JPH05550B2 - - Google Patents

Info

Publication number
JPH05550B2
JPH05550B2 JP61034333A JP3433386A JPH05550B2 JP H05550 B2 JPH05550 B2 JP H05550B2 JP 61034333 A JP61034333 A JP 61034333A JP 3433386 A JP3433386 A JP 3433386A JP H05550 B2 JPH05550 B2 JP H05550B2
Authority
JP
Japan
Prior art keywords
cylinder
angle
ignition
value
ignition timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61034333A
Other languages
Japanese (ja)
Other versions
JPS62195464A (en
Inventor
Hikari Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61034333A priority Critical patent/JPS62195464A/en
Priority to US07/007,220 priority patent/US4718382A/en
Priority to DE19873704838 priority patent/DE3704838A1/en
Priority to GB8703622A priority patent/GB2186912B/en
Publication of JPS62195464A publication Critical patent/JPS62195464A/en
Publication of JPH05550B2 publication Critical patent/JPH05550B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は内燃機関の点火時期制御方法に関し、
より具体的には内燃機関の気筒内圧力の変動を検
出して機関運転の過渡状態を検知することによつ
て点火時期を補正して過渡応答性を向上させる様
にした内燃機関の点火時期制御方法に関する。
尚、本明細書で「過渡状態」とは、機関運転の加
速又は減速を意味するものとして使用する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an ignition timing control method for an internal combustion engine.
More specifically, it is an ignition timing control for an internal combustion engine that corrects ignition timing by detecting fluctuations in internal combustion engine cylinder pressure and detects transient conditions of engine operation to improve transient response. Regarding the method.
Note that in this specification, the term "transient state" is used to mean acceleration or deceleration of engine operation.

(従来の技術) 従来の内燃機関の過渡時の制御にあつては、機
関回転数及び負荷状態より点火時期主制御値を決
定すると共に、機関冷却水温、スロツトル弁開
度、マニホルド負圧等により機関運転の過渡状態
を検出して前記主制御値を補正していた。その一
例として、特公昭58―40027号記載の技術を挙げ
ることが出来る。
(Prior art) In conventional transient control of an internal combustion engine, the ignition timing main control value is determined based on the engine speed and load condition, and is also determined based on engine cooling water temperature, throttle valve opening, manifold negative pressure, etc. The main control value was corrected by detecting the transient state of engine operation. One example is the technique described in Japanese Patent Publication No. 58-40027.

更に、近時内燃機関の気筒内圧力を検出して圧
力最大角が目標角度に位置する様に点火時期を制
御すると共に過渡状態は従来通り機関冷却水温等
から検出する例も提案されており、その一例とし
て特公昭56―21913号記載の技術を挙げることが
出来る。
Furthermore, an example has recently been proposed in which the cylinder pressure of an internal combustion engine is detected and the ignition timing is controlled so that the maximum pressure angle is located at the target angle, and the transient state is detected from the engine cooling water temperature, etc., as in the past. One example of this is the technique described in Japanese Patent Publication No. 56-21913.

(発明が解決しようとする問題点) しかしながら、第1の従来例にあつては過渡状
態を検出するために多くの検出手段及びその処理
回路を必要としていたため装置構成が複雑になる
不都合があつた。更には、過渡状態の検出に際し
ても、機関冷却水温等の変動を通じていわば間接
的に検出していたため検出精度も十分とは云い難
く、又フイードバツク制御ではないためその補正
効果を多くを期待し得ないものであつた。それ故
主制御値は精緻に決定しておかざるを得ず、補正
は副次的に使用する程度であつたため、必然的に
主制御値マツプが増大しそれを格納するために大
容量のメモリを備えざるを得ないと云う欠点があ
つた。更に、過渡状態の検出も間接的であつたた
め、過渡応答性においても十分とは云い難く、ド
ライバビリテイへの配慮も十分とは云い難いもの
であつた。
(Problems to be Solved by the Invention) However, in the first conventional example, a large number of detection means and their processing circuits are required in order to detect a transient state, which has the disadvantage of complicating the device configuration. Ta. Furthermore, when detecting a transient state, the detection accuracy is not sufficient because it is detected indirectly through changes in engine cooling water temperature, etc., and since it is not feedback control, we cannot expect much of a correction effect. It was hot. Therefore, the main control values had to be precisely determined, and corrections were only used as a side effect, which inevitably led to an increase in the main control value map and the need for large-capacity memory to store it. The disadvantage was that it was necessary to prepare for Furthermore, since the detection of transient states was indirect, it was difficult to say that the transient response was sufficient, and it was difficult to say that sufficient consideration was given to drivability.

又、第2の従来例にあつても過渡状態の検出に
多数の検出手段及びその処理回路が必要である点
で同様の不都合がれ得なかつた。又、機関の燃焼
状態を直接検出して目標角と現実の圧力最大角の
偏差を求め、その偏差を解消する方向に制御値を
決定するフイードバツク制御は採用しているが、
その偏差解消、特に過渡状態での偏差解消をドラ
イバビリテイを損なうことなく、どのように行う
かについては何等示唆するものではなかつた。
又、過渡状態時頻発し易いノツキングについても
何等対策を備えるものではなかつた。また別に特
開昭57―28842号公報に記載される様に、光強さ
の変化から燃焼状態を検出し、圧力最大角、過渡
状態を判定する技術も提案されているが、光強さ
の変化は燃焼圧力の変化に類似はするものの等価
ではない点で、致命的な欠点があつた。
Further, the second prior art example does not suffer from the same disadvantage in that a large number of detection means and their processing circuits are required to detect a transient state. In addition, feedback control is used, which directly detects the combustion state of the engine, determines the deviation between the target angle and the actual maximum pressure angle, and determines control values to eliminate the deviation.
There was no suggestion as to how to eliminate the deviation, especially in a transient state, without impairing drivability.
Furthermore, no countermeasures were provided for knocking, which tends to occur frequently during transient conditions. In addition, as described in JP-A No. 57-28842, a technology has been proposed that detects the combustion state from changes in light intensity and determines the maximum pressure angle and transient state. A fatal drawback was that the changes were similar to, but not equivalent to, changes in combustion pressure.

