JPH0270192A - Call allotting system to plural line groups - Google Patents

Call allotting system to plural line groups

Info

Publication number
JPH0270192A
JPH0270192A JP22129988A JP22129988A JPH0270192A JP H0270192 A JPH0270192 A JP H0270192A JP 22129988 A JP22129988 A JP 22129988A JP 22129988 A JP22129988 A JP 22129988A JP H0270192 A JPH0270192 A JP H0270192A
Authority
JP
Japan
Prior art keywords
line group
call
storage area
value
incoming call
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22129988A
Other languages
Japanese (ja)
Other versions
JP2504133B2 (en
Inventor
Shigeo Morita
茂男 森田
Yoshihiko Nodera
野寺 義彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP22129988A priority Critical patent/JP2504133B2/en
Publication of JPH0270192A publication Critical patent/JPH0270192A/en
Application granted granted Critical
Publication of JP2504133B2 publication Critical patent/JP2504133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To perform the highly precise allotment of call through the use of a less storage area by providing every line group with the storage area, and allotting the call to each line group by performing arithmetic operation according to allotted allotting ratio at every incoming call. CONSTITUTION:A number corresponding to the allotting ratio and an initial value are set in allotting ratio memories B1 to Bn and work memories W1 to Wn respectively from an initialization circuit 10. When the incoming call arises, a pulse circuit 11 is operated at every incoming call, and the values stored in the memories B1 to Bn are added to the contents of the memories W1 to Wn, and the sums are stored in the memories W1 to Wn, and simultaneously, are transferred to a comparing/operating means 12. As the result of comparison/operation, a work memory number to show the maximum value is transferred to a line group selecting means 13, and simultaneously, the total value of the numbers corresponding to the allotting ratio is subtracted from the work memory having shown the maximum value. Thus, the highly precise allotment can be performed through the use of the less storage area.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複数回線群に呼を配分するに際し、あらかじ
め定められた比率にしたがい、呼を各回線群に配分する
方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for allocating calls to each line group according to a predetermined ratio when allocating calls to a plurality of line groups.

(従来の技術) 第5図は、複数回線群への比例呼配分方式が適用される
処理システムを示す接続構成図である。
(Prior Art) FIG. 5 is a connection configuration diagram showing a processing system to which a proportional call distribution method to multiple line groups is applied.

処理システムXに入呼した処理システムY宛ての呼は、
予め処理システムXに設定記憶された配分比率に従って
、回線群CI、C2,C3,・・・・Cnに比例配分さ
れる。
A call addressed to processing system Y that comes into processing system X is
According to the distribution ratios set and stored in advance in the processing system X, the lines are distributed proportionally to the line groups CI, C2, C3, . . . Cn.

複数の回線群に呼を比例配分する従来の方法としては、
予め配分パターンをメモリ上に設定しておき、入呼毎に
このパターンを読み出して配分先を決定する方式がある
The traditional method of proportionally allocating calls to multiple line groups is
There is a method in which an allocation pattern is set in advance in a memory, and this pattern is read out each time a call arrives to determine the allocation destination.

第6図に従来の方式の具体例を示す。ここで1%単位の
精度で配分を行う場合、テーブルT(0)〜テーブルT
(99)の100種のテーブルに配分先を記録し、入呼
ごとにポインタを歩進させ、ポインタの示すテーブルの
内容から呼を配分する回線群を決定する。
FIG. 6 shows a specific example of the conventional method. Here, when allocating with an accuracy of 1%, table T(0) to table T
The allocation destinations are recorded in the 100 types of tables (99), the pointer is incremented each time a call is received, and the line group to which the call is allocated is determined from the contents of the table indicated by the pointer.

例えば回線群A=70%、回線群B=30%配分で各回
線群に割振る場合、 (A、 A、 B、 A、 A、 B、 A、 A、 
A、 B)のパターンをテーブルに書込んでおき、入呼
が発生するごとにポインタを歩進させ、ポインタの示す
テーブルの内容から呼を配分する回線群を決定する。
For example, when allocating to each line group with line group A = 70% and line group B = 30%, (A, A, B, A, A, B, A, A,
Patterns A and B) are written in a table, the pointer is incremented each time an incoming call occurs, and the line group to which the call is allocated is determined from the contents of the table indicated by the pointer.

