JPH0270029A - Manufacture of ta or nb and its manufacturing apparatus - Google Patents

Manufacture of ta or nb and its manufacturing apparatus

Info

Publication number
JPH0270029A
JPH0270029A JP21829288A JP21829288A JPH0270029A JP H0270029 A JPH0270029 A JP H0270029A JP 21829288 A JP21829288 A JP 21829288A JP 21829288 A JP21829288 A JP 21829288A JP H0270029 A JPH0270029 A JP H0270029A
Authority
JP
Japan
Prior art keywords
reducing
mixed salt
reduction
vessel
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21829288A
Other languages
Japanese (ja)
Inventor
Hideo Miyazaki
英男 宮崎
Masami Kuroki
黒木 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP21829288A priority Critical patent/JPH0270029A/en
Publication of JPH0270029A publication Critical patent/JPH0270029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the productivity of Ta or Nb and to facilitate the treatment of a mixed salt at the time of reducing K2TaF7 or K2Nb7 as a starting material by reducing the inside of a vessel to a nonoxidizing atmosphere and recovering and reducing Na and K. CONSTITUTION:K2TaF7 or K2NbF7 is charged to a reducing vessel 1 from a hopper 3 together with NaCl. The inside of the vessel 1 is evacuated 8, to which Ar or the like is introduced. A heating furnace 2 is electrified and is furthermore heated by rotating a stirrer 5 when K2TaF7-NaCl is started to metl. Na or K is charged to a melting furnace 4 and is melted. The liquid Na is gradually dropped and is brought into reaction with the above melt. Unreacted liquid Na is trapped into a lower tray of a condenser 11 for the use in the next reduction. A valve 6 is opened to extract a molten mixed salt contg. Ta powder into an acceptor 7. The mixed salt is washed by boiling water to remove NaCl, NaF and KF by melting into coarse Ta powder, which is then washed by a diluted acid and is water-washed to dry. In this way, Ta or Nb can be obtd. in good yield without using alcohol.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はTa又はNbの製造方法ならびに製造装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for producing Ta or Nb.

o’し 従来、Ta又はNbの製造方法として、例えば、特公昭
58−35564号の方法が用いられている。
o' Conventionally, as a method for producing Ta or Nb, for example, the method disclosed in Japanese Patent Publication No. 58-35564 has been used.

この方法は、還元反応が終った後、そのまま容器ごと室
温まで冷却し、生成物を固化させてから、容器から直接
取出しを行っている。
In this method, after the reduction reaction is completed, the entire container is cooled to room temperature, the product is solidified, and then taken out directly from the container.

この際、理論当量よりも10〜20%過剰に加えている
NaもしくはKは未反応のまま残り、安全上取扱いの障
害となっている。このためアルコールによって安定な化
合物にしてから以後の洗浄作業にかかっている。
At this time, Na or K, which is added in excess of 10 to 20% over the theoretical equivalent, remains unreacted and poses an obstacle to safe handling. For this reason, it is necessary to convert the material into a stable compound using alcohol before cleaning.

上記のように従来法ではつぎのような欠点があった・ ■ 還元反応後、容器ごと室温まで冷却するため冷却時
間が長く、装置稼動のロスとなる。
As mentioned above, the conventional method had the following drawbacks: (1) After the reduction reaction, the whole container was cooled to room temperature, which required a long cooling time, resulting in a loss in equipment operation.

■アルコールで安定化する10〜20%のNaもしくは
Kはそのままロスとなり、アルコールおよびその作業が
必要である。
(2) 10 to 20% of Na or K stabilized with alcohol is lost as it is, and alcohol and its work are required.

■ 容器の底部に塊状で沈積した還元生成物は水への溶
解度が小さいため、塊りのままであると溶解に時間を要
す。
■ Reduction products deposited in lumps at the bottom of the container have low solubility in water, so if they remain in lumps, it takes time to dissolve.

