JPH0270341A - Manufacture of driving shaft made of steel pipe - Google Patents

Manufacture of driving shaft made of steel pipe

Info

Publication number
JPH0270341A
JPH0270341A JP21923088A JP21923088A JPH0270341A JP H0270341 A JPH0270341 A JP H0270341A JP 21923088 A JP21923088 A JP 21923088A JP 21923088 A JP21923088 A JP 21923088A JP H0270341 A JPH0270341 A JP H0270341A
Authority
JP
Japan
Prior art keywords
steel pipe
pipe
thickness
drive shaft
driving shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21923088A
Other languages
Japanese (ja)
Inventor
Mitsusachi Yamamoto
三幸 山本
Kazuo Toyama
外山 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21923088A priority Critical patent/JPH0270341A/en
Publication of JPH0270341A publication Critical patent/JPH0270341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To make a product light in weight and to improve its reliability by using a difference thickness steel pipe which has a thickness increased part at an equal interval in the longitudinal direction of the pipe and whose wall thickness ratio of the thickness increased part and a usual wall thickness part is above a specific value, as a stock, cutting the thickness increase part to a short pipe, and performing connection use spline working to both pipe and parts. CONSTITUTION:A difference thickness steel pipe in which a usual part 1 and a thickness increased part 2 in the pipe longitudinal direction are formed, and a wall thickness ratio of the thickness increased part and the usual part is >=2 is used as a stock. Said steel pipe is cut to a short pipe in the center of the thickness increased part 2, and thereafter, a driving shaft is manufactured by forming a spline 3 on the outside periphery of both end parts by machining. the driving shaft which is obtained in such a way scarcely causes a variance of a fatigue service life, and has an excellent fatigue strength. Also, as another method, the difference thickness steel pipe having the thickness increased part is cut in the center of the thickness increased part 2, and to both ends of the steel pipe which is obtained, a stem part which is prepared separately is brought to friction welding. A welding burr generated in the outside periphery of a friction weld zone is cut by machining. In such a way, the driving shaft is made light in weight, and also, the fatigue strength of the driving shaft and the reliability of a product can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は自動車に使用されるドライブシャフト等駆動軸
を鋼管を素材として製造する方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing a drive shaft such as a drive shaft used in an automobile using a steel pipe as a material.

【従来の技術】[Conventional technology]

