JPS62195464A - Control method for internal combustion engine when it is transient - Google Patents

Control method for internal combustion engine when it is transient

Info

Publication number
JPS62195464A
JPS62195464A JP61034333A JP3433386A JPS62195464A JP S62195464 A JPS62195464 A JP S62195464A JP 61034333 A JP61034333 A JP 61034333A JP 3433386 A JP3433386 A JP 3433386A JP S62195464 A JPS62195464 A JP S62195464A
Authority
JP
Japan
Prior art keywords
cylinder
value
pressure
ignition
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61034333A
Other languages
Japanese (ja)
Other versions
JPH05550B2 (en
Inventor
Hikari Tanaka
光 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61034333A priority Critical patent/JPS62195464A/en
Priority to US07/007,220 priority patent/US4718382A/en
Priority to DE19873704838 priority patent/DE3704838A1/en
Priority to GB8703622A priority patent/GB2186912B/en
Publication of JPS62195464A publication Critical patent/JPS62195464A/en
Publication of JPH05550B2 publication Critical patent/JPH05550B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve a transience response characteristic and drivability, by deciding an engine, if an arithmetic value of in-cylinder pressure change rate is out of a predetermined range, to be in a transient condition and determining an ignition timing control value in accordance with the above decision. CONSTITUTION:A peak holding circuit 28 holds a peak of outputs from pressure sensors 22, which are arranged by cylinders of an internal combustion engine 20 detecting pressures in said cylinders, and a control unit 42 calculates the maximum value of pressure in the cylinder. Next, a pressure change rate is calculated from ratio of a pressure increasing rate before ignition to that after the ignition, and the engine, if the calculated value is out of a predetermined range, is decided to be in a transient condition. While an in-cylinder pressure maximum angle is calculated on the basis of outputs from the pressure sensors 22 and a crank angle sensor 36. And when the transient condition is detected, the control unit corrects a pressure maximum angle target value by a predetermined amount as compared with when the engine is in a steady operation condition while corrects the ignition timing of the cylinder, to be ignited in the next time, by a value smaller than the predetermined amount.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は内燃機関の過渡時制御方法に関し、より具体的
には内燃機関の気筒内圧力の変動を検出して機関運転の
過渡状態を検知することによって点火時期を補正し過渡
応答性を向上させた内燃機関の過渡時制御方法に関する
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a transient control method for an internal combustion engine, and more specifically, to detect a transient state of engine operation by detecting fluctuations in cylinder pressure of an internal combustion engine. The present invention relates to a transient control method for an internal combustion engine that corrects ignition timing and improves transient response.

(従来の技術) 従来の内燃機関の過渡時制御方法にあっては、機関回転
数及び負荷状態より点火時期主制御値を決定すると共に
、機関冷却水温、スロットル弁開度、マニホルド負圧等
により機関運転の過渡状態を検出して前記主制御値を補
正していた。其の一例として、特公昭58−40027
号記載の技術を挙げることが出来る。
(Prior art) In the conventional transient control method for an internal combustion engine, the ignition timing main control value is determined based on the engine speed and load condition, and the ignition timing main control value is determined based on the engine cooling water temperature, throttle valve opening, manifold negative pressure, etc. The main control value was corrected by detecting the transient state of engine operation. As an example, Special Publication No. 58-40027
The technology described in this issue can be mentioned.

更に、近時内燃機関の気筒内圧力を検出して点火時期を
制御すると共に過渡状態は従来通り機関冷却水温等から
検出する例も提案されており、其の一例として特公昭5
6−21913号記載の技術を挙げることが出来る。
Furthermore, in recent years, an example has been proposed in which the ignition timing is controlled by detecting the cylinder pressure of an internal combustion engine, and the transient state is detected from the engine cooling water temperature, etc., as one example.
The technique described in No. 6-21913 can be mentioned.

(発明が解決しようとする問題点) しかしながら、第1の従来例にあっては過渡状態を検出
するために多くの検出手段及び其の処理回路を必要とし
ていたため装置構成が複雑になる不都合があった。更に
は、過渡状態の検出に際しても、機関冷却水温等の変動
を通していわば間接的に検出していたため検出精度も十
分とは伝い難く、又フィードハック制御ではないため其
の補正効果に多くを期待し得ないものであった。それ故
事制御値は精緻に決定しておかざるを得す、補正は副次
的に使用する程度であったため、必然的に主制御値マツ
プが増大し其れを格納するために大容量のメモリを備え
ざるを得ないと云う欠点があった。更に、過渡状態の検
出も間接的であったため、過渡応答性においても十分と
は伝い難く、ドライバビリティへの配慮も十分とは云い
難いものであった。
(Problems to be Solved by the Invention) However, in the first conventional example, a large number of detection means and their processing circuits are required to detect a transient state, which has the disadvantage of complicating the device configuration. there were. Furthermore, when detecting transient conditions, the detection accuracy is not sufficient because it is detected indirectly through changes in engine cooling water temperature, etc., and since it is not feed-hack control, much is expected from its correction effect. It was something I couldn't get. Therefore, the control values had to be precisely determined, and corrections were only used as a secondary function, so the main control value map inevitably increased and a large capacity memory was required to store it. The disadvantage was that it had to be prepared. Furthermore, since the detection of transient states was also indirect, it was difficult to say that the transient response was sufficient, and it was difficult to say that sufficient consideration was given to drivability.

又、第2の従来例にあっても過渡状態の検出に多数の検
出手段及び其の処理回路が必要である点で同様の不都合
が免れ得なかった。又、機関の燃焼状態を直接検出して
目標角と現実の圧力最大角の偏差を求め其の偏差を解消
方向に制御値を決定するフィードバック制御は採用して
いるが、其の偏差解消、特に過渡状態での偏差解消をド
ライバビリティを損なうことなく、どのように行うかに
ついては同等示唆するものではなかった。又、過渡状態
時頻発し易いノンキングについても同等対策を備えるも
のではなかった。
Further, the second conventional example also suffers from similar disadvantages in that a large number of detection means and their processing circuits are required to detect a transient state. In addition, feedback control is used to directly detect the combustion state of the engine, find the deviation between the target angle and the actual maximum pressure angle, and determine the control value in the direction of eliminating the deviation. There was no equivalent suggestion as to how to eliminate the deviation in a transient state without impairing drivability. Furthermore, no equivalent countermeasures were provided for non-king, which tends to occur frequently during transient conditions.