(発明が解決しようとする課題) 複数の回線群に呼を配分する方法として、特に交換機の
処理に適する条件としては、(1)特定の回線群に短期
間に呼が集中せず、適切に呼を比例配分できること、(
2)必要となるメモリエリアか少ないことが必要である
(Problems to be Solved by the Invention) As a method of allocating calls to multiple line groups, conditions that are particularly suitable for switching processing are as follows: (1) Calls do not concentrate on a specific line group in a short period of time and Being able to prorate calls (
2) The required memory area must be small.

第6図に示した従来の方式では、配分パターンをすべて
メモリ上に記憶しておくため、例えば、0.1%単位の
精度で配分を行う場合、1000種の記憶領域を確保し
なければならず、精度を10倍にするには、10倍の記
憶領域を必要とする。また記憶領域への配分パターン設
定のための手順が別に必要となる。
In the conventional method shown in Figure 6, all allocation patterns are stored in memory, so for example, if allocation is to be performed with an accuracy of 0.1%, storage areas for 1000 types must be secured. First, to increase the accuracy by 10 times, a storage area of 10 times is required. Additionally, a separate procedure is required for setting the allocation pattern to storage areas.

本発明はこの点を改善して少ない記憶領域で精度のよい
配分を行うことを目的とする。
The present invention aims to improve this point and perform accurate allocation with a small storage area.

(課題を解決するための手段) 本発明は、上述の点に鑑み発明されたもので、各回線群
に対応したワーク用テーブルを設け、入呼が発生する毎
に回線群ごとの呼比例配分にしたがって計算を行い、計
算結果に従って前記入呼をどの回線群へ配分するかを決
定することにより、適切な呼比例配分を可能とする。
(Means for Solving the Problems) The present invention was invented in view of the above-mentioned points, and includes a work table corresponding to each line group, and call proportional allocation for each line group each time an incoming call occurs. By performing calculations according to the calculation results and determining to which line group the incoming call is to be allocated according to the calculation results, appropriate proportional call allocation is possible.

(作用) 複数回線群に対応した数のワーク用テーブルを設け、入
呼が発生すると前記ワーク用テーブルの値を、回線群ご
との呼比例配分に対応した値を用いて計算を行い、該計
算結果を比較演算し、該演算結果から呼を配分する回線
群を選択する。
(Function) A number of work tables corresponding to multiple line groups are provided, and when an incoming call occurs, the value in the work table is calculated using a value corresponding to the call proportional allocation for each line group, and the calculation is performed. The results are compared and calculated, and a line group to which the call is to be allocated is selected based on the calculation results.

この操作を入呼が発生する毎に行うことにより、メモリ
エリアの使用領域が少なく、複数回線群への適切な呼比
例配分が実現できる。
By performing this operation every time an incoming call occurs, the memory area used is small and an appropriate proportionate allocation of calls to a plurality of line groups can be realized.

なお、比例配分の精度を10倍にするには、従来例にお
いては、パターンテーブルの数を10倍にしなければな
らないが、本発明においては各ワーク用テーブルのカウ
ント桁数を1桁増やすだけでよく大きな記憶領域を必要
としない。
In addition, in order to increase the precision of proportional allocation by 10 times, in the conventional example, the number of pattern tables must be increased by 10 times, but in the present invention, the number of count digits of each work table can be increased by one digit. Does not often require large storage space.

(実施例1) 第1図は本方式の構成図である。初期値設定回路IOよ
り配分率メモリB(1)〜B (n)に配分比率に対応
した数を、およびワーク用メモリW(1)〜W(n)に
初期値を設定する(nは回線群番号のパラメータ)。
(Example 1) FIG. 1 is a block diagram of this system. The initial value setting circuit IO sets a number corresponding to the distribution ratio in the distribution rate memories B(1) to B(n) and initial values to the work memories W(1) to W(n) (n is the line group number parameter).