自動車に使用される駆動軸は、従来はもっばら棒鋼を素
材として製造されていたが、最近になって棒鋼から鋼管
への切替えが検討され始めている。 それは、棒鋼から鋼管へ切替えることにより、まず第1
に軽量化が図れ、加速性能等の自動車運動性能が向上す
る。第2に固有振動数を機関回転数の範囲外へ変更でき
、共振現象を避け、振動、騒音低減が図られることが理
由である。 このような鋼管製駆動軸の製造方法は大別して以下のご
とき2通りの方法がある。その1つは第5図に示すよう
に一体成形タイブの鋼管製駆動軸の場合で、鋼管aの管
端部すを口絞りした後、絞り部Cにスプライン加工を施
す方法である。もう1つは第6図に示すように溶接組立
タイプの鋼管製駆動軸の場合で、あらかじめスプライン
加工した絞り部Cを備えるステムeを鋼管aの両端に溶
接(fは溶接部を示す)するものである。 〔発明が解決しようとする課題〕 これらの製造方法のうち、一体成形タイプの鋼管製駆動
軸を製造するものでは、製造上避は難い円周方向の微妙
な角振りや肉厚不均一が管端口絞り加工により増長され
、顕著な疵となる場合がある。このような疵は使用時の
繰返しねじり荷重による疲労亀裂の発生の起点となり、
駆動軸の疲労強度を低下させるという問題を生じさせる
。 一方、溶接組立タイプの鋼管製駆動軸を製造する方法で
は、管端の口絞り加工が行われないため素材鋼管の角張
りや肉厚不均一が助長されることはないが、溶接時の熱
のために熱影響部と呼ばれる軟化部が生じ、この部分の
疲労強度が低下する。 また、特に薄肉の場合に問題となることであるが、鋼管
fとステムeとの軸芯ずれのため、溶接部の強度が十分
に確保できなくなるといったこともある。 前述のごとき疲労強度の低下は、特に自動車の駆動軸を
対象とする場合、製品の信軌性に重大な影響を及ぼし、
鋼管製駆動軸の実用化にあたっての重大な障害となって
いる。 本発明は製造コスト低減を考慮しつつ、前記従来技術に
よる疲労強度に関する問題を解消した鋼管製駆動軸の製
造方法を提供することを目的とする。 〔課題を解決するための手段〕 本発明の第1の製造方法は、鋼管を用いて駆動軸を製造
する方法において、管長手方向に等間隔に増肉部を有し
、かつ増肉部と通常肉厚部の肉厚比が2以上である差厚
鋼管を素材とし、該差厚鋼管を増肉部で短管切断した後
、両管端部に接続用スプライン加工を施すものである。 本発明の第2の製造方法は、鋼管を用いて駆動軸を製造
する方法において、管長手方向に等間隔に増肉部を有す
る差厚鋼管を素材とし、該差厚鋼管を増肉部で短管切断
した後、両管端にステム部を摩擦溶接にて接合するもの
である。 〔作  用〕 本発明の第1の製造方法においては、厚肉の管端部にス
プライン加工を施すので、駆動軸の疲労強度が向上する
。更に素管全体を肉厚化するわけではないので、軽量化
も達成される。また、素管として、鋼管の段階から管長
手方向に等間隔に増肉部を有する差厚鋼管を使用するの
で、後処理により増肉させるのと異なり工程省略が達成
できる。 本発明の第1方法において、差厚鋼管の増肉部と通常部
の肉厚比を2以上とするのは、後工程でスプラインが形
成される増肉部の疲労強度を確保するためである。さら
に疲労強度を確保するためには肉厚比を増加させればよ
い事はいうまでもないが、いたずらに肉厚比を増加させ
ると軽量化に支障をきたす、よって肉厚比は2以上の範
囲で選択する。 第1表は、種々の肉厚比を有する差厚鋼管を増肉部で短
管切断した後、増肉部に機械加工にてスプラインを形成
したものについて、定荷重両振りねじり疲労試験を行っ
た結果を示したものである。 差厚鋼管としては、通常部の寸法が外径50m、肉厚2
.51allのSTKM16C相当材を使用した。 またスプライン形状は歯高IImの台形状とした。 第1表より肉厚比の増加とともに疲労寿命は向上し、は
ぼ2以上で飽和していることがわかる。 また、肉厚比2未満ではスプラインの部分に疲労亀裂が
発生するが、2以上ではスプラインの部分に疲労亀裂は
生じず、増肉部と通常部の境界に疲労亀裂が発生した。 このことから肉厚比が2以上であれば増肉部にスプライ
ンを形成しても、当部位に十分な疲労強度が確保される
ことがわかる。 第  1  表 本発明の第2の製造方法においては、管端の厚肉部分に
ステムを溶接するので、通常部の肉厚を有する鋼管にス
テムを溶接する場合に比較し駆動軸の疲労強度が向上す
る。更に素管全体を厚肉化するわけではないので、軽量
化も達成される。また素管として、鋼管の段階から管長
手方向に当間隔に増肉部を有する差厚鋼管を使用するの
で、後処理により増肉させるのと異なり工程省略が達成
できる。 本発明の第2の方法において、摩擦溶接を採用する理由
は、摩擦溶接が各種溶接接合の中で最も生産性が高く製
造コスト低減が可能となり鋼管の周溶接に適した溶接法
であるからである。更に、駆動軸は回転体であるため回
転バランスが問題となるが、摩擦溶接は溶接部のビード
量が円周方向どの位置でも同量となり、偏心量がきわめ
て少ない。よって溶接後の回転バランスにも優れる。 〔実施例] 以下、本発明の実施例を図面に基づいて具体的に説明す
る。 第1図は本発明の製造方法で使用される差厚鋼管の一例
を示す断面図である0本例の差厚鋼管は管長手方向で薄
肉部分(通常部)lと、通常部1より内径の小さい増肉
部2が所定ピッチで交互に形成された管である。このよ
うな鋼管は通常は一様肉厚の鋼管を素材とし特殊な冷間
抽伸により製造される。 本発明の第1の方法の実施例として、外径50■、肉厚
2.51mの通常部lを有し、管長手方向に500g+
sピッチで長さ150閣、肉I¥5IIIIlO増肉部
2が形成された差厚鋼管に対し、増肉部2の中央で短管
切断を行った後、第2図に示すごとく両端部外周に機械
加工によりスプライン3を形成して全長500mの駆動
軸を製作した。 このようにして製作した駆動軸について定荷重両振りね
じり疲労試験を行った結果を第3図に示す8図中の0印
は本製作品のものであり、・印は比較のため増肉部のな
い同材質の鋼管(外径50■、肉厚2.5mm+)を素
材として管端に絞り加工した後、絞り部にスプライン加
工を施したもの、即ち従来技術による一体成形タイブの
駆動軸の結果である。 本発明による駆動軸は疲労寿命のばらつきが少なく優れ
た疲労強度を有している。一方、比較品では先に述べた
ように口絞り加工による疵が発生する場合があり、それ
を起点とする疲労亀裂が発生したものは疲労寿命が低下
している。このため、比較品の疲労寿命にはばらつきが
大きい。以上のことから、本発明による駆動軸は実用に
耐えうるに十分な疲労強度を有していることがわかる。 次に、本発明の第2の方法の実施例として、通常部1が
外径75as、肉ff+、6+n+wテ、増肉部2が長
さ50m、肉厚2.5 mで管長手方向に500a*ピ
ツチで形成された差厚鋼管を増肉部2の中央で切断した
。そして、得られた全長500間の鋼管の両端に、別に
用意したステム部を摩擦圧8kgfZ閣冨、アプセット
圧12 kg f 7m” 、アブセント時間4秒の条
件で摩擦溶接した。摩擦溶接部の外周に生じた溶接ぼり
は機械加工により切削した。 このようにして製作した駆動軸について定荷重両振りね
じり疲労試験を行った結果を第4図に示す0図中の実線
は本発明による駆動軸の場合であり、破線は比較のため
増肉部のない同材質の鋼管(外径75m、肉P′!、1
.6 wh及び2.5■)を素材として同条件にて摩I
!J溶接し、外周溶接ビードを切削して製作した駆動軸
の場合である。比較品のうち、外径75m、肉厚1.6
−のものを比較品A、外径75m、肉厚2.5mのもの
を比較品Bと呼ぶ。 この図によれば、本発明による駆動軸は、肉厚の厚い比
較品Bと同等な疲労強度を有しており、肉厚の薄い比較
品Aに比べ疲労強度が著しく向上していることがわかる
。なお、本発明による駆動軸と比較品Bが同等な疲労強
度を示したのは、疲労亀裂の起点となるff擦溶接部に
おいて両者が等しい肉厚であることと対応している。 また、第2表は上述した本発明による駆動軸、比較品A
及び比較品Bの重量比を示したものである。この表より
本発明による駆動軸は比較品Aより若干重いが、同等の
疲労強度を示す比較品Bに比べはるかに軽量であること
がわかる。 第 表 あり、本発明による駆動軸の回転バランスが優れている
ことがわかる。 第 表 また、第3表は上述した本発明による駆動軸、比較品A
及び比較品Bに対して振動実験を行い、それぞれ曲げ振
動の固有振動数を調べた結果である。差厚鋼管を使用し
たことによる弊害はなく、固有振動数は三者とも略同−
であり、1次モードで約800Hzである。この値は自
動車駆動軸の回転速度に比べ高い値となっており共振現
象は生じないことがわかる。一方、回転バランスについ
ては、JIS  BO905の規定によるつり合い良さ
を測定したところ、本発明の駆動軸では15aus /
 S、本発明による駆動軸と同じ寸法の駆動軸をアーク
周溶接で製造した場合には31mm/Sで以上のことか
ら、本発明の第2の方法による駆動軸は、疲労強度が高
く、駆動軸としての強度信顛性に優れたものであること
がわかる。また、軽量化が達成され、更に、溶接を採用
するにもがかわらず回転バランスが優れ、振動低減の効
果も十分に期待できるものである。 〔発明の効果〕 以上の説明から明らかなように、本発明の鋼管製駆動軸
の製造方法は、鋼管の段階から増肉部を有する差厚鋼管
を使用するので、後処理により増肉させるのと異なり工
程省略が達成でき、経済的であるほか、駆動軸の軽量を
図り、更に軽量を図るにもかかわらず駆動軸の疲労強度
を向上させ、製品の信頼性を高める。更に本発明の第2
の方法にあっては、溶接が採用されるにもかかわらず振
動低減の効果も十分に期待できるものである。
Drive shafts used in automobiles have traditionally been manufactured mostly from steel bars, but recently, consideration has begun to switch from steel bars to steel pipes. First, by switching from steel bars to steel pipes,