従って、本発明の目的は、従来例の前記した欠点を解消
し、機関の気筒内圧力を検出して機関の燃焼状態を直接
検知してフィードバック制御すると共に、特に其の圧力
変動を測定して其れのみによって機関運転の過渡状態の
検出を可能とし、因って本方法を実現する際検出手段及
び其の処理回路の個数を低減化し、燃焼状態から検出す
ることによって過渡状態をより正確に把握することが出
来、従ってより過渡応答性及びドライバビリティの向上
する内燃機関の過渡時制御方法を提供することにある。
Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks of the conventional example, to detect the internal cylinder pressure of the engine, directly detect the combustion state of the engine, and perform feedback control, and in particular, to measure the pressure fluctuation. This alone makes it possible to detect transient states of engine operation, and therefore, when implementing this method, the number of detection means and their processing circuits can be reduced, and by detecting from the combustion state, transient states can be detected more accurately. Therefore, it is an object of the present invention to provide a method for controlling an internal combustion engine during a transient period, which can improve transient response and drivability.

更には、燃焼状態を直接検出して圧力最大角θpmax
を目標値に集束せしめることによって所謂M、B、Tに
一段と接近した点火を可能にして出力向上を図ると共に
、併せて過渡状態時及びM。
Furthermore, the maximum pressure angle θpmax can be determined by directly detecting the combustion state.
By focusing on the target value, it is possible to ignite closer to so-called M, B, and T, thereby improving the output, and also in a transient state and M.

B、T、付近点火時頻発し易いノッキングをも正確に検
出して回避するべく制御することも可能にした内燃機関
の過渡時制御方法を提供することを目的とする。
It is an object of the present invention to provide a transient control method for an internal combustion engine, which also makes it possible to accurately detect and control knocking, which tends to occur frequently when ignition is near B, T, and so on.

(問題点を解決するための手段) 上記の目的を達成するために本発明は第1図に示す如く
、気筒内圧力を制御値決定の少なく共一つのパラメータ
として用いる内燃機関の制御方法において、一の気筒の
着火の前後の圧力上昇率を算出して両者の比率を求め(
ステップ10)、次いで同一乃至は別の気筒につき同様
の比率を求め(ステップ12)、次いで其れらの比率の
変動率を求め、該変動率が所定範囲を超えるときは機関
運転が過渡状態にあると判断して圧力最大角目標値を定
常運転状態時より所定量遅角方向に変更すると共に、次
回点火すべき気筒の点火時期を前記所定量より少ない量
遅角補正する(ステップ14.16)如く構成したもの
である。
(Means for Solving the Problems) To achieve the above object, the present invention provides an internal combustion engine control method using cylinder pressure as at least one parameter for determining control values, as shown in FIG. Calculate the rate of pressure increase before and after the ignition of the first cylinder and find the ratio of the two (
Step 10), then find similar ratios for the same or different cylinders (step 12), then find the fluctuation rate of those ratios, and if the fluctuation rate exceeds a predetermined range, the engine operation is in a transient state. If it is determined that there is, the maximum pressure angle target value is changed to a predetermined amount of retardation compared to the steady state of operation, and the ignition timing of the cylinder to be ignited next time is retarded by an amount smaller than the predetermined amount (step 14.16). ).

(実施例) 以下、添付図面に即して本発明の詳細な説明する。尚、
便宜上本発明に係る方法を実現する装置について、第2
図ブロック図及び第3図波形図を参照して説明する。
(Example) Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. still,
For convenience, the device for realizing the method according to the present invention will be described in the second section.
This will be explained with reference to the block diagram in Figure 3 and the waveform diagram in Figure 3.

第2図において、符号20は内燃機関を示し、実施例の
場合4気筒を備える。各気筒には其の燃焼室を臨む位置
に気筒内圧力を検出する圧電型センサ22を配設する。
In FIG. 2, reference numeral 20 indicates an internal combustion engine, which in this embodiment has four cylinders. A piezoelectric sensor 22 for detecting the cylinder pressure is disposed in each cylinder at a position facing the combustion chamber thereof.

該センサ出力は、電荷−電圧変換器又は高インピーダン
ス回路(共に図示せず)を介してローパス・フィルタ2
4に入力される。該フィルタのカットオフ周波数は、ノ
ッキング周波数成分よりも高く設定し、ノンキング時の
高周波数も検出可能とする。ローパス・フィルタ24の
次段には、マルチプレクサ26が接続される、該マルチ
プレクサは後述の制御ユニット42の指令によりフィル
タ出力を気筒爆発順に次段に選択的に人力せしめる。該
マルチプレクサの次段にはピークホールド回路28が接
続され、其の出力をピークホールドして第3図に示す如
(出力する。ピークホールド回路28の次段には、A/
D変換回路30が接続される。該変換回路は、ピークホ
ールド回路より其の出力を入力し、所定の単位時間乃至
角度ごとにデジタル変換し、そのデータ最大値が圧力最
大値P maxを示す。或いは、ピークホールドリセッ
ト以前の所定のクランク角度時、デジタル変換し、該デ
ジタル値を圧力最大値P mayとしても良い(第3図
)。
The sensor output is passed through a low-pass filter 2 via a charge-to-voltage converter or high impedance circuit (both not shown).
4 is input. The cutoff frequency of the filter is set higher than the knocking frequency component, so that high frequencies during non-king can also be detected. A multiplexer 26 is connected to the next stage of the low-pass filter 24, and the multiplexer selectively transmits the filter output to the next stage in the order of cylinder explosion according to a command from a control unit 42, which will be described later. A peak hold circuit 28 is connected to the next stage of the multiplexer, and holds its output at a peak and outputs it as shown in FIG.
A D conversion circuit 30 is connected. The conversion circuit inputs the output from the peak hold circuit, converts it into digital data every predetermined unit time or angle, and the maximum value of the data indicates the maximum pressure value P max. Alternatively, it is possible to perform digital conversion at a predetermined crank angle before peak hold reset, and use the digital value as the maximum pressure value P may (FIG. 3).