従つて、本発明の目的は、従来例の前記した欠
点を解消し、機関の気筒内圧力を検出して機関の
燃焼状態を直接検知しつ点火時期をフイードバツ
ク制御すると共に、特にその圧力変動を測定して
それのみによつて機関運転の過渡状態を検出して
圧力最大角目標値を段階的に遅角補正し、過渡応
答性とドライバビリテイとを向上させると共に、
ノツキングを未然に防止し、更に燃焼状態から検
出することによつて過渡状態をより正確に把握す
ることができると共に、検出手段及びその処理回
路の個数を低減する様にした内燃機関の点火時期
制御方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks of the conventional example, to directly detect the combustion state of the engine by detecting the internal cylinder pressure of the engine, and to feedback control the ignition timing, and in particular to control the pressure fluctuation. By measuring and detecting the transient state of engine operation only, the maximum pressure angle target value is retarded in stages, improving transient response and drivability, and
Ignition timing control for an internal combustion engine that prevents knocking, allows more accurate detection of transient states by detecting from the combustion state, and reduces the number of detection means and processing circuits. The purpose is to provide a method.

更には、燃焼状態を直節検出して圧力最大角
θpmaxを目標値に集束せしめることによつて所
謂M.B.Tに一段と接近した点火を可能にして出
力向上を図ると共に、併せて過渡状態時及びM.
B.T.付近点火時頻発し易いノツキングをも回避
するべく制御することも可能にした内燃機関の点
火時期制御方法を提供することを目的とする。
Furthermore, by directly detecting the combustion state and converging the maximum pressure angle θpmax to the target value, it is possible to achieve ignition closer to the so-called MBT, thereby improving output.
It is an object of the present invention to provide an ignition timing control method for an internal combustion engine that enables control to avoid knocking that often occurs when ignition near BT occurs.

(問題点を解決するための手段及び作用) 上記の目的を達成するために本発明は第1図に
示す如く、多気筒内燃機関の気筒内圧力を検出し
て圧力最大角が目標値に位置する様に点火時期を
制御する内燃機関の点火時期制御方法において、
一の気筒の着火の前後の圧力上昇率を算出して両
者の比率を求め(ステツプ10)、次いで同一乃至
は別の気筒につき同様の比率を求め(ステツプ
12)、次いでそれらの比率の変動率を求め、該変
動率が所定範囲を超えるときは機関運転が過渡状
態にあると判断して圧力最大角目標値を定常運転
状態時より所定量遅角方向に変更すると共に、次
回点火すべき気筒の点火時期を前記所定量より少
ない量遅角補正する(ステツプ14、16)如く構成
したものである。
(Means and operations for solving the problems) In order to achieve the above object, the present invention detects the pressure inside the cylinders of a multi-cylinder internal combustion engine and positions the maximum pressure angle at the target value, as shown in FIG. In the ignition timing control method for an internal combustion engine, which controls the ignition timing so as to
Calculate the rate of pressure increase before and after ignition in one cylinder and find the ratio between the two (step 10), then find a similar ratio for the same or another cylinder (step 10).
12) Next, find the fluctuation rate of those ratios, and if the fluctuation rate exceeds a predetermined range, it is determined that the engine operation is in a transient state, and the maximum pressure angle target value is retarded by a predetermined amount from the steady operating state. At the same time, the ignition timing of the cylinder to be ignited next time is retarded by an amount smaller than the predetermined amount (steps 14 and 16).

(実施例) 以下、添付図面に即して本発明の実施例を説明
する。尚、便宜上本発明に係る方法を実現する装
置について、第2図ブロツク図及び第3図波形図
を参照して説明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. For convenience, an apparatus for implementing the method according to the present invention will be explained with reference to the block diagram of FIG. 2 and the waveform diagram of FIG. 3.

第2図において、符号20は内燃機関を示し、
実施例の場合4気筒を備える。各気筒にはその燃
焼室を臨む位置に気筒内圧力を検出する圧電型セ
ンサ22を配設する。該センサ出力は、電荷−電
圧変換器又は高インピーダンス回路(共に図示せ
ず)を介してローパス・フイルタ24に入力され
る。該フイルタのカツトオフ周波数は、ノツキン
グ周波数成分よりも高く設定し、ノツキング時の
高周波数も検出可能とする。ローパス・フイルタ
24の次段には、マルチプレクサ26が接続され
る、該マルチプレクサは後述の制御ユニツト42
の指令によりフイルタ出力を気筒爆発順に次段に
選択的に入力せしめる。該マルチプレクサの次段
にはピークホールド回路28が接続され、その出
力をピークホールドして第3図に示す如く出力す
る。ピークホールド回路28の次段には、A/D
変換回路30が接続される。該変換回路は、ピー
クホールド回路よりその出力を入力し、所定の単
位時間乃至角度ごとにデジタル変換し、そのデー
タ最大値が圧力最大値Pmaxを示す。或いは、ピ
ークホールドリセツト以前の所定のクランク角度
時、デジタル変換し、該デジタル値を圧力最大値
Pmaxとしても良い(第3図)。
In FIG. 2, reference numeral 20 indicates an internal combustion engine;
In the case of the embodiment, four cylinders are provided. A piezoelectric sensor 22 for detecting the cylinder pressure is disposed in each cylinder at a position facing the combustion chamber. The sensor output is input to a low pass filter 24 via a charge-to-voltage converter or high impedance circuit (both not shown). The cutoff frequency of the filter is set higher than the knocking frequency component, so that high frequencies during knocking can also be detected. A multiplexer 26 is connected to the next stage of the low-pass filter 24, and the multiplexer is connected to a control unit 42, which will be described later.
The command causes the filter output to be selectively input to the next stage in the order of cylinder explosion. A peak hold circuit 28 is connected to the next stage of the multiplexer to peak hold the output and output it as shown in FIG. The next stage of the peak hold circuit 28 is an A/D
A conversion circuit 30 is connected. The conversion circuit inputs the output from the peak hold circuit, converts it into digital data every predetermined unit time or angle, and the maximum value of the data indicates the maximum pressure value Pmax. Alternatively, at a predetermined crank angle before peak hold reset, convert the digital value to the maximum pressure value.
It may also be set as Pmax (Figure 3).