The weight can be reduced, and vehicle dynamic performance such as acceleration performance can be improved. The second reason is that the natural frequency can be changed outside the engine speed range, resonance phenomena can be avoided, and vibration and noise can be reduced. There are two main methods for manufacturing such steel pipe drive shafts as follows. One method is to use an integrally molded steel pipe drive shaft as shown in FIG. 5, in which the end of the steel pipe a is drawn, and then the drawn part C is splined. The other case is a welded assembly type steel pipe drive shaft as shown in Fig. 6, in which a stem e with a pre-splined constriction part C is welded to both ends of the steel pipe a (f indicates the welded part). It is something. [Problems to be Solved by the Invention] Among these manufacturing methods, those that manufacture integrally molded steel pipe drive shafts suffer from slight angular deviation and uneven wall thickness in the circumferential direction, which are difficult to avoid in manufacturing. This may be increased by end drawing and become a noticeable flaw. Such flaws become starting points for fatigue cracks due to repeated torsional loads during use.
This causes the problem of reducing the fatigue strength of the drive shaft. On the other hand, in the method of manufacturing a welded assembly type steel pipe drive shaft, the end of the pipe is not drawn, so the angularity and uneven wall thickness of the raw steel pipe are not promoted, but the heat generated during welding As a result, a softened area called a heat-affected zone occurs, and the fatigue strength of this area decreases. Further, although this is a problem especially in the case of a thin wall, the welded portion may not have sufficient strength due to misalignment between the axes of the steel pipe f and the stem e. The decrease in fatigue strength mentioned above has a significant impact on the reliability of the product, especially when it is applied to the drive shaft of an automobile.
This is a serious obstacle to the practical application of steel pipe drive shafts. An object of the present invention is to provide a method for manufacturing a steel pipe drive shaft that eliminates the problems related to fatigue strength caused by the prior art while considering manufacturing cost reduction. [Means for Solving the Problems] A first manufacturing method of the present invention is a method for manufacturing a drive shaft using a steel pipe, in which thickened portions are provided at equal intervals in the longitudinal direction of the pipe, and Normally, a differential thickness steel tube with a wall thickness ratio of 2 or more is used as a raw material, and after the differential thickness steel tube is cut into short tubes at the thickened portion, spline processing for connection is performed on both tube ends. A second manufacturing method of the present invention is a method for manufacturing a drive shaft using a steel pipe, in which a differential thickness steel tube having thickened portions at equal intervals in the longitudinal direction of the tube is used as a material, and the differential thickness steel tube is formed at the thickened portions. After cutting a short tube, the stem portion is joined to both ends of the tube by friction welding. [Function] In the first manufacturing method of the present invention, since the thick-walled tube end is splined, the fatigue strength of the drive shaft is improved. Furthermore, since the entire tube is not thickened, weight reduction is also achieved. Furthermore, since a differential thickness steel pipe having thickened portions at regular intervals in the pipe longitudinal direction is used as the raw pipe, a process can be omitted, unlike increasing the wall thickness through post-processing. In the first method of the present invention, the reason why the wall thickness ratio between the thickened part and the normal part of the differential thickness steel pipe is set to 2 or more is to ensure the fatigue strength of the thickened part where splines are formed in a later process. . It goes without saying that in order to further ensure fatigue strength, it is better to increase the wall thickness ratio, but increasing the wall thickness ratio unnecessarily will hinder weight reduction, so the wall thickness ratio should be 2 or more. Select by range. Table 1 shows the constant load bidirectional torsional fatigue tests conducted on differential thickness steel pipes with various wall thickness ratios, which were cut into short tubes at the thickened part and then machined to form splines in the thickened part. The results are shown below. As a differential thickness steel pipe, the dimensions of the normal part are 50 m in outer diameter and 2 in wall thickness.
