロッド22を介してクランクシャフ
ト23に伝達される回転駆動力、すなわち、シリンダ内
における図示平均有効圧Piを演算しようとするもので
ある。具体的には第6図に示すように一行程をA〜Dに
分割して次式■〜■に従って図示平均有効圧Piを専用
のコンピュータで演算している。
As a conventional indicated mean effective pressure calculation device for this type of engine, for example, the rcB-210 engine Pi meter J
(@Ono side layer, published September 1987). In this device, a cylinder model as shown in FIG. 5 is set, where 21 indicates a piston, 22 indicates a connecting rod, and 23 indicates a crankshaft. In FIG. 5, when the stroke length is S and the connecting rod length is 2, let us calculate the rotational driving force transmitted from the piston 21 to the crankshaft 23 via the connecting rod 22, that is, the indicated mean effective pressure Pi in the cylinder. That is. Specifically, as shown in FIG. 6, one stroke is divided into A to D, and the indicated mean effective pressure Pi is calculated by a dedicated computer according to the following equations (1) to (2).

ここで、 ΔX(θ)=X(θ)−X(θ+2)・・・・・・■ま
た、X (θ)は、ストローク長S1コンロツド長l、
オフセット値Δγにより次式〇に従って演算される。
Here, ΔX(θ)=X(θ)−X(θ+2)...■ Also, X(θ) is the stroke length S1 connecting rod length l,
The offset value Δγ is calculated according to the following equation.

ΔX(θ)は、ストローク長S1コンロ・ノド長l、オ
フセット値γが入力された時に2度毎に演算される。
ΔX(θ) is calculated every two degrees when the stroke length S1 stove throat length l and offset value γ are input.

(発明が解決しようとする課題) しかしながら、このような従来のエンジンの図示平均有
効圧演算装置にあっては、クランク角2度毎に前記の演
算方法によって図示平均を勤王Piを演算する構成とな
っていたため、演算に時間を要し、専用のコンピュータ
が必要となり、エンジン制御用のコンピュータでは演算
できないという問題点があった。また、専用のコンピュ
ータの設置はコスト高につながる。
(Problem to be Solved by the Invention) However, in such a conventional indicated mean effective pressure calculation device for an engine, the indicated mean is calculated by the above-mentioned calculation method every 2 degrees of crank angle. Therefore, there was a problem that the calculation took time and required a dedicated computer, and the calculation could not be performed by the engine control computer. Additionally, installing a dedicated computer leads to high costs.

(発明の目的) そこで、本発明は、圧縮・爆発行程において圧縮上死点
に対して対称な所定クランク角度の筒内圧力の変化量を
求め、これらの変化量を爆発行程における行程容積の変
化に対応する補正係数で補正して図示平均有効圧を演算
することにより演算方法を単純化して、低コストで実現
するエンジンの図示平均有効圧演算装置を提供すること
を目的としている。
(Objective of the Invention) Therefore, the present invention calculates the amount of change in cylinder pressure at a predetermined crank angle that is symmetrical with respect to compression top dead center in the compression/explosion stroke, and converts these changes into changes in stroke volume in the explosion stroke. An object of the present invention is to simplify the calculation method by calculating the indicated mean effective pressure by correcting it with a correction coefficient corresponding to , and to provide an engine indicated mean effective pressure calculation device that can be realized at low cost.

(課題を解決するための手段) 本発明によるエンジンの図示平均有効圧演算装置は上記
目的達成のため、エンジンの筒内圧力を検出する圧力検
出手段と、ニシジンのクランク角を検出するクランク角
検出手段と、エンジンが爆発行程にあるとき、所定クラ
ンク角毎に行程容積の変化に対応する補正係数を設定す
る補正係数設定手段と、圧縮・爆発行程にあるときの筒
内圧力を所定クランク角毎に検出し、圧縮上死点に対し
て対称な所定クランク角度における該筒内圧力の変化量
を求め、これらの変化量を前記補正係数で補正して図示
平均有効圧を演算する演算手段と、を備えている。
(Means for Solving the Problems) In order to achieve the above object, the indicated mean effective pressure calculation device for an engine according to the present invention includes a pressure detection means for detecting the cylinder pressure of the engine, and a crank angle detection means for detecting the crank angle of the engine. correction coefficient setting means for setting a correction coefficient corresponding to a change in stroke volume at every predetermined crank angle when the engine is in the explosion stroke; calculating means for detecting the amount of change in the cylinder pressure at a predetermined crank angle symmetrical with respect to the compression top dead center, and correcting the amount of change using the correction coefficient to calculate the indicated mean effective pressure; It is equipped with