又、ピークホールド回路28の次段には、A/D変換回
路30と並列に比較回路32が接続され、更に其の後段
にパルスダウンエツジ検出回路34が接続される。比較
回路32は、其の反転入力端子には前記ピークホールド
回路出力が入力されると共に、其の非反転入力端子側に
は前記マルチプレクサ出力が直接入力され、両者の入力
値に微差が与えであることから圧力最大値発生位置にお
いてパルス信号を出力する如く構成する(第3図)。尚
、第3図に示す如く、該パルスは、ノッキングが発生し
ない場合には最大値発生位置で原則として1個のパルス
を(同図(a))、ノッキングが発生して高周波成分が
重畳した場合には該位置のみならずセンサ(マルチプレ
クサ)出力がピークホールド出力を超える度にその都度
パルスを出力し、結果的に複数個のパルスを出力する如
く (同図(b))構成する。又、パルスダウンエツジ
検出回路34は、前記比較回路出力パルスの立ち下がり
エツジタイミングを把らえて後述の回路が処理し易い様
所定時間幅のパルスを出力する。従って、基準位置、例
えばTDC位置よりパルス発生位置までの時間を計測し
てその計測値Tpmaxを角度に変換すれば圧力最大角
θpmaxが算出可能であり、又発生パルスの数を計数
すればノンキング発生の有無が検出可能である。尚、同
図(C)の如く、センサが故障した場合は、時間計測が
終了してもパルスは生じない。
A comparison circuit 32 is connected in parallel with the A/D conversion circuit 30 at the next stage of the peak hold circuit 28, and a pulse down edge detection circuit 34 is connected at the subsequent stage. The comparator circuit 32 has an inverting input terminal to which the peak hold circuit output is input, and a non-inverting input terminal to which the multiplexer output is directly input, so that a slight difference cannot be given to the input values of the two. Therefore, it is configured to output a pulse signal at the position where the maximum pressure value occurs (Fig. 3). As shown in Figure 3, the pulse is, in principle, one pulse at the maximum value generation position when knocking does not occur (Figure 3(a)), and when knocking occurs and high frequency components are superimposed. In such a case, a pulse is output not only at that position but also every time the sensor (multiplexer) output exceeds the peak hold output, and as a result, a plurality of pulses are output (as shown in FIG. 2(b)). Further, the pulse down edge detection circuit 34 detects the falling edge timing of the output pulse of the comparator circuit and outputs a pulse of a predetermined time width so that it can be easily processed by a circuit to be described later. Therefore, by measuring the time from the reference position, for example, the TDC position, to the pulse generation position and converting the measured value Tpmax into an angle, the maximum pressure angle θpmax can be calculated, and by counting the number of generated pulses, non-king can occur. The presence or absence of can be detected. Note that, as shown in FIG. 3C, if the sensor fails, no pulse is generated even after time measurement is completed.

前記内燃機関20の回転部近傍には、クランク角センサ
36が設けられ、所定クランク角度、例えば4気筒の爆
発が第1、第3、第4、第2気筒の順で一巡する720
度毎に気筒判別信号を、又180度毎に各気筒のTDC
位五においてTDC信号を、更に該TDC信号を細分し
た所定角度毎に角度計測用信号を出力する。従って、気
筒判別信号発生後TDC信号を計数することにより気筒
を判別することが出来る。尚、該角度計測用信号より機
関回転数も算出することが出来る。
A crank angle sensor 36 is provided near the rotating part of the internal combustion engine 20, and detects a predetermined crank angle, e.g., 720, when the explosion of four cylinders goes around in the order of the first, third, fourth, and second cylinders.
cylinder discrimination signal every 180 degrees, and TDC of each cylinder every 180 degrees.
A TDC signal is output at the fifth position, and angle measurement signals are output for each predetermined angle obtained by subdividing the TDC signal. Therefore, by counting the TDC signal after the cylinder discrimination signal is generated, the cylinder can be discriminated. Incidentally, the engine rotation speed can also be calculated from the angle measurement signal.

尚、前記気筒判別信号は圧力センサから得られる所定の
振幅値を基に所要の検知信号を得る様構成しても良い。
Note that the cylinder discrimination signal may be configured to obtain a required detection signal based on a predetermined amplitude value obtained from a pressure sensor.

又、該内燃機関20には、機関の負荷状態を検出するセ
ンサとして、負圧センサ38が内燃機関のスロットル弁
40とインテーク・マニホルド(図示せず)の間の適宜
位置に設けられる。該センサをもって前記クランク角セ
ンサと共に機関の運転状態を検出して圧力センサ異常時
のバンクアップとすると共に、後述の如く基本点火時期
演算にも所望すれば使用可能とする。
Further, the internal combustion engine 20 is provided with a negative pressure sensor 38 at an appropriate position between the throttle valve 40 of the internal combustion engine and an intake manifold (not shown) as a sensor for detecting the load state of the engine. This sensor, together with the crank angle sensor, detects the operating state of the engine and performs bank-up when the pressure sensor is abnormal, and can also be used for basic ignition timing calculation as described later, if desired.

該センサ群36及び38、A/D変換回路30並びにパ
ルスダウンエツジ検出回路34の次段には、制御ユニッ
ト42が接続され、それらの出力を入力する。該制御ユ
ニットは、実施例の場合、入出力インタフェース42a
、CPU42b、メモリ42C及びクロック42dより
なるマイクロ・コンピュータで構成する。尚、該CPU
には、前記パルス・カウンタ及びクロック42dのパル
スを計数して時間計測するタイマ・カウンタ、並びにノ
ッキング制御用に点火サイクルを計数するサイクル・カ
ウンタ並びにノッキング終息後の点火数を計数する進角
カウンタを備える(図示せず)。該制御ユニットの次段
には、点火装置44が接続され、其の出力を受けて機関
燃焼室内の混合気に点火プラグ(図示せず)を介して着
火する。又、前記ピークホールド回路28のリセット動
作及び、クランク角センサ36の入力を受は気筒状態を
識別しマルチプレクサ26にゲートの選択を該ユニット
より指令する。
A control unit 42 is connected to the next stage of the sensor groups 36 and 38, the A/D conversion circuit 30, and the pulse down edge detection circuit 34, and inputs their outputs. In the case of the embodiment, the control unit has an input/output interface 42a.
, a CPU 42b, a memory 42C and a clock 42d. In addition, the CPU
includes a timer counter that counts the pulses of the pulse counter and the clock 42d to measure time, a cycle counter that counts ignition cycles for knocking control, and an advance angle counter that counts the number of ignitions after the knocking ends. (not shown). An ignition device 44 is connected to the next stage of the control unit, and receives its output to ignite the air-fuel mixture in the engine combustion chamber via a spark plug (not shown). Further, upon receiving the reset operation of the peak hold circuit 28 and the input of the crank angle sensor 36, the unit identifies the cylinder state and instructs the multiplexer 26 to select a gate.

続いて、第3図波形図を参照しつ\第4図及び第5図フ
ロー・チャートを中心に、本発明に係る制御方法の実施
例を説明する。
Next, an embodiment of the control method according to the present invention will be described with reference to the waveform diagram in FIG. 3 and the flow charts in FIGS. 4 and 5.