.. 51all STKM16C equivalent material was used. The spline shape was trapezoidal with a tooth height IIm. It can be seen from Table 1 that the fatigue life improves as the wall thickness ratio increases, and is saturated at a value of 2 or more. Further, when the wall thickness ratio is less than 2, fatigue cracks occur in the spline portion, but when the thickness ratio is 2 or more, fatigue cracks do not occur in the spline portion, but fatigue cracks occur at the boundary between the thickened portion and the normal portion. From this, it can be seen that if the wall thickness ratio is 2 or more, even if a spline is formed in the thickened part, sufficient fatigue strength can be ensured in this part. Table 1 In the second manufacturing method of the present invention, since the stem is welded to the thick walled portion of the tube end, the fatigue strength of the drive shaft is reduced compared to the case where the stem is welded to a steel tube with the normal wall thickness. improves. Furthermore, since the entire raw pipe is not made thicker, weight reduction is also achieved. Furthermore, since a differential thickness steel pipe having thickened portions at regular intervals in the pipe longitudinal direction is used as the raw pipe, a process can be omitted, unlike increasing the wall thickness through post-processing. The reason why friction welding is adopted in the second method of the present invention is that friction welding has the highest productivity among various welding joints, enables manufacturing cost reduction, and is a welding method suitable for circumferential welding of steel pipes. be. Furthermore, since the drive shaft is a rotating body, rotational balance is a problem, but in friction welding, the bead amount of the welded part is the same at any position in the circumferential direction, and the amount of eccentricity is extremely small. Therefore, the rotational balance after welding is also excellent. [Example] Hereinafter, an example of the present invention will be specifically described based on the drawings. Fig. 1 is a cross-sectional view showing an example of a steel pipe with a different thickness used in the manufacturing method of the present invention. This is a tube in which thickened parts 2 with small thicknesses are alternately formed at a predetermined pitch. Such steel pipes are usually made from steel pipes with uniform wall thickness and manufactured by special cold drawing. As an example of the first method of the present invention, the pipe has a normal part l with an outer diameter of 50 cm and a wall thickness of 2.51 m, and has a pipe length of 500 g+ in the longitudinal direction.
After cutting a short pipe at the center of the thickened part 2 for a steel pipe of different thickness with a length of 150mm and a thickened part 2 of 150 mm in length at a pitch of 150 mm, the outer periphery of both ends is cut as shown in Fig. 2. A spline 3 was formed by machining to produce a drive shaft with a total length of 500 m. Figure 3 shows the results of a constant load double-sided torsional fatigue test performed on the drive shaft manufactured in this way. A steel pipe made of the same material (outside diameter 50mm, wall thickness 2.5mm+) is used as a raw material, and the pipe end is drawn, and then the drawn part is splined. This is the result. The drive shaft according to the present invention has excellent fatigue strength with little variation in fatigue life. On the other hand, in comparative products, as mentioned above, flaws may occur due to the mouth drawing process, and those in which fatigue cracks occur starting from these flaws have a reduced fatigue life. For this reason, the fatigue life of comparative products varies widely. From the above, it can be seen that the drive shaft according to the present invention has sufficient fatigue strength to withstand practical use. Next, as an example of the second method of the present invention, the normal part 1 has an outer diameter of 75 as, a wall thickness of ff+, 6+n+w, and the thickened part 2 has a length of 50 m, a wall thickness of 2.5 m, and a length of 500 m in the longitudinal direction of the pipe. *The differential thickness steel pipe formed with pitch was cut at the center of the thickened part 2. Then, separately prepared stem parts were friction welded to both ends of the obtained steel pipe with a total length of 500 mm under the conditions of a friction pressure of 8 kgfZ, an upset pressure of 12 kgf7m, and an absent time of 4 seconds.The outer periphery of the friction welded part The weld burrs that were generated in the process were cut by machining.The results of a constant load double-oscillating torsional fatigue test performed on the drive shaft manufactured in this way are shown in Figure 4.The solid line in Figure 0 indicates that the drive shaft according to the present invention was For comparison, the dashed line is a steel pipe made of the same material without the thickened part (outer diameter 75 m, wall thickness P'!, 1