又、ピークホールド回路28の次段には、A/
D変換回路30と並列に比較回路32が接続さ
れ、更にその後段にパルスダウンエツジ検出回路
34が接続される。比較回路32は、その反転入
力端子には前記ピークホールド回路出力が入力さ
れると共に、その非反転入力端子側には前記マル
チプレクサ出力が直接入力され、両者の入力値に
微差が与えてあることから圧力最大値発生位置に
おいてパルス信号を出力する如く構成する(第3
図)。尚、第3図に示す如く、該パルスは、ノツ
キングが発生しない場合には最大値発生位置で原
則として1個のパルスを(同図a)、ノツキング
が発生して高周波成分が重畳した場合には該位置
のみならずセンサ(マルチプレクサ)出力がピー
クホールド出力を超える度にその都度パルスを出
力し、結果的に複数個のパルスを出力する如く
(同図b)構成する。又、パルスダウンエツジ検
出回路34は、前記比較回路出力パルスの立ち下
がりエツジタイミングを把らえて後述の回路が処
理し易い様所定時間幅のパルスを出力する。従つ
て、基準位置、例えばTDC位置よりパルス発生
位置までの時間を計測してその計測値Tpmaxを
角度に変換すれば圧力最大角θpmaxが算出可能
であり、又発生パルスの数を計数すればノツキン
グ発生の有無が検出可能である。尚、同図cの如
く、センサが故障した場合は、時間計測が終了し
てもパルスは生じない。
Further, the next stage of the peak hold circuit 28 includes an A/
A comparison circuit 32 is connected in parallel with the D conversion circuit 30, and a pulse down edge detection circuit 34 is further connected at the subsequent stage. The comparator circuit 32 has an inverting input terminal to which the peak hold circuit output is input, and a non-inverting input terminal to which the multiplexer output is directly input, giving a slight difference between the input values of the two. The configuration is such that a pulse signal is output at the position where the maximum pressure value occurs from
figure). As shown in Figure 3, the pulse is, in principle, one pulse at the maximum value generation position when knocking does not occur (a in the same figure), and when knocking occurs and high frequency components are superimposed, is configured to output a pulse not only at this position but also every time the sensor (multiplexer) output exceeds the peak hold output, and as a result, a plurality of pulses are output (see figure b). Further, the pulse down edge detection circuit 34 detects the falling edge timing of the output pulse of the comparator circuit and outputs a pulse of a predetermined time width so that it can be easily processed by a circuit to be described later. Therefore, by measuring the time from the reference position, for example, the TDC position, to the pulse generation position and converting the measured value Tpmax into an angle, the maximum pressure angle θpmax can be calculated, and by counting the number of generated pulses, the knocking can be calculated. The presence or absence of occurrence can be detected. Note that, as shown in c in the figure, if the sensor fails, no pulse is generated even after the time measurement is completed.

前記内燃機関20の回転部近傍には、クランク
角センサ36が設けられ、所定クランク角度、例
えば4気筒の爆発が第1、第3、第4、第2気筒
の順で一巡する720度毎に気筒判別信号を、又180
度毎に各気筒のTDC位置においてTDC信号を、
更に該TDC信号を細分した所定角度毎に角度計
測用信号を出力する。従つて、気筒判別信号発生
後TDC信号を計数することにより気筒を判別す
ることが出来る。尚、該角度計測用信号より機関
回転数も算出することが出来る。
A crank angle sensor 36 is provided near the rotating part of the internal combustion engine 20, and detects a predetermined crank angle, for example, every 720 degrees when the explosion of four cylinders goes around in the order of the first, third, fourth, and second cylinders. Cylinder discrimination signal, also 180
The TDC signal at the TDC position of each cylinder every time,
Furthermore, an angle measurement signal is output for each predetermined angle obtained by subdividing the TDC signal. Therefore, by counting the TDC signal after the cylinder discrimination signal is generated, the cylinder can be discriminated. Incidentally, the engine rotation speed can also be calculated from the angle measurement signal.

尚、前記気筒判別信号は圧力センサから得られ
る所定の振幅値を基に所要の検知信号を得る様構
成しても良い。
Note that the cylinder discrimination signal may be configured to obtain a required detection signal based on a predetermined amplitude value obtained from a pressure sensor.

又、該内燃機関20には、機関の負荷状態を検
出するセンサとして、負荷センサ38が内燃機関
のスロツトル弁40とインテーク・マニホルド
(図示せず)の間の適宜位置に設けられる。該セ
ンサをもつて前記クランク角センサと共に機関の
運転状態を検出して圧力センサ異常時のバツクア
ツプとすると共に、後述の如く基本点火時期演算
にも所望すれば使用可能とする。
Further, the internal combustion engine 20 is provided with a load sensor 38 at an appropriate position between the throttle valve 40 of the internal combustion engine and an intake manifold (not shown) as a sensor for detecting the load state of the engine. This sensor can be used together with the crank angle sensor to detect the operating state of the engine and serve as a backup when the pressure sensor is abnormal, and can also be used for basic ignition timing calculation as described later if desired.

該センサ群36及び38、A/D変換回路30
並びにパルスダウンエツジ検出回路34の次段に
は、制御ユニツト42が接続され、それらの出力
を入力する。該制御ユニツトは、実施例の場合、
入出力インタフエース42a、CPU42b、メ
モリ42c及びクロツク42dよりなるマイク
ロ・コンピユータで構成する。尚、該CPUには、
前記パルス・カウンタ及びクロツク42dのパル
スを計数して時間計測するタイマ・カウンタ、並
びにノツキング制御用に点火サイクルを計数する
サイクル・カウンタ並びにノツキング終息後の点
火数を計数する進角カウンタを備える(図示せ
ず)。該制御ユニツトの次段には、点火装置44
が接続され、その出力を受けて機関燃焼室内の混
合気に点火プラグ(図示せず)を介して着火す
る。又、前記ピークホールド回路28のリセツト
動作及び、クランク角センサ36の入力を受け気
筒状態を識別しマルチプレクサ26にゲートの選
択を該ユニツトより指令する。
The sensor groups 36 and 38, the A/D conversion circuit 30
A control unit 42 is connected to the next stage of the pulse down edge detection circuit 34, and its outputs are inputted thereto. In an embodiment, the control unit comprises:
It consists of a microcomputer consisting of an input/output interface 42a, a CPU 42b, a memory 42c and a clock 42d. In addition, the CPU has
The pulse counter includes a timer counter that counts the pulses of the clock 42d to measure time, a cycle counter that counts ignition cycles for knocking control, and an advance angle counter that counts the number of ignitions after the knocking ends (Fig. (not shown). The next stage of the control unit is an ignition device 44.
is connected, and in response to its output, the air-fuel mixture in the engine combustion chamber is ignited via a spark plug (not shown). Further, in response to the reset operation of the peak hold circuit 28 and the input of the crank angle sensor 36, the cylinder state is identified and the multiplexer 26 is instructed to select a gate.