次に入呼が発生すると、入呼ごとにパルス回路11を動
作させ、ワーク用メモリW (1)〜W(n)の内容に
配分率メモリB(1)〜B (n)に蓄えられていた値
を加算し、その和をワーク用メモリw (i)〜W(n
)に蓄えると共に比較/演算手段12へ転送する。
Next, when an incoming call occurs, the pulse circuit 11 is operated for each incoming call, and the contents of the work memories W (1) to W (n) are stored in the allocation rate memories B (1) to B (n). The sum is added to the work memory w (i) ~ W (n
) and transferred to the comparison/calculation means 12.

比較/演算手段12では、転送されたワーク用メモリW
(1)〜W(n)の値を比較/演算し、最大値を求め、
最大値であったワーク用メモリ番号を回線群選択手段1
3に転送すると共に、最大値であったワーク用メモリか
ら固定値(配分比率に対応した数の合計値)を減算する
The comparison/calculation means 12 uses the transferred work memory W.
(1) Compare/calculate the values of ~W(n) and find the maximum value,
The work memory number that was the maximum value is selected by line group selection means 1.
At the same time, a fixed value (total value of numbers corresponding to the allocation ratio) is subtracted from the work memory which was the maximum value.

回線群選択手段13では前記最大値であったワーク用メ
モリ番号に対応した回線群を選択する。以後、入呼が発
生するごとに前記動作を繰り返すことにより呼を比例配
分し、回線群を選択することかできる。
The line group selection means 13 selects the line group corresponding to the work memory number which is the maximum value. Thereafter, by repeating the above operation every time an incoming call occurs, calls can be allocated proportionally and a line group can be selected.

第2図(a)は本方式における初期値設定処理手順を示
す。
FIG. 2(a) shows the initial value setting processing procedure in this method.

第2図(b)は回線群選択処理手順を示す。FIG. 2(b) shows the line group selection processing procedure.

第3図(a)は配分比率テーブルのメモリ構成を示す。FIG. 3(a) shows the memory configuration of the allocation ratio table.

第3図(b)はワーク用テーブルのメモリ構成を示す。FIG. 3(b) shows the memory configuration of the work table.

(Nは総回線群数、nは回線群番号のパラメータ) 第1表は数値例を示し、6つの回線群へ配分比率50%
、20%、15%、10%、5%、0%でそれぞれに配
分する場合に、本方式で使用するワーク用テーブルの内
容の変化を示したものである。
(N is the total number of line groups, n is the line group number parameter) Table 1 shows a numerical example, and the allocation ratio to 6 line groups is 50%.
, 20%, 15%, 10%, 5%, and 0%, respectively, shows changes in the contents of the work table used in this method.

(以下余白) 策」−人 口は選択を示す。(Margin below) strategy” - person The mouth indicates choice.

本方式の処理手順は次のとおりである。The processing procedure of this method is as follows.

手順1.初期値設定手順 第2図(a)において (1)各回線群に対応した配分比率を配分比率テーブル
B(1)〜B(n)へ設定する(100)。
Step 1. Initial value setting procedure In FIG. 2(a), (1) the allocation ratio corresponding to each line group is set in allocation ratio tables B(1) to B(n) (100).

(2)ワーク用テーブルW(n)へ初期値を設定する(
+02)。
(2) Setting the initial value to the work table W(n) (
+02).

第1表の数値例では配分比率テーブルB (n)に配分
比率に対応した数を配分比率テーブルB (1)=50
.  B(2) =20・・B(6)=Oを設定し、ワ
ーク用テーブルW(1)〜W(6)にはそれぞれ初期値
100を設定することを示す。
In the numerical example of Table 1, the number corresponding to the allocation ratio is added to allocation ratio table B (n) as allocation ratio table B (1) = 50.
.. B(2)=20...B(6)=O is set, and the initial value 100 is set in each of the work tables W(1) to W(6).

手順20人呼毎に起動される回線群選択手順第2図(b
)において (1)それぞれのワーク用テーブルW(n)値と配分比
率テーブルB (n)値を加算する(104〜114)
。なお、Nは、回線群数、MAXとnは変数である。
Procedure Line group selection procedure activated every 20 people calls Figure 2 (b
), (1) Add each work table W(n) value and distribution ratio table B(n) value (104 to 114)
. Note that N is the number of line groups, and MAX and n are variables.