.. 6 wh and 2.5 ■) were used as materials and polished under the same conditions.
! This is the case of a drive shaft manufactured by J welding and cutting the outer weld bead. Among the comparison products, the outer diameter is 75m and the wall thickness is 1.6m.
- is called comparative product A, and the one with an outer diameter of 75 m and a wall thickness of 2.5 m is called comparative product B. According to this figure, the drive shaft according to the present invention has the same fatigue strength as comparative product B, which has a thick wall, and has significantly improved fatigue strength compared to comparative product A, which has a thin wall. Recognize. Note that the fact that the drive shaft according to the present invention and comparative product B showed equivalent fatigue strength corresponds to the fact that they both have the same wall thickness at the ff friction weld, which is the starting point of fatigue cracks. Table 2 also shows the drive shaft according to the present invention, comparative product A.
The weight ratios of Comparative Product B and Comparative Product B are shown. From this table, it can be seen that the drive shaft according to the present invention is slightly heavier than comparative product A, but much lighter than comparative product B, which has the same fatigue strength. Table 1 shows that the rotational balance of the drive shaft according to the present invention is excellent. Table 3 also shows the drive shaft according to the invention described above, comparative product A.
Vibration experiments were conducted on Comparative Product B and Comparative Product B, and the natural frequencies of bending vibration were investigated. There are no adverse effects due to the use of steel pipes with different thicknesses, and the natural frequencies are approximately the same for all three.
The frequency is approximately 800 Hz in the first mode. It can be seen that this value is higher than the rotational speed of the automobile drive shaft, and no resonance phenomenon occurs. On the other hand, regarding rotational balance, when we measured the balance according to the regulations of JIS BO905, the drive shaft of the present invention had a rotational speed of 15aus/
S, when a drive shaft with the same dimensions as the drive shaft according to the present invention is manufactured by arc circumferential welding, it is 31 mm/S.From the above, the drive shaft according to the second method of the present invention has high fatigue strength and It can be seen that the shaft has excellent strength and reliability. In addition, weight reduction has been achieved, and even though welding is used, rotational balance is excellent, and vibration reduction effects can be fully expected. [Effects of the Invention] As is clear from the above explanation, the method for manufacturing a steel pipe drive shaft of the present invention uses a differential thickness steel pipe having a thickened portion from the steel pipe stage, so it is not necessary to increase the thickness by post-processing. Unlike conventional products, it is possible to omit the process, making it economical, and also makes the drive shaft lighter, improving the fatigue strength of the drive shaft despite the lighter weight, and increasing the reliability of the product. Furthermore, the second aspect of the present invention
Although the method uses welding, it can be expected to have a sufficient vibration reduction effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で使用する差厚鋼管の一部縦断面図、第
2図は差厚鋼管により製作した駆動軸の一部縦断面図、
第3図はねじり疲労試験の結果を示すグラフ、第4図は
他の実施例におけるねじり疲労試験の結果を示すグラフ
、第5図は従来の一体成形タイブの駆動軸の説明図、第
6図は従来の溶接組立タイプの駆動軸の説明図である。 図中、l:通常部、2:増肉部、3ニスプライン。 第 図 第 図 ねじり荷電極返し数(回) 第 図 第 図 ねじりR東繰返し数(回) 第 図 第 図
FIG. 1 is a partial vertical cross-sectional view of the differential thickness steel pipe used in the present invention, FIG. 2 is a partial vertical cross-sectional view of a drive shaft manufactured from the differential thickness steel pipe,
Fig. 3 is a graph showing the results of the torsional fatigue test, Fig. 4 is a graph showing the results of the torsional fatigue test in other examples, Fig. 5 is an explanatory diagram of the drive shaft of the conventional integrally molded type, Fig. 6 is an explanatory diagram of a conventional welded assembly type drive shaft. In the figure, 1: normal part, 2: thickened part, 3 varnish spline. Figure Number of torsional charge repetitions (times) Figure Figure Number of torsional R east repetitions (times) Figure Figure

Claims (1)

【特許請求の範囲】 1、鋼管を用いて駆動軸を製造する方法において、管長
手方向に等間隔に増肉部を有し、かつ増肉部と通常肉厚
部の肉厚比が2以上である差厚鋼管を素材とし、該差厚
鋼管を増肉部で短管切断した後、両管端部に接続用スプ
ライン加工を施すことを特徴とする鋼管製駆動軸の製造
方法。 2、鋼管を用いて駆動軸を製造する方法において、管長
手方向に等間隔に増肉部を有する差厚鋼管を素材とし、
該差厚鋼管を増肉部で短管切断した後、両管端にステム
部を摩擦溶接にて接合することを特徴とする鋼管製駆動
軸の製造方法。
[Scope of Claims] 1. A method for manufacturing a drive shaft using a steel pipe, wherein the pipe has thickened portions at regular intervals in the longitudinal direction of the pipe, and the wall thickness ratio between the thickened portion and the normal thick portion is 2 or more. A method for producing a drive shaft made of a steel pipe, which is made of a steel pipe of different thickness, which is cut into short pipes at a thickened part, and then splined for connection at both ends of the pipe. 2. In a method of manufacturing a drive shaft using a steel pipe, a steel pipe of different thickness having thickened portions at equal intervals in the longitudinal direction of the pipe is used as the material,
A method for manufacturing a steel pipe drive shaft, which comprises cutting the differential thickness steel pipe into short pipes at the thickened part, and then joining stem parts to both ends of the pipe by friction welding.
JP21923088A 1988-08-31 1988-08-31 Manufacture of driving shaft made of steel pipe Pending JPH0270341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21923088A JPH0270341A (en) 1988-08-31 1988-08-31 Manufacture of driving shaft made of steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21923088A JPH0270341A (en) 1988-08-31 1988-08-31 Manufacture of driving shaft made of steel pipe

Publications (1)

Publication Number Publication Date
JPH0270341A true JPH0270341A (en) 1990-03-09

Family

ID=16732242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21923088A Pending JPH0270341A (en) 1988-08-31 1988-08-31 Manufacture of driving shaft made of steel pipe

Country Status (1)

Country Link
JP (1) JPH0270341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030229A1 (en) * 2013-08-30 2015-03-05 株式会社ジェイテクト Cutting tool and spline processing method
US9646800B2 (en) 2013-03-29 2017-05-09 Nec Network And Sensor Systems, Ltd. Traveling wave tube system and control method of traveling wave tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9646800B2 (en) 2013-03-29 2017-05-09 Nec Network And Sensor Systems, Ltd. Traveling wave tube system and control method of traveling wave tube
WO2015030229A1 (en) * 2013-08-30 2015-03-05 株式会社ジェイテクト Cutting tool and spline processing method
US9751140B2 (en) 2013-08-30 2017-09-05 Jtekt Corporation Cutting tool and spline processing method

Similar Documents

Publication Publication Date Title
US3656318A (en) Constant velocity universal joints
US4915536A (en) Modular yoke end
AU2005202744A1 (en) Method of manufacturing a combined driveshaft tube and yoke assembly
US6662423B2 (en) Method of producing a drive shaft
JP2016502478A (en) Hydroformed driveshaft tube with secondary shape
US2067282A (en) Method of making joint members
US6367680B1 (en) Component for vehicular driveshaft assembly and method of manufacturing same
US20070262066A1 (en) Stir welded drive shaft and method of making same
RU2693894C1 (en) Propeller shaft of vehicle
KR101664682B1 (en) Hollow drive shaft for vehicle and manufacturing meathod of the same
JPH0270341A (en) Manufacture of driving shaft made of steel pipe
EP1493510A1 (en) Method of manufacturing a combined driveshaft tube and yoke assembly
EP1350970A2 (en) Method of manufacturing an axially collapsible driveshaft assembly
US2752673A (en) Method of constructing a vehicle axle housing
US20070129154A1 (en) Propeller shaft assembly with integrated stub portion
JP2002336975A (en) Method for friction-welding pipe members made of dissimilar materials
JP2007315463A (en) Hollow power transmission shaft
US20040089698A1 (en) Connection between an outer joint part or an outer sleeve part and a tube end
US20210396276A1 (en) Torsionally Elastic Shaft Joint and Method of Making the Same
JPH04187388A (en) Friction welding method for different kinds of metallic pipes
KR100290572B1 (en) Lightweight Ram for Improved Bodybuilders
JP2005271015A (en) Friction welding method of steel tube and aluminum alloy hollow member
JP2018131113A (en) Propeller shaft for vehicle
JP7320079B2 (en) power transmission shaft
JPH05237578A (en) Manufacture of hollow shaft with gear