(作用) 本発明では、圧縮・爆発行程の所定クランク角毎に筒低
圧力が検出され、圧縮上死点に対して対称なりランク角
度における該クランク角の変化量が爆発行程にあるとき
の行程容積の変化に対応する補正係数で補正されて図示
平均有効圧が演算される。
(Function) In the present invention, cylinder low pressure is detected at every predetermined crank angle during the compression/explosion stroke, and the amount of change in the crank angle at the rank angle is symmetrical with respect to the compression top dead center during the explosion stroke. The indicated mean effective pressure is calculated by being corrected with a correction coefficient corresponding to the change in volume.

したがって、図示平均有効圧の演算方法が単純化され、
その演算時間が大幅に短縮される。
Therefore, the method of calculating the indicated mean effective pressure is simplified,
The calculation time is significantly reduced.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第1〜4図は本発明に係るエンジンの図示平均有効圧演
算装置の一実施例を示す図である。
1 to 4 are diagrams showing an embodiment of the indicated mean effective pressure calculation device for an engine according to the present invention.

まず、構成を説明する。第1図は図示平均有効圧演算装
置の全体構成を示すブロック図である。
First, the configuration will be explained. FIG. 1 is a block diagram showing the overall configuration of the indicated mean effective pressure calculating device.

第1図において、lは図示平均有効圧演算装置であり、
図示平均有効圧演算装置lはシリンダ内圧センサ(圧力
検出手段)2、クランク角センサ(クランク角検出手段
)3、シリンダ内圧検出回路4、係数演算回路(補正係
数設定手段)5、偏差演算回路6および総和回路7から
構成される装第2図は本装置をエンジンに適用する場合
にセンサの取付は位置を示す図である。第2図において
、11はエンジンであり、エンジン11はシリンダ12
内にピストン13を摺動自在に収納し、ピストン13の
上下動が回転駆動力としてコンロッド14を介してクラ
ンクシャフト15に伝達される。エンジン11は吸気行
程においてインテークマニホールド16から吸気弁17
を通して混合気をシリンダ12内に吸気し、圧縮行程に
おいてピストン13が圧縮上死点TDC前の所定クラン
ク角度BTDCとなったときに点火プラグ18を点火し
て爆発・腫脹行程に移行する。このときシリンダ12内
における燃焼圧力がピストン13を押し下げてクランク
シャフト15に回転駆動力を伝達する。その後、ピスト
ン13が上昇し排気行程に移行してシリンダ12内の排
気ガスを排気弁(図示路)から排気管(図示路)に排気
して一行程を終了する。
In FIG. 1, l is an indicated mean effective pressure calculation device,
The illustrated average effective pressure calculation device l includes a cylinder internal pressure sensor (pressure detection means) 2, a crank angle sensor (crank angle detection means) 3, a cylinder internal pressure detection circuit 4, a coefficient calculation circuit (correction coefficient setting means) 5, and a deviation calculation circuit 6. FIG. 2 shows the mounting position of the sensor when this device is applied to an engine. In FIG. 2, 11 is an engine, and the engine 11 has a cylinder 12.
A piston 13 is slidably housed therein, and the vertical movement of the piston 13 is transmitted to the crankshaft 15 via a connecting rod 14 as rotational driving force. During the intake stroke, the engine 11 moves from the intake manifold 16 to the intake valve 17.
During the compression stroke, when the piston 13 reaches a predetermined crank angle BTDC before the compression top dead center TDC, the spark plug 18 is ignited and the explosion/swelling stroke begins. At this time, the combustion pressure within the cylinder 12 pushes down the piston 13 and transmits rotational driving force to the crankshaft 15. Thereafter, the piston 13 moves up and enters the exhaust stroke, exhausting the exhaust gas in the cylinder 12 from the exhaust valve (path shown) to the exhaust pipe (path shown), completing one stroke.