発明が解決しようとする問題占 本発明は」1記の欠点を解決したもので、本発明の目的
は還元反応後溶融状態のまま生成物を系外に、洗浄処理
に適するように抜出し、また未反応NaもしくはKを再
刊用することにある。
PROBLEMS TO BE SOLVED BY THE INVENTION The present invention solves the drawback described in 1.The purpose of the present invention is to extract the product from the system in a molten state after the reduction reaction and to make it suitable for washing treatment. The purpose is to republish unreacted Na or K.

問題点を解決するための手  び−作−川−に2TaF
7又はに2NbF7のNaもしくはKの還元においては
に−sa]、tの融点をドげるため、また反応熱低減剤
およびNa−に合金生成の防止剤として通常、NaCJ
を混合添加して用いられる。
2TaF to help solve problems
In the reduction of Na or K in 7 or 2NbF7, NaCJ is usually used to lower the melting point of t, and as a reaction heat reducer and an inhibitor of alloy formation in Na-.
It is used by mixing and adding.

以下例としてに、TaF7をNaで還元する方法および
装置について述べるが、K2TaF7の場合も同様の丁
−段をとることができる。
As an example, a method and apparatus for reducing TaF7 with Na will be described below, but similar steps can be taken in the case of K2TaF7.

まず、K2TaF7どNaCJを混合して還元容器に装
入し空気を排気した後不活性ガス、例えばAr&人気圧
よりもやや高めに導入し、加熱炉によって加熱する。
First, K2TaF7 and NaCJ are mixed and charged into a reduction vessel, and after exhausting the air, an inert gas, for example Ar, is introduced at a pressure slightly higher than human pressure, and heated in a heating furnace.

K2TaF、−NaCJは約600℃で溶解するが、7
00’Cまて」−げて完全に溶解する。
K2TaF, -NaCJ dissolves at about 600℃, but 7
Heat to 00'C to dissolve completely.

還元容器上部にはNa溶融炉があって、Na液体となっ
ているので少量ずっに2TaF、、−NaCJに滴下す
る。
There is a Na melting furnace in the upper part of the reduction vessel, and since Na is liquid, it is dripped into 2TaF, . . . -NaCJ in small amounts.

K、1’aF7は次式のようにNaにより還元される。K, 1'aF7 is reduced by Na as shown in the following equation.

K2TaF 、 +5Na −+ Ta +2KF −
1−5NaFこの反応は生成熱が多大で、Naを一度に
滴下した場合は約200℃も急激に反応温度が上昇する
こともあり、この温度変化が生成する1a粉の粒径に影
響を与える。
K2TaF, +5Na −+ Ta +2KF −
1-5NaF This reaction generates a large amount of heat of formation, and if Na is added dropwise all at once, the reaction temperature may rise rapidly by about 200°C, and this temperature change will affect the particle size of the 1a powder produced. .

したがって粒径をある程度揃えるためには、Naの滴下
速度のコントロール即ち反応温度の制御が必要である。
Therefore, in order to make the particle size uniform to some extent, it is necessary to control the rate of dropping Na, that is, control the reaction temperature.

Naa下終了のあとはpost l+eat、i Bと
して800−900°Cに保持してTa粉の粒成長を行
う。
After the completion of lower Naa, the temperature is maintained at 800-900°C as post l+eat, iB to grow grains of Ta powder.

従来はこの後、室温まで還元容器に生成物を入れたまま
長時間かかって冷却していたが、本発明ではpost 
heatingの後容器底部から還元生成物を溶融状で
抜き出す。
Conventionally, after this, it took a long time to cool down the product in the reduction container to room temperature, but in the present invention, post
After heating, the reduction product is extracted in molten form from the bottom of the container.

還元生成物は以後の洗浄処理が行いやすいように、例え
ばバラ1−に薄く板状にひろげて凝固させたり、ロス1
−ルで粒状に急速に冷却凝固することもできる。
The reduction product may be spread out into a thin plate shape and solidified, for example, to make the subsequent cleaning process easier.
It can also be rapidly cooled and solidified in granular form in a mold.

従来法は、この混合塩が塊で容器の底部に沈積していた
ため粉砕することができず、長時間ががって湯水で溶解
洗浄して処理していた。
In the conventional method, this mixed salt was deposited in lumps at the bottom of the container, so it was impossible to crush it, and it took a long time to dissolve and wash it with hot water.

一方、未反応Na (通常10〜20%理論当量よりも
多く使用する)は、」1記のpost heating
のとき、還元容器上部に設けた〜aコンテンサーにトラ
ップさせ次の還元のときに2TaF、 −NaC1に再
添加して再利用する。
On the other hand, unreacted Na (usually used in an amount of 10 to 20% more than the theoretical equivalent) is
At this time, it is trapped in the ~a condenser provided at the top of the reduction container and re-added to 2TaF, -NaCl during the next reduction and reused.

このため、従来は還元冷却後の取出し前に未反応Naの
発火燃焼を防ぐため、必ずアルコールを大量に使ってま
ず安定化を行っていたが、本発明法では溶体で抜出す混
合塩がNaを含まないためアルコールは不用である。
For this reason, in the past, in order to prevent unreacted Na from igniting and burning before being extracted after reduction cooling, a large amount of alcohol was always used to stabilize the salt mixture, but in the method of the present invention, the mixed salt extracted with a solution contains Na. Alcohol is not necessary as it does not contain alcohol.

一火」1(− 第1図に示す装置によって実施例としてに2TaF’、
As an example, 2TaF',
.

のNa還元につき、その方法と装置を述べる。We will describe the method and equipment for Na reduction.

装置は■の還元容器(SUS系)、■電気炉、■原料供
粕ホッパー、■Na7@融炉、■撹拌機、■抜出しバル
ブ<SUS系)、■生成物受器、■排気およびAr導入
パイプより構成されている。
The equipment consists of ■ reduction container (SUS type), ■ electric furnace, ■ raw material supply hopper, ■ Na7 @ melting furnace, ■ stirrer, ■ extraction valve (SUS type), ■ product receiver, ■ exhaust and Ar introduction. It is made up of pipes.

まず]、 5 、0 kgのに2TaF7(試薬1級数
)と6 、0 kgのNaCJ、(同じく1級数)を乾
燥して■のホッパーに入れフィーダーを介して■の還元
容器に供給する。
First, 5.0 kg of 2TaF7 (reagent number 1) and 6.0 kg of NaCJ (also number 1) are dried and placed in the hopper (2) and fed to the reduction container (2) via the feeder.

直ちに■より排気し0.ITorrのときArを1..
05kg/dまで導入する。この還元容器は事前に気密
テスI・を行いリークのないことを確認しておく。
Immediately exhaust from ■ and 0. When ITorr, Ar is 1. ..
Introduce up to 0.05 kg/d. This reduction container should be subjected to an airtight test I in advance to confirm that there are no leaks.

ついで■の加熱炉に通電して昇温するか、[相]の温度
計により途中約200℃のとき再び■より排気して脱ガ
スを排除しArを導入する。K2TaF7−NaCJは
約600 ’Cで溶は始めたならば■の撹拌機をまわし
、さらに700℃に昇温する。
Next, the heating furnace (2) is energized to raise its temperature, or when the temperature reaches about 200° C. as measured by the [phase] thermometer, the furnace is evacuated from (2) again to eliminate degassed gas and Ar is introduced. When K2TaF7-NaCJ starts to dissolve at about 600'C, turn on the stirrer (2) and further raise the temperature to 700°C.

K2TaF7−NaCJの溶解と平行して■のNa溶融
炉にも5.0kg のNaを挿入しArに置換する。
In parallel with the melting of K2TaF7-NaCJ, 5.0 kg of Na was also inserted into the Na melting furnace (2) and replaced with Ar.

Naは水分と激しく反応するのでNaf4融炉内は十府
に乾燥し、かつ気密を確かめておく。
Since Na reacts violently with moisture, make sure that the inside of the Naf4 melting furnace is completely dry and airtight.

Naは融点が98℃と低いので約120℃にてとかしマ
ントルヒーターで加熱保温しておく。
Since Na has a low melting point of 98°C, it is melted at about 120°C and kept warm with a mantle heater.

K、TaF、−NaC]が700’Cに達したならば、
液体Naを■バルブを開いて除々に滴下する。
K, TaF, -NaC] reaches 700'C,
Open the ■ valve and gradually drip liquid Na.

滴下によって[相]温度計指示が700〜730’Cよ
り越えないよう調節する。通常1.5Hr(56g/m
1n)かかる。
Adjust so that the [phase] thermometer reading does not exceed 700-730'C by dropping. Normally 1.5Hr (56g/m
1n) It takes.

Na滴下が終了したならば900°Cに昇温しで311
r保持する。
Once the Na drop is finished, raise the temperature to 900°C to 311°C.
Hold r.

反応中もそうであるが、容器内圧力が1.02kg/d
より低くなるときはArを導入し、決して負圧にならな
いように気をつける。この900°Cpost hea
ting中コンデンサー(空冷式蛇管)を冷して約0.
5聴の未反応Naを捕集する。容器内はNa蒸気が圧倒
的に多く、Naは沸点が882℃と、融点との差が大き
く、凝縮は容易である。
As is the case during the reaction, the pressure inside the container is 1.02 kg/d.
When the pressure becomes lower, introduce Ar and be careful not to allow negative pressure. This 900°Cpost hea
During cooling, the condenser (air-cooled condenser tube) is cooled down to about 0.
Collect unreacted Na for 5 minutes. There is an overwhelming amount of Na vapor inside the container, and the boiling point of Na is 882°C, which has a large difference from the melting point, so it is easy to condense.

液体Naはコンデンサーの下部トレーにたまるまで次回
の還元のさいは、プラグを抜いて下に落してやる。した
がって、次回からNaは理論当量の10〜20%過剰は
必要でなくなる。
Until the liquid Na accumulates in the lower tray of the condenser, the next time you reduce it, pull out the plug and let it fall. Therefore, from the next time onwards, it will no longer be necessary to use Na in excess of 10 to 20% of the theoretical equivalent.

つぎに■抜出しバルブを開いてTa粉を含んだ溶体の混
合塩を■生成物受器に抜き出す。
Next, the (1) extraction valve is opened and the mixed salt solution containing Ta powder is extracted to (2) the product receiver.

この要領は抜出しバルブの、還元中は閉っているニード
ルを10〜15+nm開くだけでよいが、混合塩が固ま
らないようバルブの周囲を約800”Cに加熱しておく
必要がある。
To do this, simply open the needle of the withdrawal valve, which is closed during reduction, by 10-15+ nm, but the area around the valve must be heated to about 800''C to prevent the mixed salt from solidifying.

生成物は反応後から抜出しバルブのレベルまで降下し、
生成物の一部は底にたまる。
After the reaction, the products fall to the level of the withdrawal valve,
Some of the product accumulates at the bottom.

抜出された混合塩(25,5kg)は受器(バット)で
厚さ10nwn以下にひろがって直ちに凝固する。
The extracted mixed salt (25.5 kg) spreads in a receiver (vat) to a thickness of 10 nwn or less and solidifies immediately.

この混合塩はうすいので簡単にくだきやすく以後の処理
が容易であり、未反応Naがないのでアルコールを使わ
なくとも発火することはない。
Since this mixed salt is thin, it is easily crumbled and subsequent processing is easy, and since there is no unreacted Na, it will not catch fire even without using alcohol.

つぎにTa粉を混合塩は湯水リーチングによって、Na
C1、NaFおよびKFを溶解除去して粗製Ta粉を得
た。
Next, the Ta powder and mixed salt are leached with hot water to remove the Na powder.
C1, NaF and KF were dissolved and removed to obtain crude Ta powder.

つづいてHCI、HN O3の希釈酸で洗浄して重金属
類の不純物を除去し、水洗後真空乾燥により6.7眩の
Ta粉を得た。
Subsequently, it was washed with dilute acids such as HCI and HN O3 to remove impurities such as heavy metals, and after washing with water, it was vacuum dried to obtain Ta powder of 6.7 dia.

これより平均粒子径(F、S、S、S)と酸素量を測定
した。
From this, the average particle diameter (F, S, S, S) and oxygen content were measured.

以上の実施例は一回のBatchを述べたものであるが
、混合塩抜出し後、直ちに原料をホッパーより装入して
同様の還元を繰り返し行うことが出来る半連続化が可能
である。
Although the above embodiment describes one batch, semi-continuous operation is possible in which raw materials are charged from the hopper immediately after the mixed salt is extracted and the same reduction can be repeated repeatedly.

表1に従来法と本発明法の実施結果を示す。Table 1 shows the results of the conventional method and the method of the present invention.

表1 従来法と本発明法の実施結果 =8 ヱ1唾例突j〔 以」二、説明したようにに2TaF7又はに2NbF7
のNaもしくはKによる還元において反応後の混合塩を
溶融状で系外へ抜き出して凝固させる方法により、つぎ
の利点がある。
Table 1 Implementation results of the conventional method and the method of the present invention = 8 (1) As explained above, 2TaF7 or 2NbF7
In the reduction with Na or K, the mixed salt after the reaction is extracted from the system in a molten state and solidified, which has the following advantages.

(1)従来のバッチ式還元が半連続式に繰返し還元が出
来るため装置の生産性が著しく向上する。
(1) The productivity of the apparatus is significantly improved because conventional batch reduction can be repeated in a semi-continuous manner.

(2)未反応のNaもしくはKの再利用が出来、従来の
アルコールが不用となる。
(2) Unreacted Na or K can be reused, making conventional alcohol unnecessary.

(3)反応生成物を還元容器外の凝固装置に取出すため
、混合塩の洗浄処理が容易に行い得る。
(3) Since the reaction product is taken out to the coagulation device outside the reduction vessel, the mixed salt can be easily washed.

(4) Ta又はNbの回収率が上昇する。(4) The recovery rate of Ta or Nb increases.

■ 還元容器 ■電気炉 ■ 原料供給ホッパー ■ Na溶融炉 撹拌機 抜き出しバルブ 生成物受器 排気およびAr導入パイ プ Naバルブ 温度計 Naコンテンサー■ Reduction container ■Electric furnace ■ Raw material supply hopper ■ Na melting furnace mixer extraction valve product receiver Exhaust and Ar introduction pipe P Na valve thermometer Na condenser

Claims (3)

【特許請求の範囲】[Claims] (1)K_2TaF_7又はK_2NbF_7をNaも
しくはKで還元してTa又はNbを回収する方法におい
て、NaもしくはKが単体として還元容器内に残留する
ように還元容器内を非酸化性雰囲気としつつ、反応後の
混合塩を系外へ取り出し、NaもしくはKを同一炉内の
上部に回収し、再び還元剤として使用することを特徴と
するTa又はNbの製造方法。
(1) In the method of recovering Ta or Nb by reducing K_2TaF_7 or K_2NbF_7 with Na or K, after the reaction, the inside of the reduction vessel is kept in a non-oxidizing atmosphere so that Na or K remains as a single substance in the reduction vessel. A method for producing Ta or Nb, which comprises taking out the mixed salt from the system, recovering Na or K in the upper part of the same furnace, and using it again as a reducing agent.
(2)Ta又はNbの製造に用いる還元装置と該装置か
ら反応後の溶体を取出しかつ密閉自在な装置とその装置
の下流に密閉状態の凝固装置を有することを特徴とする
Ta又はNbの製造装置。
(2) Production of Ta or Nb, which is characterized by having a reduction device used for production of Ta or Nb, a device that can take out the solution after the reaction from the device and can be sealed, and a coagulation device in a sealed state downstream of the device. Device.
(3)上記製造装置において反応後の未反応のNaもし
くはKを還元容器内に設けたコンデンサーに一時的に捕
集して随時に下方に流下させることを特徴とするTa又
はNbの製造装置。
(3) An apparatus for producing Ta or Nb, characterized in that unreacted Na or K after the reaction in the above production apparatus is temporarily collected in a condenser provided in a reduction vessel and allowed to flow downward as needed.
JP21829288A 1988-09-02 1988-09-02 Manufacture of ta or nb and its manufacturing apparatus Pending JPH0270029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21829288A JPH0270029A (en) 1988-09-02 1988-09-02 Manufacture of ta or nb and its manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21829288A JPH0270029A (en) 1988-09-02 1988-09-02 Manufacture of ta or nb and its manufacturing apparatus

Publications (1)

Publication Number Publication Date
JPH0270029A true JPH0270029A (en) 1990-03-08

Family

ID=16717550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21829288A Pending JPH0270029A (en) 1988-09-02 1988-09-02 Manufacture of ta or nb and its manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPH0270029A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084931A (en) * 1998-11-25 2007-04-05 Cabot Corp High-purity tantalum and product such as sputtering target containing the same
JP2010168606A (en) * 2009-01-20 2010-08-05 Fuji Electric Holdings Co Ltd Method for producing particle, and reactor
US8092214B2 (en) * 2007-03-24 2012-01-10 Durferrit Gmbh Method for continuous mixing and melting inorganic salts and furnace installation for realizing the method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493603U (en) * 1972-04-12 1974-01-12
JPS58217647A (en) * 1982-04-30 1983-12-17 ウエスチングハウス エレクトリック コ−ポレ−ション Reduction distilling column

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493603U (en) * 1972-04-12 1974-01-12
JPS58217647A (en) * 1982-04-30 1983-12-17 ウエスチングハウス エレクトリック コ−ポレ−ション Reduction distilling column

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084931A (en) * 1998-11-25 2007-04-05 Cabot Corp High-purity tantalum and product such as sputtering target containing the same
US8092214B2 (en) * 2007-03-24 2012-01-10 Durferrit Gmbh Method for continuous mixing and melting inorganic salts and furnace installation for realizing the method
JP2010168606A (en) * 2009-01-20 2010-08-05 Fuji Electric Holdings Co Ltd Method for producing particle, and reactor

Similar Documents

Publication Publication Date Title
US2537068A (en) Manufacture of zirconium
CN110482498B (en) Method for synthesizing gamma-phase indium selenide
US3736132A (en) Method for producing refractory metals
JPH0270029A (en) Manufacture of ta or nb and its manufacturing apparatus
JP3725620B2 (en) Method and apparatus for producing high purity copper single crystal
AT504602B1 (en) METHOD AND DEVICE FOR PRODUCING WATER-FREE CRYSTAL QUALITY RARE HALOGENOIDS
NO140925B (en) PROCEDURE FOR THE PREPARATION OF EXTERNAL OXIDE WITH SPECIAL LARGE PARTICLES
JPS62247802A (en) Crystallization method
CN106477534B (en) A kind of preparation method of selenium arsenic alloy
US2824799A (en) Process for sintering and recovering sponge metal
CN106046086B (en) It is a kind of to prepare the unformed method of tylonolide
CN109607559B (en) Method for synthesizing ternary layered compound by adopting metal powder fluxing agent
CN108048718B (en) The production method of Mg-Zr intermediate alloy
US3677742A (en) Process for increasing the percentage of aluminum in aluminum-manganese alloys
JPH0270028A (en) Manufacture of ta or nb
CN107140664A (en) A kind of preparation method of tetrachloro-lithium aluminate
US3323860A (en) Anhydrous sodium cyanide and process for preparation of same
JPS59148777A (en) Purification of crude glycollide
JP7219646B2 (en) High Purity Cobalt Sulfate Powder
RU2219269C1 (en) Tantalum metal production process
US2537067A (en) Production of thorium
CN108911794B (en) Improve Ti3B2Method for processing purity of N material
SU1004262A1 (en) Process for producing boron
US2993000A (en) Complex titanium composition
JPS6152306A (en) Production of pulverous metallic powder