(2)各々の加算後のワーク用テーブルW(1)〜W(
6)値を比較/演算し、ワーク用テーブル値の最大とな
るワーク用テーブル(MAX、)に対応した回線群を選
択する(116)。
(2) Work tables W(1) to W( after each addition
6) Compare/calculate the values and select the line group corresponding to the work table (MAX,) with the maximum work table value (116).

(3)選択した回線群対応のワーク用テーブル(MAX
n)値から固定値を減算する(118)。
(3) Work table (MAX
n) subtract a fixed value from the value (118);

第1表においてワーク用テーブルW(n)の初期値は全
て100であり、1回目の入呼では、これに回線群対応
の配分比率に対応した数を加算する。
In Table 1, the initial values of the work table W(n) are all 100, and at the first incoming call, a number corresponding to the allocation ratio corresponding to the line group is added to this value.

よって、W(1) =150 、 W(2) =120
 、 W(3) =115 、 W(4) =110 
、 W(5) =105 、 W(6) =100とな
り、W(n)値の最大となるn=1に対応する回線群を
選択し、W(1)値から固定値100を減算する。
Therefore, W(1) = 150, W(2) = 120
, W(3) =115, W(4) =110
, W(5) = 105, W(6) = 100, the line group corresponding to n=1, which has the maximum W(n) value, is selected, and the fixed value 100 is subtracted from the W(1) value.

ワーク用テーブルW(n)の値は、それぞれW(1) 
=50. W(2) =120 、 W(3) =11
5 、 W(4)=110 、 W(5) =105 
、 W(6) =100となり、次の入呼が来るのを待
つ。
The values of the work table W(n) are each W(1)
=50. W(2) = 120, W(3) = 11
5, W(4)=110, W(5)=105
, W(6) = 100, and waits for the next incoming call.

2回目の入呼ではW(Iン=W(1) +B(1) =
50+50=100 、 W(2) =120 +20
=140 、 W(3)=130 、 W(4) =1
20 、 W(5) =110 、 W(6) =10
0となり、W(n)値が最大となるn=2に対応する回
線群を選択し、W(2)値から100を減算する。(W
(2)  =40)となる。
For the second call, W(In=W(1) +B(1) =
50+50=100, W(2)=120+20
=140, W(3)=130, W(4)=1
20, W(5) =110, W(6) =10
0 and the line group corresponding to n=2 with the maximum W(n) value is selected, and 100 is subtracted from the W(2) value. (W
(2) =40).

以降、入呼毎に同様の処理を実施し、回線群を選択する
Thereafter, similar processing is performed for each incoming call to select a line group.

なお、本例では最大値の判定において同一値があった場
合、nが小さい回線群を優先して選択する。
Note that in this example, if there are identical values in determining the maximum value, the line group with the smaller n is selected preferentially.

第1表において入呼毎にワーク用テーブルW(1)〜W
(n)の総計は、配分比率に対応した数の合計(=10
0)だけ増加するが、回線群選択後、該回線群選択され
たワーク用テーブル値から固定値(=lOO)を減算す
るので総計は変化しない。
In Table 1, work tables W(1) to W are used for each incoming call.
The total of (n) is the sum of the numbers corresponding to the allocation ratio (=10
However, after the line group is selected, the fixed value (=lOO) is subtracted from the work table value selected for the line group, so the total does not change.

従って、各ワーク用テーブルW(1)〜W(n)のメモ
リサイズとして多くのエリアを確保しておく必要はない
Therefore, it is not necessary to secure a large area as the memory size for each work table W(1) to W(n).

本方式では一旦選択された回線群に対応するワーク用テ
ーブルW(n)の値は減算され、配分比率の小さい回線
群はど次回の選択までのインターバルが長くなる。 第
1表に示した例では、5%が単位となっているため20
回の選択でワーク用テーブルの値が初期値に戻っており
この選択パターンを繰返すこととなる。
In this method, the value of the work table W(n) corresponding to the line group once selected is subtracted, and the interval until the next selection is longer for the line group with a smaller allocation ratio. In the example shown in Table 1, the unit is 5%, so 20
The value of the work table is returned to the initial value by the second selection, and this selection pattern is repeated.