再び第1図に戻って、シリンダ内圧センサ2は第2図に
示すようにエンジン11のシリンダ部12に取り付けら
れており、シリンダ内圧センサ2は気筒内の燃焼圧力(
以下、筒内圧力という)を圧電素子によって電気信号に
変換し、この電気信号をシリンダ内圧検出回路4に出力
する。クランク角センサ3は第2図に示すようにクラン
クシャフト15の位置(クランク角)を検出するように
取り付けられており、クランク角センサ3は爆発間隔(
6気筒エンジンではクランク角で120” 、4気筒エ
ンジンでは180” )毎に各気筒の圧縮上死点(TD
C)前の所定位置、例えばB T D C70°で(H
)レベルのパルスとなる基準信号REFを出力するとと
もに、クランク角の単位角度(例えば、2°)毎に(H
)レベルのパルスとなる単位信号PO3をシリンダ内圧
検出回路4および係数演算回路5に出力する。
Returning to FIG. 1 again, the cylinder internal pressure sensor 2 is attached to the cylinder part 12 of the engine 11 as shown in FIG.
The piezoelectric element converts the cylinder pressure (hereinafter referred to as cylinder internal pressure) into an electrical signal, and outputs this electrical signal to the cylinder internal pressure detection circuit 4. The crank angle sensor 3 is installed to detect the position (crank angle) of the crankshaft 15 as shown in FIG.
The compression top dead center (TD) of each cylinder is adjusted every 120" crank angle for a 6-cylinder engine and 180" for a 4-cylinder engine.
C) At a previous predetermined position, e.g. B T D C70° (H
) level pulse, and outputs (H
) is outputted to the cylinder internal pressure detection circuit 4 and the coefficient calculation circuit 5.

上記シリンダ内圧検出回路4、偏差演算回路6および総
和回路7は演算手段8としての機能を有し、マイクロコ
ンピュータにより構成される。シリンダ内圧検出回路4
は所定クランク角毎(例えば、30° CA)に筒内圧
力を検出し、その検出信号Pcomb −i 、 Pc
omp−iを偏差演算回路に出力する。係数演算回路5
は圧縮上死点TDCに対して対称となるクランク角度に
おける筒内圧力を補正する補正係数f (i)を演算し
て偏差演算回路6に出力する。偏差演算回路6は検出信
号P comb・i 、 Pcomp−i と補正係数
f (i)に基づいて所定クランク角毎に筒内圧力の偏
差を演算し、その演算結果を総和回路7に出力する。総
和回路7は偏差演算回路6から人力される演算結果の所
定クランク角区間の総和をそのときの図示平均有効圧(
トルク)Piとして演算する。
The cylinder internal pressure detection circuit 4, deviation calculation circuit 6, and summation circuit 7 have a function as calculation means 8, and are constituted by a microcomputer. Cylinder internal pressure detection circuit 4
detects the in-cylinder pressure at every predetermined crank angle (for example, 30° CA), and the detection signals Pcomb -i, Pc
Output omp-i to the deviation calculation circuit. Coefficient calculation circuit 5
calculates a correction coefficient f (i) for correcting the in-cylinder pressure at a crank angle that is symmetrical with respect to the compression top dead center TDC, and outputs it to the deviation calculation circuit 6. The deviation calculation circuit 6 calculates the deviation of the cylinder pressure at every predetermined crank angle based on the detection signals P comb·i and Pcomp-i and the correction coefficient f (i), and outputs the calculation result to the summation circuit 7 . The summation circuit 7 calculates the sum of the calculation results manually inputted from the deviation calculation circuit 6 over a predetermined crank angle section into the indicated mean effective pressure (
Torque) is calculated as Pi.

次に、作用を説明する。Next, the effect will be explained.

本実施例では、第3図に示すように圧縮上死点TDCを
中心(0°)としてクランク角30°毎に爆発行程(0
°〜180 ”)の筒内圧PCOllb−1と圧縮行程
(0°〜−180°)の筒内圧力P comp −iが
シリンダ内圧検出回路4で検出されるとともに、圧縮上
死点TDCに対して対称となるクランク角度の筒内圧力
を補正する補正係数f (t)  (i = Q。
In this example, as shown in Fig. 3, the explosion stroke (0
The cylinder pressure PCOllb-1 of the compression stroke (0° to -180°) and the cylinder pressure Pcomp-i of the compression stroke (0° to -180°) are detected by the cylinder pressure detection circuit 4, and Correction coefficient f (t) (i = Q.