続いて、第3図波形図を参照しつゝ第4図及び
第5図フロー・チヤートを中心に、本発明に係る
制御方法の実施例を説明する。
Next, an embodiment of the control method according to the present invention will be described with reference to the waveform diagram in FIG. 3 and the flow charts in FIGS. 4 and 5.

先ず、ステツプ50において圧力センサ出力を
BTDC所定角度、例えば150度から取込み始め
る。
First, in step 50, the pressure sensor output is
Start capturing from a predetermined BTDC angle, for example 150 degrees.

続いて、ステツプ52において、気筒を判別し、
気筒アドレスC/A=nを付して気筒を特定す
る。これは、前述のクランク角センサ信号の気筒
判別信号及びTDC信号の到着により行なう。本
制御が気筒毎に行なうのを特徴とするためであ
る。
Next, in step 52, the cylinder is determined,
A cylinder is specified by adding a cylinder address C/A=n. This is performed by the arrival of the cylinder discrimination signal and TDC signal of the above-mentioned crank angle sensor signal. This is because this control is characterized by being performed for each cylinder.

該TDC信号の到着と同時に、ステツプ54にお
いて前記のタイマ・カウンタ(TC)及びパル
ス・カウンタ(PC)をスタートさせ、第3図に
示す時間計測及びパルス計数を開始する。
Simultaneously with the arrival of the TDC signal, the timer counter (TC) and pulse counter (PC) are started in step 54, and time measurement and pulse counting shown in FIG. 3 are started.

続いて、ステツプ56においてATDC所定角度、
例えば30度経過後、両カウンタの計数値を参照す
る。第3図に示す如く、タイマ・カウンタが圧力
最大値発生位置を充分超えて時間計測を終わつた
にもかかわらずパルス・カウンタ値が“0”であ
つてパルスが発生していない場合には圧力センサ
が異常と判断し得る(第3図c)。
Next, in step 56, the ATDC predetermined angle,
For example, after 30 degrees have elapsed, refer to the counts of both counters. As shown in Figure 3, even though the timer counter has completed time measurement well beyond the maximum pressure value generation position, if the pulse counter value is "0" and no pulse is generated, the pressure It can be determined that the sensor is abnormal (Fig. 3c).

然らざる場合はステツプ58においてパルス・カ
ウンタ値が所定値を超えているか否か、ノツキン
グ発生の有無を判断する。尚、該所定値は通常
“1”とするが、ノイズ等で正常燃焼でも複数個
のパルスが発生する恐れも考慮して“2”以上の
値としても良い。
If not, it is determined in step 58 whether or not the pulse counter value exceeds a predetermined value, and whether or not knocking has occurred. The predetermined value is normally set to "1", but may be set to a value of "2" or more in consideration of the possibility that a plurality of pulses may be generated even during normal combustion due to noise or the like.

パルス・カウント値が所定値より小さい場合に
はノツキング発生せずと判断し、ステツプ60にお
いて圧力最大角θpmaxを求める。これは圧力最
大値発生位置までの経過時間Tpmaxに変換値を
乗ずれば良い。該変換値は、((回転数rpm×360
度)/60秒)で求める。
If the pulse count value is smaller than a predetermined value, it is determined that knocking does not occur, and the maximum pressure angle θpmax is determined in step 60. This can be done by multiplying the elapsed time Tpmax to the position where the maximum pressure value occurs by the converted value. The conversion value is ((rotation speed rpm x 360
degree)/60 seconds).

続いて、ステツプ62において爆発圧縮率比
ΔPEXPCOMPを演算するが、これはサブ・ルーチ
ンとして第5図に示す。以下、第6図も参照しつ
つこのサブ・ルーチンについて説明する。最初に
概略的に説明すると、第6図に示す如く、着火前
の任意の地点の圧力値p1及びそこから微小角度
区間θ1離れた地点の圧力値p2、及び着火後の任
意の地点の圧力値p3及びそこから微小角度区間
θ2離れた地点の圧力値p4を測定し、圧力上昇率
を夫々求めた上で両者の比を算出する。続いて別
の(乃至は同一の)点火気筒につき同様の比を算
出し、2つの比の変動率を算出する。該変動率が
“1±所定不感帯領域”内にないときは過渡状態
にあると判断して遅角補正するものである。即
ち、発明者は上記変動率と機関運転の過渡状態の
間に因果関係を見出し、本発明をなしたものであ
る。以下、説明すると、 先ず、ステツプ62におい圧力値p1−p4を読み
出して測定する。
Subsequently, in step 62, the explosion compression ratio ΔP EXP / COM is calculated, which is shown in FIG. 5 as a subroutine. This subroutine will be explained below with reference to FIG. First, to briefly explain, as shown in Fig. 6, the pressure value p1 at an arbitrary point before ignition, the pressure value p2 at a point a minute angle section θ1 away from there, and the pressure value at an arbitrary point after ignition. The pressure value p3 and the pressure value p4 at a point distant from it in a small angle section θ2 are measured, and the pressure increase rate is determined respectively, and then the ratio between the two is calculated. Subsequently, a similar ratio is calculated for another (or the same) ignition cylinder, and the fluctuation rate of the two ratios is calculated. When the rate of variation is not within the "1±predetermined dead band region", it is determined that a transient state exists, and the angle is retarded. That is, the inventor discovered a causal relationship between the above fluctuation rate and the transient state of engine operation, and accomplished the present invention. To explain below, first, in step 62, odor pressure values p1-p4 are read out and measured.

続いて、ステツプ62bにおいて着火前、即ち圧
縮状態の圧力上昇率たる圧縮圧変化率ΔPCOMPと、
着火後の爆発状態の圧力上昇率たる爆発圧変化率
ΔPEXP及び両者の比PEXPCOMPを以下の通り算
出する。
Next, in step 62b, the compression pressure change rate ΔP COMP , which is the pressure increase rate before ignition, that is, in the compressed state, is determined.
The explosion pressure change rate ΔPEXP, which is the pressure increase rate in the explosive state after ignition, and the ratio of the two, P EXP / COMP , are calculated as follows.