先ず、ステップ50において圧力センサ出力をBTDC
所定角度、例えば150度から取込み始める。
First, in step 50, the pressure sensor output is converted to BTDC.
Capturing starts from a predetermined angle, for example 150 degrees.

続いて、ステップ52において、気筒を判別し、気筒ア
ドレスC/ A = nを付して気筒を特定する。これ
は、前述のクランク角センサ信号の気筒判別信号及びT
DC信号の到着により行なう。
Subsequently, in step 52, the cylinder is determined and a cylinder address C/A=n is assigned to specify the cylinder. This is the cylinder discrimination signal of the above-mentioned crank angle sensor signal and T
This is done by the arrival of a DC signal.

本制御が気筒毎に行なうのを特徴とするためである。This is because this control is characterized by being performed for each cylinder.

該T、DC信号の到着と同時に、ステップ54において
前記のタイマ・カウンタ(TC)及びパルス・カウンタ
(PC)をスタートさせ、第3図に示す時間計測及びパ
ルス計数を開始する。
Simultaneously with the arrival of the T and DC signals, the timer counter (TC) and pulse counter (PC) are started in step 54, and time measurement and pulse counting shown in FIG. 3 are started.

続いて、ステップ56においてATDC所定角度、例え
ば30度経過後、両カウンタの計数値を参照する。第3
図に示す如く、タイマ・カウンタが圧力最大値発生位置
を充分超えて時間計測を終わったにもかかわらずパルス
・カウンタ値が“0”であってパルスが発生していない
場合には圧力センサが異常と判断し得る(第3図(C)
)。
Subsequently, in step 56, after a predetermined ATDC angle, for example 30 degrees, has elapsed, the count values of both counters are referred to. Third
As shown in the figure, if the pulse counter value is “0” and no pulse is generated even though the timer counter has sufficiently exceeded the maximum pressure value generation position and time measurement has finished, the pressure sensor is It can be judged as abnormal (Figure 3 (C)
).

然らざる場合はステップ58においてパルス・カウンタ
値が所定値を超えているか否か、ノッキング発生の有無
を判断する。尚、該所定値は通常“1”とするが、ノイ
ズ等で正常燃焼でも複数個のパルスが発生する恐れも考
慮して“2”以上の値としても良い。
If not, it is determined in step 58 whether the pulse counter value exceeds a predetermined value and whether or not knocking has occurred. Note that the predetermined value is normally set to "1", but may be set to a value of "2" or more in consideration of the possibility that a plurality of pulses may be generated even during normal combustion due to noise or the like.

パルス・カウント値が所定値より小さい場合にはノッキ
ング発生せずと判断し、ステップ60において圧力最大
角θρmaxを求める。これは圧力最大値発生位置まで
の経過時間Tρmaxに変換値を乗ずれば良い。該変換
値は、((回転数rpmX360度)760秒)で求め
る。
If the pulse count value is smaller than a predetermined value, it is determined that knocking has not occurred, and the maximum pressure angle θρmax is determined in step 60. This can be done by multiplying the elapsed time Tρmax to the position where the maximum pressure value occurs by the converted value. The converted value is obtained by ((rotation speed rpm x 360 degrees) 760 seconds).

続いて、ステップ62において爆発圧縮率比ΔPEXP
 /COMPを演算するが、これはサブ・ルーチンとし
て第5図に示す。以下、第6図も参照しつつこのサブ・
ルーチンについて説明する。最初に概略的に説明すると
、第6図に示す如く、着火前の任意の地点の圧力値p1
及び其処から微少角度区間θ1離れた地点の圧力値p2
、及び着火後の任意の地点の圧力値p3及び其処から微
少角度区間θ2離れた地点の圧力値p4を測定し、圧力
上昇率を夫々求めた上で両者の比を算出する。続いて別
の(乃至は同一の)点火気筒につき同様の比を算出し、
2つの比の変動率を算出する。該変動率が“1士所定不
感帯領域”内にないときは過渡状態にあると判断して遅
角補正するものである。即ち、発明者は上記変動率と機
関運転の過渡状態の間に因果関係を見出し、本発明をな
したものである。以下、説明すると、 先ず、ステップ62aにおいて圧力値pl−p4を読み
出して測定する。
Subsequently, in step 62, the explosion compression ratio ΔPEXP
/COMP is calculated, which is shown in FIG. 5 as a subroutine. Below, while also referring to Figure 6, this sub-
Explain the routine. First, to explain roughly, as shown in FIG. 6, the pressure value p1 at an arbitrary point before ignition
and the pressure value p2 at a point a minute angle section θ1 away from there.
, and a pressure value p3 at an arbitrary point after ignition, and a pressure value p4 at a point a minute angle section θ2 away from the ignition, and after determining the respective pressure increase rates, calculate the ratio between the two. Then calculate the same ratio for another (or the same) ignition cylinder,
Calculate the rate of change of the two ratios. When the rate of variation is not within the "predetermined dead zone region", it is determined that the system is in a transient state, and the angle is retarded. That is, the inventor discovered a causal relationship between the above fluctuation rate and the transient state of engine operation, and accomplished the present invention. The following will explain: First, in step 62a, the pressure value pl-p4 is read out and measured.

続いて、ステップ62bにおいて着火前、即ち圧縮状態
の圧力上昇率たる圧縮圧変化率Δpc。
Subsequently, in step 62b, the compression pressure change rate Δpc, which is the pressure increase rate before ignition, that is, in the compressed state.

MPと、着火後の爆発状態の圧力上昇率たる爆発圧変化
率ΔP EXP及び両者の比PEXP /COMPを以
下の通り算出する。
MP, the rate of change in explosion pressure ΔP EXP, which is the rate of pressure increase in an explosive state after ignition, and the ratio of the two, PEXP /COMP, are calculated as follows.