30°、60° ・・・・・・180°)が係数演算回
路5で演算される。偏差演算回路6ではPcomb−i
 s Pc。
30°, 60° . . . 180°) are calculated by the coefficient calculation circuit 5. In the deviation calculation circuit 6, Pcomb-i
s Pc.

mp−iおよび[(i)に基づいてクランク角30°毎
の偏差((Pcomb−i 、 Pcomp−i ) 
X f (i) )が演算され、総和回路7では次式■
に従って図示平均有効Piが演算される。
Deviation for every 30° crank angle based on mp-i and [(i) ((Pcomb-i, Pcomp-i)
X f (i) ) is calculated, and the summation circuit 7 calculates the following formula ■
The indicated average effective Pi is calculated according to:

=  (Pcomb・o  −Pcomp・@  ) 
 X f (0)+  (Pcomb  、。−pcO
mp’−30)  X f (30)+ (Pcomb
 ・ha −Pcomp−−bo  X f (60)
・・−・・・+  (Pcomb−+eo  −Pco
mp−−+go)  X f (180)第4図は上記
補正係数f (i)とクランク角度との関係を示す図で
あり、f (i)は爆発行程における行程容積の変化に
対応するように演算され、設定されており、上記30°
毎に演算される筒内圧力の偏差の精度を従来の2°毎に
行われていた演算の精度と同等にするためのものである
= (Pcomb・o −Pcomp・@)
X f (0) + (Pcomb, .-pcO
mp'-30) X f (30)+ (Pcomb
・ha -Pcomp--bo X f (60)
・・−・+ (Pcomb−+eo −Pco
mp--+go) It is calculated and set, and the above 30°
This is to make the accuracy of the deviation of the cylinder pressure calculated every 2 degrees equal to the accuracy of the conventional calculation performed every 2 degrees.

したがって、上記のような演算方法によって図示平均有
効圧Piを演算するようにすれば、その演算式を単純化
して演算時間を大幅に短縮することができ、特に図示平
均有効圧Piを演算するた・・・・・・■ ジン制御用コンピュータを用いて演算することが可能と
なり、低コストで実現することができる。
Therefore, if the indicated mean effective pressure Pi is calculated by the above calculation method, the calculation formula can be simplified and the calculation time can be significantly shortened. ......■ It becomes possible to perform calculations using a computer for engine control, and it can be realized at low cost.

なお、補正係数f (i)はクランク角度に応じて予め
算出しておき、テーブル値として所定のメモリに記憶さ
せておいても良い。
Note that the correction coefficient f (i) may be calculated in advance according to the crank angle and stored in a predetermined memory as a table value.

(効果) 本発明によれば、圧縮・爆発行程における圧縮上死点に
対して対称となる所定クランク角毎の筒内圧力の変化量
を求めるとともに、これらの変化量を爆発行程における
行程容積の変化に対応する補正係数で補正して図示平均
有効圧を演算しているので、図示平均有効圧の演算方法
を単純化でき、その演算時間を大幅に短縮することがで
きる。その結果、従来のエンジン制御用コンピュータに
おける図示平均有効圧の演算が可能となり、低コストで
エンジンの図示平均有効圧演算装置を実現することがで
きる。
(Effects) According to the present invention, the amount of change in cylinder pressure for each predetermined crank angle that is symmetrical with respect to the compression top dead center in the compression/explosion stroke is determined, and these changes are calculated as the amount of change in the stroke volume in the explosion stroke. Since the indicated mean effective pressure is calculated by correcting it with a correction coefficient corresponding to the change, the method for calculating the indicated mean effective pressure can be simplified and the calculation time can be significantly shortened. As a result, it becomes possible to calculate the indicated mean effective pressure in a conventional engine control computer, and it is possible to realize an indicated mean effective pressure calculation device for an engine at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は本発明に係るエンジンの図示平均有効圧演
算装置の一実施例を示す図であり、第1図はその全体構
成図、第2図はそのセンサの取り付は位置を示す図、第
3図はその演算方法を説明するための筒内圧力とクラン
ク角との関係を示す図、第4図はその補正係数とクラン
ク角との関係を示す図、第5.6図は従来のエンジンの
図示平均有効圧演算装置を示す図であり、第5図はその
エンジントルクを演算するためのエンジンモデルを示す
図、第6図はその演算方法を説明するための図である。 1・・・・・・図示平均有効圧演算装置、2・・・・・
・シリンダ内圧センサ(圧力検出手段)、3・・・・・
・クランク角センサ(クランク角検出手段)、5・・・
・・・係数演算回路(補正係数設定手段)、8・・・・
・・演算手段。
1 to 4 are diagrams showing an embodiment of the indicated mean effective pressure calculating device for an engine according to the present invention, in which FIG. 1 shows the overall configuration thereof, and FIG. 2 shows the mounting position of the sensor. Figure 3 is a diagram showing the relationship between cylinder pressure and crank angle to explain the calculation method, Figure 4 is a diagram showing the relationship between the correction coefficient and crank angle, and Figure 5.6 is a diagram showing the relationship between the correction coefficient and crank angle. 5 is a diagram showing a conventional indicated mean effective pressure calculation device for an engine, FIG. 5 is a diagram showing an engine model for calculating the engine torque, and FIG. 6 is a diagram for explaining the calculation method. 1... Indicated mean effective pressure calculation device, 2...
・Cylinder internal pressure sensor (pressure detection means), 3...
・Crank angle sensor (crank angle detection means), 5...
...Coefficient calculation circuit (correction coefficient setting means), 8...
...Calculation means.