ΔPCOMP=d(P2−P1)/dθ1 ΔPEXP=d(P4−P3)/dθ2 ΔPEXPCOMP=ΔPEXP/ΔPCOMP 尚、前記着化前の地点は、吸入バブル全閉後の
ピストン上昇に伴う圧縮時のどの地点を選択して
も良い。又、着火後の場合もTDC位置及び圧力
最大角θpmaxの間の範囲内ならば何処でも良い。
但し、TDC位置及び最大角θpmaxは、夫々TDC
信号及び圧力最大値発生位置信号(パルス)が得
られるので、これらの地点を選択すると便宜であ
る。尚、着火前の地点も一旦選択した後は、前記
クランク角センサ出力党で該地点を検索すること
云うまでもない。本制御は気筒毎に行なうので、
演算値は、PEXPCOMPnとして特定し、記憶保持
する。かかる作業を点火気筒毎に次々行なつて同
種の比を演算、記憶する。
∆P COMP = d (P2 - P1) / dθ1 ∆P EXP = d (P4 - P3) / dθ2 ∆P EXP / COMP = ∆PEXP / ∆PCOMP Note that the point before the formation is the same as the piston rises after the suction bubble is fully closed. Any point during compression may be selected. Further, even after ignition, it may be anywhere within the range between the TDC position and the maximum pressure angle θpmax.
However, the TDC position and maximum angle θpmax are respectively TDC
It is convenient to select these points because the signal and the pressure maximum occurrence position signal (pulse) are obtained. It goes without saying that once the point before ignition is selected, the point is searched for using the crank angle sensor output. This control is performed for each cylinder, so
The calculated value is specified as P EXP / COMP n and stored. This operation is performed one after another for each ignition cylinder, and the same type of ratio is calculated and stored.

続いて、ステツプ62cにおいて1点火前の別の
爆発気筒及び4点火前、即ち前サイクルの同一気
筒の演算値を読み出す。尚、初回は適宜初期設定
する。
Subsequently, in step 62c, the calculated values of another explosion cylinder before one ignition and the same cylinder before four ignitions, that is, in the previous cycle, are read out. Note that initial settings are made as appropriate for the first time.

続いて、ステツプ62dにおいて、今次気筒の比
率との変動率を求める。尚、1点火前の比率との
変動率をPEXPCOMP A、4点火前の比率との変
動率をPEXPCOMP Bとする。
Subsequently, in step 62d, the rate of variation with respect to the ratio of the current cylinder is determined. Note that the rate of change with respect to the ratio before one ignition is P EXP / COMP A, and the rate of change with the ratio before four ignitions is P EXP / COMP B.

PEXPCOMP A=PEXPCOMPn/EXPCOMPn−1 PEXPCOMP B=PEXPCOMPn/PEXPCOMPn−4 続いて、ステツプ62eにおいて、変動率PEXPC
OMP Aが“1+所定不感帯領域”より大きいか
否か判断し、大きい場合はステツプ62fにおいて
他の変動率PEXPCOMPBも“1+所定不感帯領域”
より大きいか否か判断する。該不感帯域は、
“0.1”の如く適宜設定する。ステツプ62fにおい
ても大きいと判断された場合は、気筒間の変動率
が比較的大きいと判断出来機関運転が過渡状態に
あると判断出来るので、ノツキング及び排ガス組
成悪化を回避するため、遅角方向に補正する。こ
のように、気筒間の変動をみるにも、1点火前の
気筒とのみならず4点火前の気筒とも比較し両者
とも同相であつて始めて過渡状態と判断するの
で、一過性的な変動を誤検出することがない。
又、着火の前後の変化率も考慮することによつて
機関回転数が急変しても判断誤差が生じ難い。
P EXP / COMP A=P EXP / COMP n/ EXP / COMP n-1 P EXP / COMP B=P EXP / COMP n/P EXP / COMP n-4 Next, in step 62e, the fluctuation rate P EXP / C
It is determined whether OMP A is larger than "1 + predetermined dead band area", and if it is larger, other fluctuation rates P EXP / COMPB are also set to "1 + predetermined dead band area" in step 62f.
Determine whether it is larger. The dead zone is
Set as appropriate, such as “0.1”. If it is determined to be large in step 62f, it can be determined that the fluctuation rate between the cylinders is relatively large and that the engine operation is in a transient state.In order to avoid knocking and deterioration of the exhaust gas composition, the engine should be retarded. to correct. In this way, when looking at fluctuations between cylinders, we compare not only the cylinder before the first ignition, but also the cylinder before the fourth ignition, and only when they are in the same phase do we judge it to be a transient state, so we cannot detect transient fluctuations. There will be no false positives.
Furthermore, by considering the rate of change before and after ignition, errors in judgment are less likely to occur even if the engine speed changes suddenly.

過渡状態と判断された場合は、続いてステツプ
62gにおいて圧力最大角目標値θpoを第1所定角
遅角側へ設定し、前記の如くノツキング等に備え
る。従つて、この第1所定角はノツキング等を未
然に防止する程度の量適宜決定する。
If it is determined that the condition is transient, continue with the step
At 62g, the maximum pressure angle target value θpo is set to the first predetermined angle retard side to prepare for knocking etc. as described above. Therefore, the first predetermined angle is appropriately determined to an extent that prevents knocking and the like.

続いて、ステツプ62hにおいて、次回点火すべ
き気筒の補正量θtとして、第2所定角だけ遅角側
に設定する。この第2所定角も適宜設定するもの
であるが、本発明の特徴として該第2所定角は、
前記第1所定角より少ない値とする。従つて、ス
テツプ62lに於いて点火補正角θtが第1所定角よ
り大きい場合は、第1所定角に設定されるもので
ある(ステツプ62m)。即ち、後述の如く、本発
明においては過渡状態が検出された場合目標角を
遅角側へ変更する結果因つて生ずる偏差を解消す
べく補正を行なう必要が生ずるが、次サイクルの
当該気筒において偏差分だけ一度に補正すると点
火時期の急変によつてドライバビリテイが悪化す
るので、それを防止すべく次の点火気筒において
部分的に補正し、該次の点火気筒においても過渡
状態が検出されるであろうから次の次の点火気筒
においても同様に部分的な補正を与え、そのよう
に次々と部分的な補正を加えて4点火後の同一気
筒で漸く目標角へ略一致させる如くしたものであ
る。従つて、該第2所定角は、4点火後に目標角
へ到達する程度の値を適当に設定する。尚、フロ
ー・チヤートにおいて“−”は遅角を、“+”は
進角を意味すると約束する。
Subsequently, in step 62h, the correction amount θt for the cylinder to be ignited next time is set to the retard side by a second predetermined angle. This second predetermined angle is also set as appropriate, but as a feature of the present invention, the second predetermined angle is
The value is less than the first predetermined angle. Therefore, if the ignition correction angle θt is larger than the first predetermined angle in step 62l, it is set to the first predetermined angle (step 62m). That is, as will be described later, in the present invention, when a transient state is detected, it is necessary to perform correction to eliminate the deviation that occurs as a result of changing the target angle to the retarded side. If the ignition timing is corrected at once, drivability will deteriorate due to sudden changes in ignition timing, so to prevent this, partial correction is made in the next ignition cylinder, and the transient state is detected in the next ignition cylinder as well. Therefore, partial correction is applied to the next ignition cylinder in the same way, and partial correction is applied one after another in this way, so that the same cylinder after 4 ignitions can finally almost match the target angle. It is. Therefore, the second predetermined angle is appropriately set to a value such that the target angle is reached after four ignitions. Note that in the flow chart, "-" means a retarded angle, and "+" means an advanced angle.