d  (P2−PL) ΔP COMP =□ dθ1 d  (P4−P3) ΔPEXP=□ dθ2 ΔP EXP PEXP  /COMP=  − ΔPCOMP 尚、前記着火前の地点は、吸入バルブ全閉後のピストン
上昇に伴う圧縮時のどの地点を選択しても良い。又、着
火後の場合もTDC位置及び圧力最大角θpIIlaX
の間の範囲内ならば何処でも良い。但し、TDC位置及
び最大角θpmax  は、夫々TDC信号及び圧力最
大値発生位置信号(パルス)が得られるので、これらの
地点を選択すると便宜である。尚、着火前の地点も一旦
選択した後は、前記クランク角センサ出力等で該地点を
検索すること云うまでもない。本制御は気筒毎に行なう
ので、演算値は、PEXP /COMPnとして特定し
、記憶保持する。かかる作業を点火気筒毎に次々行なっ
て同種の比を演算、記憶する。
d (P2-PL) ΔP COMP =□ dθ1 d (P4-P3) ΔPEXP=□ dθ2 ΔP EXP PEXP /COMP= - ΔPCOMP Note that the point before ignition is at the time of compression as the piston rises after the intake valve is fully closed. You can choose any point. Also, even after ignition, the TDC position and maximum pressure angle θpIIlaX
Anywhere within the range is fine. However, it is convenient to select these points for the TDC position and maximum angle θpmax since the TDC signal and the maximum pressure value generation position signal (pulse) can be obtained, respectively. It goes without saying that once the point before ignition is selected, the point is searched for using the crank angle sensor output or the like. Since this control is performed for each cylinder, the calculated value is specified as PEXP/COMPn and stored. This operation is performed one after another for each ignition cylinder, and the same type of ratio is calculated and stored.

続いて、ステップ62cにおいて1点火前の別の爆発気
筒及び4点火前、即ち前サイクルの同一気筒の演算値を
読み出す。尚、初回は適宜初期設定する。
Subsequently, in step 62c, the calculated values of another explosion cylinder before one ignition and the same cylinder four times before ignition, that is, in the previous cycle, are read out. Note that initial settings are made as appropriate for the first time.

続いて、ステップ62dにおいて、今次気筒の比率との
変動率を求める。尚、1点火前の比率との変動率をPE
XP/COMPA、4点火前の比率との変動率をPEX
P /COMPBとする。
Subsequently, in step 62d, the fluctuation rate with respect to the ratio of the current cylinder is determined. In addition, the fluctuation rate from the ratio before one ignition is PE
XP/COMPA, PEX the fluctuation rate with the ratio before 4 ignition
Let P/COMPB.

PEXP /COMPn PEXP /COMPA − PEXP /COMPn−1 PEXP /COMPn PEXP /COMPB = PEXP /COMPn−4 続いて、ステップ62eにおいて、変動率PEXP /
COMPAが″1+所定不感帯領域”より大きいか否か
判断し、大きい場合はステップ62fにおいて他の変動
率PEXP /COMPBも“1+所定不感帯領域”よ
り大きいか否か判断する。該不感帯領域は、“0.1 
 ”の如く適宜設定する。ステップ62fにおいても大
きいと判断された場合は、気筒間の変動率が比較的大き
いと判断出来機関運転が過渡状態にあると判断出来るの
で、ノッキング及び排ガス組成悪化を回避するため、遅
角方向に補正する。このように、気筒間の変動をみるに
も、1点火前の気筒とのみならず4点火前の気筒とも比
較し両者とも同相であって始めて過渡状態と判断するの
で、一過性的な変動を誤検出することがない。又、着火
の前後の変化率も考慮することによって機関回転数が急
変しても判断誤差が生じ難い。
PEXP /COMPn PEXP /COMPA - PEXP /COMPn-1 PEXP /COMPn PEXP /COMPB = PEXP /COMPn-4 Subsequently, in step 62e, the fluctuation rate PEXP /
It is determined whether COMPA is larger than "1+predetermined dead band area", and if it is larger, it is determined in step 62f whether the other fluctuation rate PEXP/COMPB is also larger than "1+predetermined dead band area". The dead zone area is “0.1
If it is determined to be large in step 62f, it can be determined that the fluctuation rate between cylinders is relatively large, and it can be determined that the engine operation is in a transient state, thereby avoiding knocking and deterioration of the exhaust gas composition. In this way, when looking at fluctuations between cylinders, we compare not only the cylinder before one ignition, but also the cylinder before four ignitions, and only when they are in the same phase does it become a transient state. Since the engine speed is determined, there will be no false detection of temporary fluctuations.Furthermore, since the rate of change before and after ignition is also taken into consideration, errors in determination are unlikely to occur even if the engine speed changes suddenly.

過渡状態と判断された場合は、続いてステップ62gに
おいて圧力最大角目標値θpOを第1所定角遅角側へ設
定し、前記の如くノッキング等に備える。従って、この
第1所定角はノッキング等を未然に防止する程度の量適
宜決定する。
If it is determined that the state is a transient state, then in step 62g, the pressure maximum angle target value θpO is set to the first predetermined angle retard side to prepare for knocking or the like as described above. Therefore, this first predetermined angle is appropriately determined to an extent that prevents knocking and the like.

続いて、ステップ62hにおいて、次回点火すべき気筒
の補正量θtとして、第2所定角だけ遅角側に設定する
。この第2所定角も適宜設定するものであるが、本発明
の特徴として該第2所定角は、前記第1所定角より少な
い値とする。従って、ステップ621に於いて点火補正
角θtが第1所定角より大きい場合は、第1所定角に設
定されるものである(ステップ62m)。即ち、後述の
如く、本発明においては過渡状態が検出された場合目標
角を遅角側へ変更する結果因って生ずる偏差を解消すべ
く補正を行なう必要が生ずるが、。
Subsequently, in step 62h, the correction amount θt for the cylinder to be ignited next time is set to the retard side by a second predetermined angle. This second predetermined angle is also set appropriately, but as a feature of the present invention, the second predetermined angle is set to a value smaller than the first predetermined angle. Therefore, if the ignition correction angle θt is larger than the first predetermined angle in step 621, it is set to the first predetermined angle (step 62m). That is, as will be described later, in the present invention, when a transient state is detected, it is necessary to perform correction in order to eliminate the deviation that occurs as a result of changing the target angle to the retarded side.

次サイクルの当該気筒において偏差分だけ一度に補正す
ると点火時期の急変によってドライバビリティが悪化す
るので、それを防止すべく次の点火気筒において部分的
に補正し、該次の点火気筒においても過渡状態が検出さ
れるであろうから次の次の点火気筒においても同様に部
分的な補正を与え、そのように次々と部分的な補正を加
えて4点火後の同一気筒で漸く目標角へ略一致させる如
くしたものである。従って、該第2所定角は、4点火後
に目標角へ到達する程度の値を適当に設定する。尚、フ
ロー・チャートにおいて“−”は遅角を、“+”は進角
を意味すると約束する。
If the deviation is corrected in the relevant cylinder in the next cycle at once, the drivability will deteriorate due to sudden changes in the ignition timing, so to prevent this, partial correction is made in the next ignition cylinder, and the transient state is also maintained in the next ignition cylinder. Since this will be detected, partial correction is applied in the same way to the next ignition cylinder, and by adding partial corrections one after another in this way, the same cylinder after 4 ignitions finally almost matches the target angle. It was done as if to make it happen. Therefore, the second predetermined angle is appropriately set to a value such that the target angle is reached after four ignitions. Note that in the flow chart, "-" means a retard angle, and "+" means an advance angle.