Claims (1)

【特許請求の範囲】[Claims] エンジンの筒内圧力を検出する圧力検出手段と、エンジ
ンのクランク角を検出するクランク角検出手段と、エン
ジンが爆発行程にあるとき、所定クランク角毎に行程容
積の変化に対応する補正係数を設定する補正係数設定手
段と、圧縮・爆発行程にあるときの筒内圧力を所定クラ
ンク角毎に検出し、圧縮上死点に対して対称な所定クラ
ンク角度における該筒内圧力の変化量を求め、これらの
変化量を前記補正係数で捕正して図示平均有効圧を演算
する演算手段と、を備えたことを特徴とするエンジンの
図示平均有効圧演算装置。
A pressure detection means for detecting the cylinder pressure of the engine, a crank angle detection means for detecting the crank angle of the engine, and a correction coefficient corresponding to the change in stroke volume at each predetermined crank angle when the engine is in the explosion stroke. a correction coefficient setting means for detecting the in-cylinder pressure during the compression/explosion stroke at each predetermined crank angle, and determining the amount of change in the in-cylinder pressure at a predetermined crank angle symmetrical to the compression top dead center; An indicated mean effective pressure computing device for an engine, comprising computing means for computing indicated mean effective pressure by capturing these changes using the correction coefficient.
JP22287588A 1988-09-05 1988-09-05 Indicated average effective pressure computing device for engine Pending JPH0270961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22287588A JPH0270961A (en) 1988-09-05 1988-09-05 Indicated average effective pressure computing device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22287588A JPH0270961A (en) 1988-09-05 1988-09-05 Indicated average effective pressure computing device for engine

Publications (1)

Publication Number Publication Date
JPH0270961A true JPH0270961A (en) 1990-03-09

Family

ID=16789257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22287588A Pending JPH0270961A (en) 1988-09-05 1988-09-05 Indicated average effective pressure computing device for engine

Country Status (1)

Country Link
JP (1) JPH0270961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064197B1 (en) * 2009-04-16 2011-09-14 한양대학교 산학협력단 Method for estimating indicated mean effective pressure using cylinder pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064197B1 (en) * 2009-04-16 2011-09-14 한양대학교 산학협력단 Method for estimating indicated mean effective pressure using cylinder pressure

Similar Documents

Publication Publication Date Title
US10215111B2 (en) Controller and control method for internal combustion engine
EP0354497A1 (en) Combustion fault detection apparatus and control system for internal combustion engine
JPS639679A (en) Control of ignition timing of internal combustion engine
US7455047B2 (en) Control unit for an internal combustion engine
JP3237316B2 (en) Engine control device
JPH03164555A (en) Internal combustion engine control device
JP2005291182A (en) Misfire detection device
JP2562577B2 (en) Idle operation control device for internal combustion engine
US11555462B2 (en) Controller and control method for internal combustion engine
JPH02196153A (en) Ignition timing controller for engine
JP2606019B2 (en) Misfire detection device for internal combustion engine
JP2666231B2 (en) Device for detecting combustion state of internal combustion engine
US5503007A (en) Misfire detection method and apparatus therefor
JPH0270961A (en) Indicated average effective pressure computing device for engine
JPH10299632A (en) Engine controller
JP2000170589A (en) Control device for internal combustion engine
JPH04103857A (en) Engine load parameter computing device and engine control device
JP5402762B2 (en) Control device for internal combustion engine
JPS6361129A (en) Torque detector of internal combustion engine
JP4803099B2 (en) Torque estimation device for variable compression ratio engine
JP4345723B2 (en) Method for estimating the indicated mean effective pressure of an internal combustion engine
JP2000352349A (en) Control system for internal combustion engine
JPS6168533A (en) Detection of max. combustion pressure generation timing for internal combustion engine
JPS62195464A (en) Control method for internal combustion engine when it is transient
WO2023199532A1 (en) Control device for internal combustion engine