前記ステツプ62eにおいて否定された場合は、
ステツプ62iにおいてPEXPCOMP A“1−所定不
感帯領域”より小さいか否か判断し、小さい場合
はステツプ62jにおいて他の変動率PEXPCOMP
も“1−不感帯領域”より小さいか否か判断し、
小さい場合変動率が比較的大きいことを意味する
ので、同様に遅角補正する。
If the answer in step 62e is negative,
In step 62i, it is determined whether PEXP / COMP A is smaller than "1-predetermined dead zone area", and if it is smaller, in step 62j, another fluctuation rate P EXP / COMB is determined.
Determine whether or not is smaller than “1-dead zone area”,
If it is small, it means that the fluctuation rate is relatively large, so the retarding angle is corrected in the same way.

尚、ステツプ62f、62i、62jで否定された場合
は、変動率が小さいものとして前記圧力最大角目
標値θpoは初期設定値に設定され(62p)、点火補
正角θtに遅角補正値が無い場合、補正を加えない
ものとし、又所定遅角補正値が有る場合は、点火
気筒毎に第2所定角づつ徐々に進角し、点火時期
急変によるドライバビリテイ悪化を避ける様にす
る(ステツプ62p、62n、62o、62k)。
If the results of steps 62f, 62i, and 62j are negative, the maximum pressure angle target value θpo is set to the initial setting value (62p) assuming that the fluctuation rate is small, and there is no retardation correction value for the ignition correction angle θt. If there is a predetermined retard correction value, the ignition angle is gradually advanced by a second predetermined angle for each ignition cylinder to avoid deterioration of drivability due to sudden changes in ignition timing (step 62p, 62n, 62o, 62k).

再び第4図に戻ると、ステツプ62のサブ・ルー
チンの後、ステツプ64において、圧力最大角目標
値θpoとステツプ60で演算した実際の圧力最大角
θpmaxを比較して偏差Δθpmaxを求める。尚、前
記サブ・ルーチンにおいて目標値が補正された場
合は、補正後の目標値をθpoとする。
Returning to FIG. 4 again, after the subroutine of step 62, in step 64, the maximum pressure angle target value θpo and the actual maximum pressure angle θpmax calculated in step 60 are compared to determine the deviation Δθpmax. Note that if the target value is corrected in the subroutine, the corrected target value is set to θpo.

続いて、ステツプ66において、ノツキング補正
量KNRが“0”でないか否か、即ちノツキング補
正量の残量を前記メモリ42cを参照して判断
し、残量が“0”であれば次のステツプ68におい
て偏差Δθpmaxが目標値θpo遅れか進みかを判断
する。
Next, in step 66, it is determined whether the knocking correction amount KNR is not "0", that is, the remaining amount of knocking correction is determined by referring to the memory 42c, and if the remaining amount is "0", the next knocking correction amount is determined. In step 68, it is determined whether the deviation Δθpmax is behind or ahead of the target value θpo.

遅れであれば、偏差補正θpcは前回のθpc(初期
設定“0”)に適宜設定した第3所定角だけ変え
て進角せしめた値とし(ステツプ70)、進みであ
れば第3所定角減算して遅角せしめた値とし(ス
テツプ72)、偏差がなければ前回の値のままに止
める(ステツプ74)。尚、この第3所定角を比較
的小さく設定すれば偏差を徐々に解消することに
なり、サブ・ルーチンにおけると同様ドライバビ
リテイが向上する利点を備える。尚、前述の如く
減算は遅角補正を意味し、又加算は進角補正を意
味する。
If it is a delay, the deviation correction θpc is set to a value that advances the previous θpc (initial setting "0") by a third predetermined angle set appropriately (step 70), and if it is a advance, the third predetermined angle is subtracted. and set it to a retarded value (step 72), and if there is no deviation, it remains at the previous value (step 74). Incidentally, if this third predetermined angle is set relatively small, the deviation will be gradually eliminated, which has the advantage of improving drivability as in the subroutine. As mentioned above, subtraction means retard angle correction, and addition means advance angle correction.

尚、前記ステツプ58においてノツキングが検出
された場合には直ちにノツキグ補正角KNR(初期
設定“0”)から適宜設定した第4の所定角を減
算した値遅角せしめ(ステツプ76)、遅角量が第
4所定角より大きく適宜設定した第5所定角に達
するまで遅角し(ステツプ78、80)、偏差補正量
θpcは今回点火時の値とする(ステツプ82)。又、
ステツプ66においてノツキング補正残量がある場
合には、ノツキング終息後所定時間乃至点火数待
つて前記第4所定角づゝ進角側に戻し(ステツプ
84、86)、Δθpmaxが目標値に対して進みの際は
進角側に戻す必要が無いのでθpcを第3所定角だ
け遅角せしめ(ステツプ88、72)、遅れの際は補
正量θpcは不変とする(ステツプ82)。尚、ノツ
キング終息後の所定時間(点火数)の計測は、前
記制御ユニツト内のCPUのサイクル・カウンタ
及び進角カウンタを使用する。
If knocking is detected in step 58, the knocking correction angle KNR (initial setting "0") is immediately retarded by a fourth predetermined angle set appropriately (step 76), and the amount of retardation is set. The ignition angle is retarded until it reaches a fifth predetermined angle which is set as appropriate to be larger than the fourth predetermined angle (steps 78 and 80), and the deviation correction amount θpc is set to the value at the time of the current ignition (step 82). or,
If there is a knocking correction remaining in step 66, wait for a predetermined period of time or the number of ignitions after the knocking ends, and return to the advance side by the fourth predetermined angle (step 66).
84, 86), when Δθpmax is ahead of the target value, there is no need to return it to the advanced side, so θpc is retarded by the third predetermined angle (steps 88, 72), and when it is delayed, the correction amount θpc is Make it unchanged (step 82). The predetermined time (number of ignitions) after the knocking ends is measured using the cycle counter and advance angle counter of the CPU in the control unit.