前記ステップ62eにおいて否定された場合は、ステッ
プ62 i ニおイテPEXP /COMPAが“1−
所定不感帯領域”より小さいか否か判断し、小さい場合
ステップ62jにおいて他の変動率PEXP /COM
PBも″1−不感帯領域”より小さいか否か判断し、小
さい場合変動率が比較的大きいことを意味するので、同
様に遅角補正する。
If the answer in step 62e is negative, step 62i indicates that PEXP/COMPA is “1-
It is determined whether the fluctuation rate PEXP/COM is smaller than a predetermined dead zone area.
It is also determined whether PB is smaller than "1-dead zone area", and if it is smaller, it means that the fluctuation rate is relatively large, so the retarding angle is corrected in the same way.

尚、ステップ62f、62i、62jで否定された場合
は、変動率が小さいものとして前記圧力最大角目標値θ
poは初期設定値に設定され(62p)、点火補正角θ
tに遅角補正値が無い場合、補正を加えないものとし、
又所定遅角補正値が有る場合は、点火気筒毎に第2所定
角づつ徐々に進角し、点火時期急変によるドライバビリ
ティ悪化を避ける様にする(ステップ62p、62n、
620.62k)。
If the results of steps 62f, 62i, and 62j are negative, the pressure maximum angle target value θ is assumed to have a small fluctuation rate.
po is set to the initial setting value (62p), and the ignition correction angle θ
If t does not have a retard angle correction value, no correction shall be added,
If there is a predetermined retard correction value, the ignition angle is gradually advanced by a second predetermined angle for each ignition cylinder to avoid deterioration of drivability due to sudden changes in ignition timing (steps 62p, 62n,
620.62k).

再び第4図に戻ると、ステップ62のサブ・ルーチンの
後、ステップ64において、圧力最大角目標値θpoと
ステップ60で演算した実際の圧力最大角θpmaxを
比較して偏差Δθpmaxを求める。尚、前記サブ・ル
ーチンにおいて目標値が補正された場合は、補正後の目
標値をθpoとする。
Returning to FIG. 4 again, after the subroutine of step 62, in step 64, the maximum pressure angle target value θpo and the actual maximum pressure angle θpmax calculated in step 60 are compared to determine the deviation Δθpmax. Note that if the target value is corrected in the subroutine, the corrected target value is set to θpo.

続いて、ステップ66において、ノソキング補正MKN
Rが“0”でないか否か、即ちノンキング補正量の残量
を前記メモリ42cを参照して判断し、残量が“0”で
あれば次のステップ68において偏差Δθpmaxが目
標値θpo遅れか進みかを判断する。
Subsequently, in step 66, nosoking correction MKN
It is determined whether R is not "0", that is, the remaining amount of non-king correction amount is determined by referring to the memory 42c, and if the remaining amount is "0", in the next step 68, it is determined whether the deviation Δθpmax is behind the target value θpo. Decide whether to proceed.

遅れであれば、偏差補正量θpcは前回のθpc(初期
設定“0”)に適宜設定した第3所定角だけ加えて進角
せしめた値としくステップ70)、進みであれば第3所
定角減算して遅角せしめた値としくステップ72)、偏
差がなければ前回の値のままに止める。(ステップ74
)。尚、この第3所定角を比較的小さく設定すれば偏差
を徐々に解消することになり、サブ・ルーチンにおける
と同様ドライバビリティが向上する利点を備える。
If it is a delay, the deviation correction amount θpc is a value obtained by adding a third predetermined angle appropriately set to the previous θpc (initial setting "0") to advance the angle (step 70); The value is subtracted and retarded (step 72), and if there is no deviation, the previous value is left unchanged. (Step 74
). Incidentally, if this third predetermined angle is set to a relatively small value, the deviation will be gradually eliminated, which has the advantage of improving drivability as in the subroutine.

尚、前述の如く減算は遅角補正を意味し、又加算は進角
補正を意味する。
As mentioned above, subtraction means retard angle correction, and addition means advance angle correction.

尚、前記ステップ58においてノッキングが検出された
場合には直ちにノッキング補正角KNR(初期設定“O
”)から適宜設定した第4の所定角を減算した値遅角せ
しめ(ステップ76)、遅角量が第4所定角より大きく
適宜設定した第5所定角に達するまで遅角しくステップ
78.80)、偏差補正量θpcは今回点火時の値とす
る(ステップ82)。又、ステップ6Gにおいてノンキ
ング補正残量がある場合には、ノンキング終息後期定時
間乃至点火歓待って前記第4所定角づ\進角側に戻しく
ステップ84.86)、八〇pmaxが目標値に対して
進みの際は進角側に戻す必要が無いのでθpcを第3所
定角だけ遅角せしめ(ステップ88.72)、遅れの際
は補正量θpcは不変とする(ステップ82)。尚、ノ
ッキング終息後の所定時間(点火数)の計測は、前記制
御ユニット内のCPUのサイクル・カウンタ及び進角カ
ウンタを使用する。
Incidentally, if knocking is detected in step 58, the knocking correction angle KNR (initial setting "O
”) by subtracting an appropriately set fourth predetermined angle (step 76), and retard the angle until the retard amount reaches a suitably set fifth predetermined angle larger than the fourth predetermined angle (steps 78 and 80). ), the deviation correction amount θpc is set to the value at the current ignition (step 82).In addition, if there is a non-king correction amount remaining in step 6G, the fourth predetermined angle is Step 84.86) to return to the advance angle side. When 80pmax is ahead of the target value, there is no need to return it to the advance side, so θpc is retarded by a third predetermined angle (Step 88.72). ), in the case of a delay, the correction amount θpc is left unchanged (step 82).The predetermined time (number of ignitions) after the end of knocking is measured using the cycle counter and advance angle counter of the CPU in the control unit. do.

続いて、ステップ90において前記補正量θpcとノッ
キング補正量KNRを加算した値をフィードバック補正
量θfとする。尚、前記のセンサ異常と判断された場合
には(ステップ56)、適宜設定した第6所定角遅角せ
しめた値をフィードバック補正量とする(ステップ92
)。
Subsequently, in step 90, the sum of the correction amount θpc and the knocking correction amount KNR is set as the feedback correction amount θf. Incidentally, if it is determined that the sensor is abnormal (step 56), the value obtained by retarding the sixth predetermined angle, which is set as appropriate, is set as the feedback correction amount (step 92).
).

続いて、ステップ94において、かく求めたフィードバ
ック補正量θfを同一気筒(気筒アドレス=n)の次サ
イクルの補正値と使用する様、一旦記憶(乃至既に記憶
されている場合は書替)スル。従って、前述の手順で求
めたノンキング補正量を含む補正量は全て当該気筒にの
み反映されることになるので、気筒毎の格別の燃焼状態
に応じた制御が可能となる。
Next, in step 94, the feedback correction amount θf thus obtained is temporarily stored (or rewritten if already stored) so as to be used as the correction value for the next cycle for the same cylinder (cylinder address=n). Therefore, all the correction amounts including the non-king correction amount obtained in the above-described procedure are reflected only in the relevant cylinder, so that control can be performed according to the particular combustion state of each cylinder.

続いて、ステップ96において次に点火すべき気筒(気
筒アドレス=n+l)の記憶されていたフィードバック
補正量θfを読出しく初期設定“0”)、当該気筒の点
火を指令する。その際、点火時期は、基本点火時期+θ
f+θLで指令される(ステップ98)。尚、この“θ
f ”及びステップ90での“KNR”はそれ自体質の
値を意味するので、結果的に減算、即ち遅角を意味する
ことになる。このθfは前ステップで読出された当該気
筒用フィードバック補正量であり、θfは第5図サブ・
ルーチンで求めた過渡状態時補正量である。従って、該
補正量θLのみが気筒を超えて補正量として使用される
のであり、このように圧力目標値補正量より小量の補正
量を次の気筒に反映させることにより、過渡時において
も段階的に遅角させることになり、ドライバビリティが
向上する。かく段階的な遅角であっても、気筒内圧力を
検出して燃焼状態を直接監視することによって過渡状態
を検出する構成とした結果、其の検出が比較的迅速であ
るので、同等支障ないものであり、又、ノッキング制御
も併せて可能とした結果、過渡時に生じ易いノッキング
対策も十分行なったものである。
Subsequently, in step 96, the stored feedback correction amount θf of the cylinder to be ignited next (cylinder address=n+l) is read out (initial setting "0"), and the ignition of the cylinder is commanded. At that time, the ignition timing is the basic ignition timing + θ
It is commanded by f+θL (step 98). Furthermore, this “θ
f" and "KNR" in step 90 themselves mean quality values, and as a result, they mean subtraction, that is, retardation. This θf is the feedback correction for the cylinder in question read in the previous step. θf is the sub-value in Figure 5.
This is the amount of correction during a transient state determined by a routine. Therefore, only the correction amount θL is used as a correction amount beyond the cylinder, and by reflecting a correction amount smaller than the pressure target value correction amount in the next cylinder in this way, even during transient drivability is improved. Even with such a stepwise retardation, the transient state is detected relatively quickly by detecting the cylinder pressure and directly monitoring the combustion state, so there is no problem. Moreover, as a result of making it possible to control knocking, sufficient countermeasures against knocking, which is likely to occur during transient periods, are taken.

尚、この基本点火時期演算は、気筒内圧力のみから行っ
て前記圧力最大角目標角θpoを算出しても良く、或い
は前記クランク角センサ及び負圧センサより機関の運転
状態を検出して行っても良い。機関回転数−負荷から基
本点火時期を演算する場合であっても、点火した後現実
の圧力最大角と目標角との偏差を検出し、それによる補
正角で回転数−負荷のマツプ値を変更して次の点火に備
え、これを順次繰り返して目標角へフィードバソり制御
するので、回転数−負荷マツプ値は小量で良(、従って
本方法を実現する装置は小容量のメモリを使用すれば足
る利点を備える。
Note that this basic ignition timing calculation may be performed only from the cylinder pressure to calculate the maximum pressure angle target angle θpo, or may be performed by detecting the operating state of the engine from the crank angle sensor and the negative pressure sensor. Also good. Even when calculating basic ignition timing from engine speed and load, the deviation between the actual maximum pressure angle and the target angle is detected after ignition, and the speed-to-load map value is changed using the corrected angle. In preparation for the next ignition, this is repeated sequentially to perform feed-back control to the target angle, so the rotation speed-load map value only needs to be small (therefore, the device implementing this method needs to use a small memory capacity). It has sufficient advantages.

(発明の効果) 本発明は気筒内圧力を検知して其の圧力変化から機関運
転の過渡状態を検出すると共に其の圧力最大角を検出し
て目標値との偏差を修正する如く構成したので、過渡時
において最適な制御が出来、燃焼状態を監視して制御す
る結果点火時期をM、B、T、付近に一段と接近させる
ことが出来て出力を向上させることが出来る。又、本方
法を実現する場合でも過渡状態を検出するセンサ及び処
理回路の個数を低減出来る利点を有する。又、基本点火
時期は気筒内圧力のみから乃至は従来と同様機関回転数
と負荷から演算することも可能であり、機関回転数−負
荷から検出する場合であっても気筒燃焼状態も併せて検
出して目標角へ集束する様フィードバンク制御する結果
、主制御値マツプは極めて粗いもので足り、本方法を実
現する際小容量のメモリで装置を構成出来る利点を備え
る。更にはノッキング制御も同時に可能とした利点を有
すると共に、過渡状態時補正量を段階的としたので、ド
ライバビリティにも優れた利点を備える。
(Effects of the Invention) The present invention is configured to detect the cylinder pressure, detect the transient state of engine operation from the change in pressure, detect the maximum angle of the pressure, and correct the deviation from the target value. As a result of monitoring and controlling the combustion state, the ignition timing can be brought closer to M, B, and T, and the output can be improved. Further, even when this method is implemented, there is an advantage that the number of sensors and processing circuits for detecting a transient state can be reduced. In addition, the basic ignition timing can be calculated from only the cylinder pressure or from the engine speed and load as before, and even if it is detected from the engine speed - load, the cylinder combustion state can also be detected. As a result of performing feedbank control to focus on the target angle, an extremely rough main control value map is sufficient, and this method has the advantage that the device can be configured with a small memory capacity. Furthermore, it has the advantage that knocking control is also possible at the same time, and since the amount of correction during the transient state is made stepwise, it also has the advantage of excellent drivability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のクレーム対応図、第2図は本発明の実
現に使用する装置のブロック図、第3図は其の出力波形
図、第4図及び第5図は本発明の実施例を示すフロー・
チャート、第6図は第5図フロー・チャートの内容を説
明する説明図である。
Fig. 1 is a claim correspondence diagram of the present invention, Fig. 2 is a block diagram of a device used to realize the present invention, Fig. 3 is its output waveform diagram, and Figs. 4 and 5 are examples of the present invention. Flow showing
6 is an explanatory diagram illustrating the contents of the flow chart of FIG. 5.

Claims (1)

【特許請求の範囲】 気筒内圧力を制御値決定の少なく共一つのパラメータと
して用いる内燃機関の制御方法において、 a、一の気筒の着火の前後の圧力上昇率を算出して両者
の比率を求め、 b、次いで、同一の乃至は別の気筒につき同様の比率を
求め、 c、次いで、其れらの比率の変動率を求め、該変動率が
所定範囲を超えるときは機関運転が過渡状態にあると判
断して圧力最大角目標値を定常運転状態時より所定量遅
角方向に変更すると共に、次回点火すべき気筒の点火時
期を前記所定量より少ない量遅角補正する、 ことからなる内燃機関の点火時期制御方法。
[Claims] A control method for an internal combustion engine that uses cylinder pressure as at least one parameter for determining control values, which includes: a. Calculating the rate of pressure increase before and after the ignition of one cylinder and determining the ratio of the two; ,b.Next, find similar ratios for the same or different cylinders,c.Next, find the fluctuation rates of those ratios, and when the fluctuation ratio exceeds a predetermined range, engine operation is in a transient state. determining that the maximum pressure angle is present, and changing the target value of the maximum pressure angle to retard by a predetermined amount from that in the steady operating state, and retarding the ignition timing of the cylinder to be ignited next by an amount smaller than the predetermined amount. Engine ignition timing control method.
JP61034333A 1986-02-19 1986-02-19 Control method for internal combustion engine when it is transient Granted JPS62195464A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61034333A JPS62195464A (en) 1986-02-19 1986-02-19 Control method for internal combustion engine when it is transient
US07/007,220 US4718382A (en) 1986-02-19 1987-01-27 Device for controlling ignition timing in internal combustion engine
DE19873704838 DE3704838A1 (en) 1986-02-19 1987-02-16 DEVICE FOR REGULATING THE IGNITION TIMING OF INTERNAL COMBUSTION ENGINES
GB8703622A GB2186912B (en) 1986-02-19 1987-02-17 Device for controlling ignition timing in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034333A JPS62195464A (en) 1986-02-19 1986-02-19 Control method for internal combustion engine when it is transient

Publications (2)

Publication Number Publication Date
JPS62195464A true JPS62195464A (en) 1987-08-28
JPH05550B2 JPH05550B2 (en) 1993-01-06

Family

ID=12411215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034333A Granted JPS62195464A (en) 1986-02-19 1986-02-19 Control method for internal combustion engine when it is transient

Country Status (1)

Country Link
JP (1) JPS62195464A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223654A (en) * 1989-02-23 1990-09-06 Mitsubishi Motors Corp Combustion deciding method for spark ignition internal combustion engine
US5107814A (en) * 1990-04-19 1992-04-28 Mitsubishi Denki K.K. Fuel control apparatus for an internal combustion engine
JP2002364446A (en) * 2001-06-05 2002-12-18 Toyota Motor Corp Knocking detecting device for internal combustion engine
JP2013019341A (en) * 2011-07-12 2013-01-31 Denso Corp Device for detecting abnormal combustion and control device for internal combustion engine
JP2021042746A (en) * 2019-09-13 2021-03-18 マツダ株式会社 Control device of engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728842A (en) * 1980-06-20 1982-02-16 Bosch Gmbh Robert Method of controlling combustion in combustion chamber for internal combustion engine
JPS60184968A (en) * 1984-03-02 1985-09-20 Mazda Motor Corp Ignition timing controller for engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728842A (en) * 1980-06-20 1982-02-16 Bosch Gmbh Robert Method of controlling combustion in combustion chamber for internal combustion engine
JPS60184968A (en) * 1984-03-02 1985-09-20 Mazda Motor Corp Ignition timing controller for engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223654A (en) * 1989-02-23 1990-09-06 Mitsubishi Motors Corp Combustion deciding method for spark ignition internal combustion engine
US5107814A (en) * 1990-04-19 1992-04-28 Mitsubishi Denki K.K. Fuel control apparatus for an internal combustion engine
JP2002364446A (en) * 2001-06-05 2002-12-18 Toyota Motor Corp Knocking detecting device for internal combustion engine
JP2013019341A (en) * 2011-07-12 2013-01-31 Denso Corp Device for detecting abnormal combustion and control device for internal combustion engine
JP2021042746A (en) * 2019-09-13 2021-03-18 マツダ株式会社 Control device of engine

Also Published As

Publication number Publication date
JPH05550B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
US4328779A (en) Feedback type ignition timing control system for internal combustion engines
JPS639679A (en) Control of ignition timing of internal combustion engine
US4802454A (en) Device for controlling ignition timing in internal combustion engine
JPH0421131B2 (en)
US4718382A (en) Device for controlling ignition timing in internal combustion engine
US4274379A (en) Method and system for controlling ignition timing of internal combustion engines
JP2551501B2 (en) Ignition timing control device for internal combustion engine
JPS636743B2 (en)
JP2556176B2 (en) Internal combustion engine failure diagnosis device
JPS6225871B2 (en)
JPS62195464A (en) Control method for internal combustion engine when it is transient
JP2715513B2 (en) Knock detection device for internal combustion engine
JPS61237884A (en) Knocking controller for internal-combustion engine
JPS5939974A (en) Ignition timing controller for internal-combustion engine
JPH0517394B2 (en)
JPS62195462A (en) Ignition timing control device for internal combusion engine
JPS6329061A (en) Ignition timing controller for internal combustion engine
JPH0579441A (en) Ignition timing control device for internal combustion engine
JP2000352349A (en) Control system for internal combustion engine
JPS6114479A (en) Ignition-timing controller for multicylinder type internal-combustion engine
JPS58180766A (en) Ignition timing controller for internal-combustion engine
JPH0711269B2 (en) Ignition timing control device for internal combustion engine
JPH0719151A (en) Ion current detecting device
JPS6045754B2 (en) Ignition timing control device for internal combustion engines
JPS6026169A (en) Ignition time controller for internal-combustion engine