このように1%、0.1%、 0.01%単位の精度で
設定すれば、それぞれ100回、 1000回、 10
000回の選択で初期値に戻りこの間で設定された配分
比率に従い、適切に呼配分を行う。
In this way, if you set the accuracy in units of 1%, 0.1%, and 0.01%, it will be 100 times, 1000 times, and 10 times, respectively.
After 000 selections, the call returns to the initial value and appropriate call allocation is performed according to the allocation ratio set during this time.

以上のように本方式は、配分比率の加算および加算結果
の比較、および固定値の減算から構成され、単純なアル
ゴリズムで、任意の比率、任意の精度の呼配分を可能と
するものであり、原理的には配分先数、精度、比率に制
約を受けない。
As described above, this method consists of adding allocation ratios, comparing the addition results, and subtracting fixed values, and enables call allocation with arbitrary ratios and arbitrary precision using a simple algorithm. In principle, there are no restrictions on the number of allocation destinations, accuracy, or ratio.

(実施例2) 加算結果の比較方法として上記のように最大値をとる方
法の他に固定値と比較して回線群を決定することも可能
であり、プログラムがさらに簡略化されるというメリッ
トがあるが、比較の順番により選択順に差がでるという
特性を持つ。
(Example 2) As a method of comparing the addition results, in addition to the method of taking the maximum value as described above, it is also possible to determine the line group by comparing with a fixed value, which has the advantage of further simplifying the program. However, it has the characteristic that the selection order differs depending on the order of comparison.

第4図、第2表は本方式による実施例を示す。FIG. 4 and Table 2 show examples of this method.

(n+は1〜nのパラメータ+n2は1〜Nまでのワー
ク用メモリ番号) 初期値の設定は第1の実施例と同様に行う。
(n+ is a parameter from 1 to n + n2 is a work memory number from 1 to N) The initial value is set in the same manner as in the first embodiment.

第4図において、各々のワーク用テーブルについてW 
(n、) = W (n、)+ B (n+)を計算す
る(150〜156)。W(1) =150 、 W(
2) =120 、 W(3) =115 、 W(4
) =110 、 W(5) =105 、 W(6)
 =100となる。初期値は100であるので、W(1
)〜W(5)が100を越えている。ここで、回線群番
号n2が小さい回線群を優先して選択するものとし、n
2=1に対応する回線群を選択しく158〜162)、
回線群選択後、選択されたW(1)から固定値100を
減算する(164)。
In Figure 4, for each work table W
Calculate (n,) = W (n,) + B (n+) (150-156). W(1) = 150, W(
2) =120, W(3) =115, W(4
) =110, W(5) =105, W(6)
=100. Since the initial value is 100, W(1
) to W(5) exceeds 100. Here, it is assumed that the line group with the smaller line group number n2 is selected preferentially, and n
Select the line group corresponding to 2=1 (158-162),
After selecting the line group, a fixed value of 100 is subtracted from the selected W(1) (164).

2回目の入呼ではW(1) =W(1) +B(1) 
’=50+50=100 、 W(2) =120 +
20=140 、 W(3) =130 、 W(4)
 =120 、 W(5) =110 、 W(6) 
=100となり、W(2)〜W(5)が100を越えて
いるが、n2が小さい回線群を優先して選択する優先順
位に従い、n2=2に対応する回線群を選択し、回線群
選択後、選択されたW(2)から固定値100を減算す
る。
For the second call, W(1) = W(1) +B(1)
'=50+50=100, W(2) =120+
20=140, W(3) =130, W(4)
=120, W(5) =110, W(6)
= 100, W(2) to W(5) exceed 100, but the line group corresponding to n2=2 is selected according to the priority order of selecting the line group with smaller n2, and the line group After selection, a fixed value of 100 is subtracted from the selected W(2).