続いて、ステツプ90において前記補正量θpcと
ノツキング補正量KNRを加算した値をフイード
バツク補正量θfとする。尚、前記のセンサ異常と
判断された場合には(ステツプ56)、適宜設定し
た第6所定角遅角せしめた値をフイードバツク補
正量とする。(ステツプ92)。
Subsequently, in step 90, the sum of the correction amount θpc and the knocking correction amount KNR is set as the feedback correction amount θf. If it is determined that the sensor is abnormal (step 56), the value obtained by retarding the sixth predetermined angle, which is set as appropriate, is set as the feedback correction amount. (Step 92).

続いて、ステツプ94において、かく求めたフイ
ードバツク補正量θfを同一気筒(気筒アドレス=
n)の次サイクルの補正値と使用する様、一旦記
憶(乃至既に記憶されている場合は書替)する。
従つて、前述の手順で求めたノツキング補正量を
含む補正量は全て当該気筒にのみ反映されること
になるので、気筒毎の格別の燃焼状態に応じた制
御が可能となる。
Next, in step 94, the feedback correction amount θf determined in this way is applied to the same cylinder (cylinder address =
Store it once (or rewrite it if it is already stored) so that it will be used as the correction value for the next cycle of n).
Therefore, all the correction amounts including the knocking correction amount obtained in the above-described procedure are reflected only in the relevant cylinder, so that control can be performed according to the particular combustion state of each cylinder.

続いて、ステツプ96において次に点火すべき気
筒(気筒アドレス=n+1)の記憶されていたフ
イードバツク補正量θfを読出し、(初期設定
“0”)、当該気筒の点火を指令する。その際、点
火時期は、基本点火時期+θf+θtで指令される
(ステツプ98)。尚、この“θt”及びステツプ90で
の“KNR”はそれ自体負の値を意味するので、
結果的に減算、即ち遅角を意味することになる。
このθfは前のステツプで読出された当該気筒用フ
イードバツク補正量であり、θtは第5図サブ・ル
ーチンで求めた過渡状態時補正量である。従つ
て、該補正量θtのみが気筒を超えて補正量として
使用されるのであり、このように圧力目標値補正
量より小量の補正量を次の気筒に反映させること
により、過渡時においても段階的に遅角させるこ
とになり、ドライバビリテイが向上する。かく段
階的な遅角であつても、気筒内圧力を検出して燃
焼状態を直接監視することによつて過渡状態を検
出する構成とした結果、その検出が比較的迅速で
あるので、何等支障ないものであり、又、ノツキ
ング制御も併せて可能とした結果、過渡時に生じ
易いノツキング対策も十分行なつたものである。
Subsequently, in step 96, the stored feedback correction amount θf of the cylinder to be ignited next (cylinder address=n+1) is read out (initial setting is "0"), and the ignition of the cylinder is commanded. At this time, the ignition timing is commanded as basic ignition timing + θf + θt (step 98). Note that this "θt" and "KNR" in step 90 themselves mean negative values, so
As a result, it means subtraction, that is, retardation.
This θf is the feedback correction amount for the relevant cylinder read in the previous step, and θt is the transient state correction amount obtained in the subroutine of FIG. Therefore, only the correction amount θt is used as a correction amount across cylinders, and by reflecting a correction amount smaller than the pressure target value correction amount to the next cylinder in this way, even during a transient period. Drivability is improved by retarding the angle in stages. Even with such a stepwise retardation, there is no problem because the transient state is detected relatively quickly by detecting the cylinder pressure and directly monitoring the combustion state. Moreover, since knocking control is also possible, sufficient countermeasures against knocking, which tends to occur during transient periods, have been taken.

尚、この基本点火時期演算は、気筒内圧力のみ
から行つて前記圧力最大角目標角θpoを算出して
も良く、或いは前記クランク角センサ及び負圧セ
ンサより機関の運転状態を検出して行つても良
い。機関回転数−負荷から基本点火時期を演算す
る場合であつても、点火した後現実の圧力最大角
と目標角との偏差を検出し、それによる補正角で
回転数−負荷のマツプ値を変更して次の点火に備
え、これを順次繰り返して目標角へフイードバツ
ク制御するので、回転数−負荷マツプ値は小量で
良く、従つて本方法を実現する装置は小容量のメ
モリを使用すれば足る利点を備える。
Note that this basic ignition timing calculation may be performed only from the cylinder pressure to calculate the maximum pressure angle target angle θpo, or may be performed by detecting the operating state of the engine from the crank angle sensor and the negative pressure sensor. Also good. Even when calculating the basic ignition timing from the engine speed and load, the deviation between the actual maximum pressure angle and the target angle is detected after ignition, and the speed-to-load map value is changed using the corrected angle. Since this is repeated sequentially in preparation for the next ignition and feedback control is performed to the target angle, the number of rotation speed-load map values may be small, and therefore the device implementing this method can use a small memory capacity. Have sufficient advantages.

(発明の効果) 本発明は気筒内圧力を検知してその圧力変化か
ら機関運転の過渡状態を検出すると共にその圧力
最大角目標値を段階的に遅角補正する如く構成し
たので、過渡特応答性とドライバビリテイとを向
上させると共に、ノツキングを未然に防止するこ
とができる。また燃焼状態から検出することによ
つて過渡状態をより正確に把握することができる
と共に、本方法を実現する場合でも過渡状態を検
出するセンサ及び処理回路の個数を低減出来る利
点を有する。又、基本点火時期は気筒内圧力のみ
から乃至は従来と同様機関回転数と負荷から演算
することも可能であり、機関回転数−負荷から検
出する場合であつても気筒燃焼状態も併せて検出
して目標角へ集束する様フイードバツク制御する
結果、主制御値マツプは極めて粗いもので足り、
本方法を実現する際小容量のメモリで装置を構成
出来る利点を備える。
(Effects of the Invention) The present invention is configured to detect the internal cylinder pressure and detect the transient state of engine operation from the pressure change, and also to retard the maximum pressure angle target value in stages. In addition to improving performance and drivability, it is possible to prevent knocking. Further, by detecting the combustion state, it is possible to grasp the transient state more accurately, and even when this method is implemented, there is an advantage that the number of sensors and processing circuits for detecting the transient state can be reduced. In addition, the basic ignition timing can be calculated from only the cylinder pressure or from the engine speed and load as before, and even if it is detected from the engine speed - load, the cylinder combustion state can also be detected. As a result of feedback control to focus on the target angle, the main control value map only needs to be extremely rough.
When implementing this method, it has the advantage that the device can be configured with a small capacity memory.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本
発明の実現に使用する装置のブロツク図、第3図
はその出力波形図、第4図及び第5図は本発明の
実施例を示すフロー・チヤート、第6図は第5図
フロー・チヤートの内容を説明する説明図であ
る。
Fig. 1 is a diagram corresponding to the claims of the present invention, Fig. 2 is a block diagram of a device used to realize the present invention, Fig. 3 is an output waveform diagram thereof, and Figs. 4 and 5 show examples of the present invention. The flow chart shown in FIG. 6 is an explanatory diagram illustrating the contents of the flow chart shown in FIG. 5.

Claims (1)

【特許請求の範囲】 1 多気筒内燃機関の気筒内圧力を検出して圧力
最大角が目標値に位置する様に点火時期を制御す
る内燃機関の点火時期制御方法において、 a 一の気筒の着火の前後の圧力様の比率を求
め、 b 次いで、同一の乃至は別の気筒につき同様の
比率を求め、 c 次いで、それらの比率の変動率を求め、該変
動率が所定範囲を超えるときは機関運転が過渡
状態にあると判断して圧力最大角目標値を定常
運転状態時より所定量遅角方向に変更すると共
に、次回点火すべき気筒の点火時期を前記所定
量より少ない量遅角補正する、 ことからなることを特徴とする内燃機関の点火時
期制御方法。
[Scope of Claims] 1. An ignition timing control method for an internal combustion engine, which detects the pressure in the cylinders of a multi-cylinder internal combustion engine and controls the ignition timing so that the maximum pressure angle is located at a target value, comprising: (a) ignition of one cylinder; (b) Next, find similar ratios for the same or different cylinders. (c) Next, find the fluctuation rate of those ratios, and if the fluctuation rate exceeds a predetermined range, the engine Determining that the operation is in a transient state, the maximum pressure angle target value is retarded by a predetermined amount from that in the steady operating state, and the ignition timing of the cylinder to be ignited next time is retarded by an amount smaller than the predetermined amount. , A method for controlling ignition timing of an internal combustion engine, comprising the following steps.
JP61034333A 1986-02-19 1986-02-19 Control method for internal combustion engine when it is transient Granted JPS62195464A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61034333A JPS62195464A (en) 1986-02-19 1986-02-19 Control method for internal combustion engine when it is transient
US07/007,220 US4718382A (en) 1986-02-19 1987-01-27 Device for controlling ignition timing in internal combustion engine
DE19873704838 DE3704838A1 (en) 1986-02-19 1987-02-16 DEVICE FOR REGULATING THE IGNITION TIMING OF INTERNAL COMBUSTION ENGINES
GB8703622A GB2186912B (en) 1986-02-19 1987-02-17 Device for controlling ignition timing in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034333A JPS62195464A (en) 1986-02-19 1986-02-19 Control method for internal combustion engine when it is transient

Publications (2)

Publication Number Publication Date
JPS62195464A JPS62195464A (en) 1987-08-28
JPH05550B2 true JPH05550B2 (en) 1993-01-06

Family

ID=12411215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034333A Granted JPS62195464A (en) 1986-02-19 1986-02-19 Control method for internal combustion engine when it is transient

Country Status (1)

Country Link
JP (1) JPS62195464A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2775814B2 (en) * 1989-02-23 1998-07-16 三菱自動車工業株式会社 Combustion determination method for spark ignition internal combustion engine
JP2751559B2 (en) * 1990-04-19 1998-05-18 三菱電機株式会社 Engine fuel control device
JP2002364446A (en) * 2001-06-05 2002-12-18 Toyota Motor Corp Knocking detecting device for internal combustion engine
JP5447446B2 (en) * 2011-07-12 2014-03-19 株式会社デンソー Abnormal combustion detection device and internal combustion engine control device
JP7226205B2 (en) * 2019-09-13 2023-02-21 マツダ株式会社 engine controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728842A (en) * 1980-06-20 1982-02-16 Bosch Gmbh Robert Method of controlling combustion in combustion chamber for internal combustion engine
JPS60184968A (en) * 1984-03-02 1985-09-20 Mazda Motor Corp Ignition timing controller for engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728842A (en) * 1980-06-20 1982-02-16 Bosch Gmbh Robert Method of controlling combustion in combustion chamber for internal combustion engine
JPS60184968A (en) * 1984-03-02 1985-09-20 Mazda Motor Corp Ignition timing controller for engine

Also Published As

Publication number Publication date
JPS62195464A (en) 1987-08-28

Similar Documents

Publication Publication Date Title
JPS639679A (en) Control of ignition timing of internal combustion engine
US4328779A (en) Feedback type ignition timing control system for internal combustion engines
JP3116826B2 (en) Preignition detection device
JP2505243B2 (en) Electronic ignition timing controller
JPS62195463A (en) Ignition timing control device for internal combustion engine
JPH0421131B2 (en)
US4718382A (en) Device for controlling ignition timing in internal combustion engine
US6499460B2 (en) Ignition timing control device for internal combustion engine
JPS636743B2 (en)
EP0098584B1 (en) An ignition timing control method for internal combustion engines
JPH05550B2 (en)
JPH04101068A (en) Ignition timing control device for internal combustion engine
JPS61237884A (en) Knocking controller for internal-combustion engine
JPH0517394B2 (en)
JPS6329061A (en) Ignition timing controller for internal combustion engine
JPS62195462A (en) Ignition timing control device for internal combusion engine
US5065724A (en) Ignition timing control apparatus for internal combustion engine
JPH04292553A (en) Device for controlling knocking of engine
JP2000352349A (en) Control system for internal combustion engine
JPH0711269B2 (en) Ignition timing control device for internal combustion engine
JP2507515B2 (en) Control device for internal combustion engine
JPH0658299B2 (en) Misfire detector
JPS6229638Y2 (en)
JPS6026169A (en) Ignition time controller for internal-combustion engine
JPS6325372A (en) Ignition timing control device for internal combustion engine