以降、入呼毎に同様の処理を実施し、回線群を選択する
Thereafter, similar processing is performed for each incoming call to select a line group.

第2表は、第1表と同一の条件(配分比率および初期値
)での回線群選択例を示したものである。
Table 2 shows an example of line group selection under the same conditions (allocation ratio and initial value) as in Table 1.

(以下余白) 匿じ1人 口は選択を示す。(Margin below) Hidden alone The mouth indicates choice.

(発明の効果) 以上説明したように本発明は、特定回線群への呼の集中
を避けながら、単純なアルゴリズムで、少ないメモリ量
で複数回線群への比例呼配分を可能とするものであり、
実時間性の要求される処理に効果がある。
(Effects of the Invention) As explained above, the present invention enables proportional call allocation to multiple line groups using a simple algorithm and a small amount of memory while avoiding concentration of calls on a specific line group. ,
Effective for processing that requires real-time performance.

特に本方式によれば、ランダムに入呼した呼は連続して
同一の回線群へ配分されることが少ないため、呼の平滑
化が期待でき、交換処理にとって好ましい特性が得られ
、交換機の輻幀、無効呼の発生の防止に効果がある。
In particular, according to this system, randomly incoming calls are rarely allocated to the same line group consecutively, so call smoothing can be expected, favorable characteristics for switching processing can be obtained, and switching equipment congestion can be achieved. This is effective in preventing the occurrence of invalid calls.

また、配分比率に従って適正に呼の配分を行うため、網
の設計を容易にすることができる。
Furthermore, since calls are allocated appropriately according to the allocation ratio, network design can be facilitated.

本方式では、配分比率の合計は必ずしも100(%)と
する必要はなく、初期値、減算値、加算値を変更するだ
けで、特定の回線群への呼配分を臨時的にゼロとするこ
とも可能であり、異常状態の発生時にも上記設定値を変
更することにより有効に対処できる。
In this method, the total allocation ratio does not necessarily need to be 100 (%), and the call allocation to a specific line group can be temporarily set to zero by simply changing the initial value, subtraction value, and addition value. This is also possible, and even when an abnormal condition occurs, it can be effectively dealt with by changing the above setting values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による呼配分方式の構成図、第2図は本
処理方式の処理手順を示す図、第3図は本処理方式で使
用するメモリ構成を示す図、第4図は本発明による別の
実施例、第5図は呼配分処理システムの接続構成例、第
6図は従来例を示す。 B(1)〜B(n);配分率メモリ、 W (+)〜W(n);ワーク用メモリ、10;初期値
設定回路、 11;パルス回路、12;比較/演算手段
、 13:回線群選択手段、15 (1) 〜15 (
n)  ;加算器。
FIG. 1 is a block diagram of the call allocation method according to the present invention, FIG. 2 is a diagram showing the processing procedure of this processing method, FIG. 3 is a diagram showing the memory configuration used in this processing method, and FIG. 4 is a diagram showing the present invention. FIG. 5 shows an example of a connection configuration of a call distribution processing system, and FIG. 6 shows a conventional example. B(1) to B(n): Distribution ratio memory, W (+) to W(n); Work memory, 10; Initial value setting circuit, 11; Pulse circuit, 12; Comparison/calculation means, 13: Line Group selection means, 15 (1) to 15 (
n); Adder.

Claims (2)

【特許請求の範囲】[Claims] (1)複数の回線群にあらかじめ定められる配分比率で
呼配分する呼配分方式において、 各回線群ごとに記憶領域をもうけ、各記憶領域に所定の
初期値を設定し、 入呼毎に、各記憶領域の内容と、各回線群毎に割当てら
れた配分比率に対応する数とを加算し、加算結果の和が
最大値を示す回線群に当該入呼を配分し、 配分された回線群の記憶領域の内容から予め定められる
値を減算しておくことを特徴とする複数回線群への呼配
分方式。
(1) In a call distribution method that allocates calls to multiple line groups at a predetermined allocation ratio, a storage area is created for each line group, a predetermined initial value is set in each storage area, and each call is Add the contents of the storage area and the number corresponding to the allocation ratio assigned to each line group, allocate the incoming call to the line group for which the sum of the addition results is the maximum value, and calculate the number of allocated line groups. A method for allocating calls to a plurality of line groups, characterized in that a predetermined value is subtracted from the contents of a storage area.
(2)複数の回線群に予め定められる配分比率で呼を配
分する呼配分方式において、 各回線群毎に記憶領域をもうけ、各記憶領域に所定の初
期値を設定し、 入呼毎に、各記憶領域の内容と、各回線群毎に割当てら
れた配分比率に対応する数とを加算し、加算結果が前記
初期値を越えた回線群の中で予め定められる優先順位が
最も高い回線群に当該入呼を配分し、 配分された回線群の記憶領域の内容から予め定められる
値を減算しておくことを特徴とする複数回線群への呼配
分方式。
(2) In a call distribution method that allocates calls to multiple line groups at a predetermined allocation ratio, a storage area is created for each line group, a predetermined initial value is set in each storage area, and each incoming call is The contents of each storage area and the number corresponding to the allocation ratio assigned to each line group are added, and the line group with the highest predetermined priority among the line groups for which the addition result exceeds the initial value. A method for allocating calls to a plurality of line groups, characterized in that the incoming call is allocated to a plurality of line groups, and a predetermined value is subtracted from the contents of a storage area of the allocated line group.
JP22129988A 1988-09-06 1988-09-06 Call distribution method to multiple line groups Expired - Fee Related JP2504133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22129988A JP2504133B2 (en) 1988-09-06 1988-09-06 Call distribution method to multiple line groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22129988A JP2504133B2 (en) 1988-09-06 1988-09-06 Call distribution method to multiple line groups

Publications (2)

Publication Number Publication Date
JPH0270192A true JPH0270192A (en) 1990-03-09
JP2504133B2 JP2504133B2 (en) 1996-06-05

Family

ID=16764614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22129988A Expired - Fee Related JP2504133B2 (en) 1988-09-06 1988-09-06 Call distribution method to multiple line groups

Country Status (1)

Country Link
JP (1) JP2504133B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334293A (en) * 1991-05-10 1992-11-20 Nec Eng Ltd Uniform distribution incoming system exclusive for trunk line
JPH05151251A (en) * 1991-11-29 1993-06-18 Fujitsu Ltd Probability control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334293A (en) * 1991-05-10 1992-11-20 Nec Eng Ltd Uniform distribution incoming system exclusive for trunk line
JPH05151251A (en) * 1991-11-29 1993-06-18 Fujitsu Ltd Probability control system

Also Published As

Publication number Publication date
JP2504133B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
Roth et al. Weak versus strong domination in a market with indivisible goods
Nawaz et al. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem
KR880002197B1 (en) Circuitry for allocating acess to a demand-shared bus
US5857018A (en) Automatic call distributor with prioritization
US3701109A (en) Priority access system
JPH0270192A (en) Call allotting system to plural line groups
Koulamas et al. Look-ahead scheduling for minimizing machine interference
GB1452865A (en) Data processing apparatus
JPH04318717A (en) Data multiplex circuit
US3668646A (en) Method of controlling jumps to different programs in a computer working in real time
US4860344A (en) Circuit arrangement for telecommunications switching systems, particularly telephone switching systems, etc.
Miller et al. Adaptive quadrature on a message-passing multiprocessor
US6421825B2 (en) Register control apparatus and method thereof for allocating memory based on a count value
JPH01255363A (en) Automatic incoming call distributor
JPH0295096A (en) Outgoing line group selecting system
JP2638314B2 (en) Automatic Change Method of External Storage Device for Swapping in Virtual Storage System
JPS5895081A (en) Method of controlling group of elevator
JPH1063607A (en) Dma controller
JP3456406B2 (en) Traffic distribution method and traffic distribution value calculation device
JPH08272954A (en) Image data converting device
JP2806472B2 (en) Multi-processor
JP3232631B2 (en) Traffic distribution method
SU1023336A1 (en) Virtual memory control device
KR970058133A (en) Distribution of Representative Numbers Uniformly at the Exchange
JPH04364691A (en) Multi-processor exchanger system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees