JPH0269643A - Surface analysis instrument - Google Patents

Surface analysis instrument

Info

Publication number
JPH0269643A
JPH0269643A JP22299388A JP22299388A JPH0269643A JP H0269643 A JPH0269643 A JP H0269643A JP 22299388 A JP22299388 A JP 22299388A JP 22299388 A JP22299388 A JP 22299388A JP H0269643 A JPH0269643 A JP H0269643A
Authority
JP
Japan
Prior art keywords
sample
probe
inspected
radiation
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22299388A
Other languages
Japanese (ja)
Other versions
JP2777147B2 (en
Inventor
Keiji Horioka
啓治 堀岡
Haruo Okano
晴雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63222993A priority Critical patent/JP2777147B2/en
Publication of JPH0269643A publication Critical patent/JPH0269643A/en
Application granted granted Critical
Publication of JP2777147B2 publication Critical patent/JP2777147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure the spectroscopic absorption characteristics of a sample surface with resolution of 0.1mum by measuring the spectroscopic absorption characteristics of a minute part by detecting the height variation of the sample surface when the surface is irradiated with radiation by using a probe. CONSTITUTION:When a metallic probe 12 is brought nearer to a sample 11 to be inspected of a conductive material to a distance of about 1nm while a voltage is applied across the probe 12 and sample 11, a tunnel current flows between the probe 12 and sample 11. The tunnel current is sensitive to the variation of the distance between the probe 12 and sample 11 and changes by one figure against a distance change of 0.1nm. When the sample 11 is inspected with a scanning tunnel electron microscope, the surface of the sample 11 is scanned with the probe 12 by using a fine adjustable mechanism 20. While the scanning is made, an adhering matter 13 absorbs radiation 40 by an absorption coefficient corresponding to the wavelength of the radiation 40 and swells. As the matter 13 swells, the distance between the probe 12 and matter 13 becomes shorter and the tunnel current increases. Therefore, the probe is raised until the current value reaches the original value. On the contrary, the probe is lowered to a recessed part. By repeating operations and showing the voltage fluctuation applied to the mechanism 20 in the form of a picture, the surface rays of light of the sample 11 are observed in the scale of atoms.

Description

【発明の詳細な説明】 〔発明の目的] (産業上の利用分野) 本発明は、固体表面に付着した薄膜や微粒子の定性的、
定量的分析に有効な表面分析装置に関わり、特に半導体
集積回路素子等の不良解析にイ1効な表面分析装置に関
するものである。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is directed to the qualitative and
The present invention relates to a surface analysis device that is effective for quantitative analysis, and particularly to a surface analysis device that is very effective for failure analysis of semiconductor integrated circuit devices and the like.

(従来の技術) 赤外吸収分光や可視吸収分光では、個々の物質に固有の
原子間固有振動や電子遷移を測定することが可能であり
、分析方法として広く応用されている。
(Prior Art) Infrared absorption spectroscopy and visible absorption spectroscopy make it possible to measure interatomic vibrations and electronic transitions specific to individual substances, and are widely applied as analysis methods.

ところで、半導体集積回路素子等の製造工程においては
、半導体表面に形成された薄膜の評価や、表面に付着し
た不純物の分析が重要な課題となっている。このような
局所分析に上記の分光法を応用するためにいくつかの努
力がなされている。
By the way, in the manufacturing process of semiconductor integrated circuit elements and the like, evaluation of thin films formed on semiconductor surfaces and analysis of impurities attached to the surfaces have become important issues. Several efforts have been made to apply the above spectroscopy to such local analysis.

例えば、Q、3erres  5(ApD3pectr
osc  土ユ 1000.1987>は赤外光を集光
して局所的な赤外吸収分光の開光を試みている。しかし
、赤外線の波長が比較的長いため、空間分析能は10μ
m程度にとどまっている。
For example, Q,3erres 5(ApD3pectr
osc Toyu 1000.1987> attempts to focus infrared light and open up local infrared absorption spectroscopy. However, because the wavelength of infrared rays is relatively long, the spatial analysis ability is only 10μ.
It remains at around m.

これに対し、より高い空間分析能を1!′7るために、
赤外光の照04に伴う試料の温度上昇を測定して吸収係
数を見積もる方法、例えば、MarcA。
On the other hand, the higher spatial analysis ability is 1! '7 In order to
A method of estimating the absorption coefficient by measuring the temperature rise of a sample due to infrared light irradiation, for example, MarcA.

TaubOnb I a l t、 App +、ph
ys。
Taub Onb I alt, App +, ph
ys.

1ett、52)が報告されている。この手)人にJ3
いでは、可視光線を光源とする干渉顕微鏡を用いて温度
上昇に伴う熱膨張を試料面の位置変動として検出する。
1ett, 52) has been reported. This hand) person J3
Now, an interference microscope with visible light as a light source is used to detect thermal expansion due to temperature rise as positional changes on the sample surface.

そして測定に用いた光学顕微鏡の空間分析能に相当する
1μm程度の分析能を青ている。
The analytical ability of about 1 μm, which corresponds to the spatial analytical ability of the optical microscope used for the measurement, is shown in blue.

(発明が解決しようとする課題) しかし、現在の半導体集積回路素子の線幅は、1μm以
下に達しており、その評価のためにはbう1桁小さい0
.1μm程度の分解能が必要である。
(Problem to be Solved by the Invention) However, the line width of current semiconductor integrated circuit elements has reached 1 μm or less, and for evaluation, it is necessary to
.. A resolution of about 1 μm is required.

本発明は上記の事情を考慮してなされたもので、その目
的は、0.1μm以下の空間分析能を有する局所吸収分
光測定別能を有する表面分析装置を提供することにある
The present invention has been made in consideration of the above-mentioned circumstances, and its object is to provide a surface analysis device having local absorption spectroscopy capability and spatial analysis capability of 0.1 μm or less.

〔発明の構成] (課題を解決するための手段) 本発明は、被検査試料の表面に対し該被検査試料表面の
高さを測定するための探針を近接させる微動手段と、前
記被倹査試お[の表面の前記探針に対向する部位に単色
化された放射線を照射する照射手段と、放射線照射時と
未照射時の被検査試料表面の温度変化に伴う膨張収縮を
該試料表面の高さ変動として検知し、欣!8FAに対す
る局所的な分光吸収特性を測定する制御手段とを備える
ことにより、上記目的を達成するものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides fine movement means for bringing a probe close to the surface of a sample to be inspected for measuring the height of the surface of the sample to be inspected; An irradiation means for irradiating monochromatic radiation to a portion of the surface of the test sample facing the probe; It is detected as a change in height, and it is detected! The above object is achieved by including a control means for measuring local spectral absorption characteristics for 8FA.

(作用) 敢Q=J線として可視光または赤外光を用い、被検査試
料の表面に照射することにより、放射線照射部と未照射
時の被検査試料表面の温度変化に伴う膨張収縮を試料表
面の高さ変動として検知し、放(l)−1線に対する局
所的な分光吸収特性を測定する。
(Function) By irradiating the surface of the specimen to be inspected using visible light or infrared light as the Q=J ray, the expansion and contraction of the sample due to temperature changes between the irradiated area and the surface of the specimen to be inspected when not irradiated is suppressed. It is detected as a height change on the surface, and the local spectral absorption characteristics for the (l)-1 radiation are measured.

ここで、位置変動の測定には、試料と探針の間に流れる
トンネル雷流を測定するか、探針と試料の間に動く原子
間力を介して探針に伝達された変動を検知ザる方法を用
いる。この位置変動の検出手段としては、走査型トンネ
ル電子顕微鏡(STM)または原子開力顕微鏡と呼ばれ
ているものと同じ原理を用いる口とができる。
Here, position fluctuations can be measured by measuring the tunnel lightning current flowing between the sample and the probe, or by using a sensor that detects fluctuations transmitted to the probe via atomic force moving between the probe and the sample. Use a method that As a means for detecting this positional variation, a method using the same principle as a scanning tunneling electron microscope (STM) or an atomic force microscope can be used.

探針による位置変動測定は高さ方向の検出感度が10’
nm程度であり、また水平方向の分析能もiQ  nm
程度であるため、局所分析の分解能は極めて高い。
The detection sensitivity in the height direction of position fluctuation measurement using a probe is 10'.
The horizontal analysis ability is about iQ nm.
The resolution of local analysis is extremely high.

例えば、シリコン等の放射線吸収率の比較的低い物質上
に、微小な吸収係数の高い物質が付着している場合、実
質的に付着物のみの吸収特性を測定することかできる。
For example, when a minute substance with a high absorption coefficient is attached to a substance with a relatively low radiation absorption rate, such as silicon, it is possible to substantially measure the absorption characteristics of only the attached substance.

これは、特に半19体素子の製造工程で表面に付着する
不純物の同定や定但分析のために極めて有効なしのとな
る。
This is extremely effective especially for identifying impurities adhering to the surface and for constant analysis during the manufacturing process of semi-19-dimensional devices.

〔実施例] 第1図は本発明の一実施例を示す構成図であるが、その
前に走査型トンネル電子顕微m(STM)の構成につい
て第6図を参照して説明する。
[Embodiment] FIG. 1 is a block diagram showing an embodiment of the present invention. Before that, the structure of a scanning tunneling electron microscope m (STM) will be explained with reference to FIG. 6.

第6図にJ3いて、11は被検査試料、12は全属の探
針、2oはX、Y、Zの各方向の圧電素子21.22.
23よりなる微動ぼ構、31は訓綽楯、32はX−Y駆
動回路、33はZ駆動回路、34はトンネル電流検出回
路、35はメLす、36は表示器である。
In FIG. 6, J3 indicates a specimen to be inspected, 12 indicates a probe of all types, and 2o indicates piezoelectric elements 21, 22, . . . in each direction of X, Y, and Z.
23 is a fine movement mechanism, 31 is a control shield, 32 is an X-Y drive circuit, 33 is a Z drive circuit, 34 is a tunnel current detection circuit, 35 is a lens, and 36 is a display.

この構成において、導心性物買からなる試料11と、金
属の深針12の間に電圧を印加して1「1m程度の距離
まで近づけると、これらの間にトンネル電流が流れる。
In this configuration, when a voltage is applied between the conductive material sample 11 and the metal deep needle 12 and the sample 11 is brought close to a distance of about 1 m, a tunnel current flows between them.

この電流は、両者の間の距離変化に敏感であり、0.1
nmV1度の距離変化に対してトンネル電流が1桁変化
する。
This current is sensitive to distance changes between the two, and is 0.1
The tunnel current changes by one order of magnitude for a distance change of 1 nmV.

STMでは、微動門構20を用いてトンネル電流を一定
に保ちながら、探針12を試料11の表面に沿って走査
する。探針12が試F111の白部分に来るとトンネル
電流が増加するので、元の電流になるまで探針12を上
げ、凹部分では逆に探針12を下げる。この操作をくり
返し、微動は構20に加えた電圧変化を取出して画像化
し、被検査試料11の表面光像を原子のスケールで観察
する。
In STM, the probe 12 is scanned along the surface of the sample 11 while keeping the tunneling current constant using the fine movement gate mechanism 20. When the probe 12 comes to the white part of test F111, the tunnel current increases, so raise the probe 12 until the current returns to the original value, and conversely lower the probe 12 at the concave part. By repeating this operation, the microtremor extracts the voltage change applied to the structure 20, converts it into an image, and observes the surface optical image of the sample 11 to be inspected on an atomic scale.

このように探針12と被検査試料11の間のトンネル電
流の変動を利用すれば、上下方向、水平方向ともに高い
分析能で位置変動を検出できる。
By utilizing the fluctuations in the tunnel current between the probe 12 and the sample to be inspected 11 in this way, positional fluctuations can be detected with high analytical ability in both the vertical and horizontal directions.

木光明は、探針12を一定位置に保持して放Q=1線を
パルス状に照射しなから1〜ンネル電流の変動をぶり定
するか、または敢q・1線照射時にもトンネル電流が一
定となるようZ方向の微動ぼ構を用いて探針12を上下
動させ、その際の電圧変化を取出すことにより、試料の
放射線吸収による温度変化に伴う熱膨張量を10’nm
以下の分析能で測定するものである。さらに、入射する
パルス放射線の波長を掃引しながら照Q=1することに
よって、試わ111の表面の局所的な分光吸収特性の測
定を行うものである。また絶縁物の被検査試料に対して
は、探針2と試料の間に作用する原子間力の変動を検出
して分光吸収特性の測定を行ったものである。
Kimitsuaki proposed that the fluctuation of the tunnel current be determined by holding the probe 12 in a fixed position and irradiating the Q = 1 ray in a pulsed manner, or by determining the fluctuation of the tunnel current even when irradiating the Q = 1 ray. By moving the probe 12 up and down using a micro-movement blur in the Z direction so that the value remains constant, and by extracting the voltage change at that time, the amount of thermal expansion due to temperature change due to radiation absorption of the sample can be reduced to 10'nm.
It is measured with the following analytical ability. Furthermore, the local spectral absorption characteristics of the surface of the sample 111 are measured by illuminating Q=1 while sweeping the wavelength of the incident pulsed radiation. Furthermore, for an insulating sample to be inspected, the spectral absorption characteristics were measured by detecting fluctuations in the atomic force acting between the probe 2 and the sample.

以上のことを背禁として第1図の実施例を説明する。The embodiment shown in FIG. 1 will be described with the above in mind.

第1図において、11は試料であり、この試料11の表
面に金属の探針12が近接配置されている。探針12は
、X、Y(図示せず)、Zの各方向の微小移動を可能と
する圧電素子(アクチュエータ)21.22(図示せず
)23からなる微動門構20に取付けられており、この
微動門構20は図示しない租oは構に取付けられている
。なお、粗動は構は探針12を取付けた微動門構20を
移動し、探針12を試料11の表面に充分近付けるため
のものぐある。
In FIG. 1, 11 is a sample, and a metal probe 12 is placed close to the surface of this sample 11. The probe 12 is attached to a fine movement gate mechanism 20 consisting of piezoelectric elements (actuators) 21 and 22 (not shown) 23 that enable fine movement in each of the X, Y (not shown), and Z directions. This fine movement gate structure 20 is attached to a gate structure (not shown). Incidentally, the coarse movement mechanism moves the fine movement gate structure 20 to which the probe 12 is attached, and has a mechanism for bringing the probe 12 sufficiently close to the surface of the sample 11.

圧電素子21.22は、計算橢31により−り御された
X−Y駆動回路32により駆動され、その駆動により探
針12は試料11表面の面内方向に走査される。また、
圧電素子23は計算匹31により制御された2軸駆動握
構33により駆動され、この駆動により探針12は試料
11表面と垂直に上下動する。また、回折格子42及び
シャッタ43は計痺橢31により制御される。
The piezoelectric elements 21 and 22 are driven by an X-Y drive circuit 32 controlled by a calculation controller 31, and the probe 12 is driven to scan in the in-plane direction of the surface of the sample 11. Also,
The piezoelectric element 23 is driven by a two-axis drive gripping mechanism 33 controlled by a calculation animal 31, and this drive causes the probe 12 to move up and down perpendicular to the surface of the sample 11. Further, the diffraction grating 42 and the shutter 43 are controlled by the meter 31.

試料11と探針12の間には、所定の電圧が印加される
とともに、両者の間に流れる電流を検出するトンネル電
流検出回路34が接続されている。
A predetermined voltage is applied between the sample 11 and the probe 12, and a tunnel current detection circuit 34 is connected to detect the current flowing between the two.

一方、試料11はX−Y方向に粗動可能なX−Yステー
ジ14に置かれている。
On the other hand, the sample 11 is placed on an X-Y stage 14 that can be roughly moved in the X-Y direction.

なお、第1図の実施例は、欣9A線に対してほぼ透明な
試料11の上の微小な付着物13の吸収特性を測定する
ためのもので、放射線40は被検査試料の裏面より照射
される。
The embodiment shown in FIG. 1 is for measuring the absorption characteristics of minute deposits 13 on a sample 11 that is almost transparent to the 9A line, and the radiation 40 is irradiated from the back side of the sample to be inspected. be done.

次に敢Q=1線40の照射系について説明する。光源/
11としてはシンクロトロン放射光源からの連続波長光
を用いている。放射線40は回折格子42により単色化
された後、パルス状の照射を行うためのシャッタ43、
高調波光を遮断するだめのフィルタ44を通過した後、
レンズ45ににり集光された後、被検査試お111上の
付着物13に照射される。ここで、図示のように、放射
線40のビーム径は付着物13の径より小さくなってい
るが、ビーム径より小さな付着物の分析も可能である。
Next, the irradiation system for Q=1 line 40 will be explained. light source/
As 11, continuous wavelength light from a synchrotron radiation light source is used. After the radiation 40 is made monochromatic by a diffraction grating 42, a shutter 43 for performing pulsed irradiation;
After passing through a filter 44 that blocks harmonic light,
After the light is focused by the lens 45, it is irradiated onto the deposit 13 on the sample 111 to be inspected. Here, as illustrated, the beam diameter of the radiation 40 is smaller than the diameter of the deposit 13, but it is also possible to analyze deposits smaller than the beam diameter.

次にこの装置を用いて、付着物の放射線吸収特性を測定
する方法について第2図を参照しながら説明する。
Next, a method for measuring the radiation absorption characteristics of deposits using this apparatus will be described with reference to FIG. 2.

第2図(a)、(b)、(c)は、それぞれ1〜ンネル
電流、シャッタ43の開開タイミング、回折格子42に
より分光された放射線40の波長を時間の関数として示
したものである。放射線40の波長は、時間に対して連
続的に変化しているが、時刻t1″C″シrツク43を
聞き、時刻t2でシャッタ43を閉じる。その間に付着
物13は放射線40の波長に対応した吸収係数で敢)j
線40を吸収し、温度が上昇する。それに伴い、イ」着
物13は体積膨張を引き起こす。その結果、探針12と
付着物13の上部の距離が近くなり、トンネル電流が増
大する。このトンネル電流の増大の度合は、波長λ1か
ら波長λ2の間の平均的な吸収計数を反映したものとな
る。さらに波長を掃引しながらこの測定をくり返し、ト
ンネル電流の包絡線をたどると、吸収特性のピークに対
応したピークが現れる。
FIGS. 2(a), (b), and (c) show the channel current, the timing of opening and opening of the shutter 43, and the wavelength of the radiation 40 separated by the diffraction grating 42 as functions of time, respectively. . Although the wavelength of the radiation 40 changes continuously over time, the shutter 43 is heard at time t1''C'' and the shutter 43 is closed at time t2. Meanwhile, the deposit 13 has an absorption coefficient corresponding to the wavelength of the radiation 40)
It absorbs the line 40 and the temperature rises. Accordingly, the kimono 13 undergoes volumetric expansion. As a result, the distance between the probe 12 and the top of the deposit 13 becomes shorter, and the tunneling current increases. The degree of increase in this tunnel current reflects the average absorption coefficient between wavelength λ1 and wavelength λ2. If this measurement is repeated while sweeping the wavelength further and the envelope of the tunnel current is traced, a peak corresponding to the peak of the absorption characteristic will appear.

次にこの方法を用いて実際にウェハ上の付着物の分析を
行った例を説明する。第3図は被検査試料11の断面図
を示している。ここで、被検査試料としてはシリコンウ
ェハを用い、その上にイ」着物13として電子ビームレ
ジストであるPMMA(ポリメチルメタクリレート)の
細線を電子ビーム描画により形成した。線の幅は0.5
μm1高さは0.5μmである。また、表面に導電性を
例与するために試料11全面に金の蒸着膜15を0゜1
μmの厚みで形成した。
Next, an example of actually analyzing deposits on a wafer using this method will be described. FIG. 3 shows a cross-sectional view of the sample 11 to be inspected. Here, a silicon wafer was used as the sample to be inspected, and a thin line of PMMA (polymethyl methacrylate), which is an electron beam resist, was formed on the silicon wafer as a garment 13 by electron beam drawing. Line width is 0.5
The μm1 height is 0.5 μm. In addition, in order to impart conductivity to the surface, a gold evaporated film 15 was deposited on the entire surface of the sample 11 at a temperature of 0°1.
It was formed with a thickness of μm.

この被検査試料1の赤外光吸収特性を第1図の@i置を
用いて分析した放射、?lJ 40の半値幅は10−1
cmであり、強度1,11 mwT−約5 μffl’
17)領域に集光するにうにした。また、パルス間隔は
1/100秒、波長8引速度は10”cm/秒として、
50Q−1c mから1500−1cryl)範囲で測
定を行った。その結果、PMMAのエステル基に特有の
C−0伸縮振動、C−0−C変角信号等の固有振動数に
相当する波長でトンネル電流が最大3倍まで増大した。
The radiation obtained by analyzing the infrared light absorption characteristics of this test sample 1 using the @i setting in FIG. The half width of lJ 40 is 10-1
cm and intensity 1,11 mwT - about 5 μffl'
17) The light was focused on a specific area. In addition, the pulse interval is 1/100 seconds, the wavelength 8 pull speed is 10"cm/second,
Measurements were carried out in the range from 50Q-1cm to 1500-1cryl). As a result, the tunneling current increased up to three times at wavelengths corresponding to natural frequencies such as C-0 stretching vibration and C-0-C bending signal specific to the ester group of PMMA.

また、PMMAの吸収ピークに相当しない500〜60
0”cm付近でのトンネル電流の変動は10%以下であ
った。
In addition, 500 to 60, which does not correspond to the absorption peak of PMMA,
The variation in tunnel current near 0''cm was less than 10%.

このように本実施例の装置を用いれば、基板上に付着し
た1μ以下の付着物の放射線吸収特性を精度よく測定す
ることができる。
As described above, by using the apparatus of this embodiment, it is possible to accurately measure the radiation absorption characteristics of deposits of 1 μm or less attached on a substrate.

第4図は本発明の第2の実施例を示す構成図である。こ
の実施例は、試料部分、駆vJ機構20及び制御系は第
1の実施例と同じであるが、放射線4oを単色化する代
わりにマイケルソン型の干渉計46を用いているのが特
徴である。マイケルソン干渉計46は、放射線40の光
路を分けるためのハーフミラ−47と、2枚の互いに直
行する反射鏡48.49より構成されている。反射鏡4
8は固定されているのに対し、反射鏡4つは光路に対し
て垂直に移動可能に構成されている。
FIG. 4 is a block diagram showing a second embodiment of the present invention. This embodiment has the same sample portion, drive vJ mechanism 20, and control system as the first embodiment, but is characterized by using a Michelson type interferometer 46 instead of making the radiation 4o monochromatic. be. The Michelson interferometer 46 is composed of a half mirror 47 for dividing the optical path of the radiation 40, and two reflecting mirrors 48 and 49 that are perpendicular to each other. Reflector 4
8 is fixed, whereas the four reflecting mirrors are configured to be movable perpendicularly to the optical path.

次に、この干渉計46を用いて分光特性を測定する方法
について説明する。
Next, a method of measuring spectral characteristics using this interferometer 46 will be explained.

まず、被検査試料11に探針12を接近させ、両者の間
に流れるトンネル電流を測定する。次に反射鏡49の位
置を上下動させ、固定の反射鏡48で反射した光との光
路差γを掃引しながら被検査試料11の上面の高さ2(
Δγ)を測定する。
First, the probe 12 is brought close to the sample 11 to be inspected, and the tunnel current flowing between the two is measured. Next, the position of the reflecting mirror 49 is moved up and down, and while sweeping the optical path difference γ with the light reflected by the fixed reflecting mirror 48, the height 2 (
Δγ).

ここで、2(Δγ)を測定するには、予め探針12と試
料11の距離とトンネル電流との関係を測定しておき、
トンネル電流をモニタしてその変動から推定してもよい
し、トンネル電流が一定となるようZ駆動回路33に電
圧を印加し、その印加電圧から推定してもよい。
Here, in order to measure 2(Δγ), the relationship between the distance between the probe 12 and the sample 11 and the tunnel current is measured in advance.
The tunnel current may be monitored and estimated from its fluctuations, or a voltage may be applied to the Z drive circuit 33 so that the tunnel current is constant, and estimation may be made from the applied voltage.

ここで、光源の波長分布をIo  (λ)とすると、試
料11に照射される放射線の波長分布■○(λ0.γ)
は干渉計46を通過しているため、1o  (λ、γ) =Io(λ)(1−e−2”T//’ )・・・(1) と表わせる。
Here, if the wavelength distribution of the light source is Io (λ), then the wavelength distribution of the radiation irradiated to the sample 11■○(λ0.γ)
has passed through the interferometer 46, so it can be expressed as 1o (λ, γ) = Io (λ) (1-e-2''T//') (1).

ところで、変動ff1dz(Δγ)は、光の吸収係数S
(λ)とlo  (λ、γ)との間に次の関係がある。
By the way, the fluctuation ff1dz(Δγ) is the light absorption coefficient S
The following relationship exists between (λ) and lo (λ, γ).

dz(γ) =A/lo(λ、△7)・S(λ)dz・・・(2) ここで、Aは比例定数であり、試料の形状、比熱、大き
さ、熱伝4率等の関数である。
dz (γ) = A/lo (λ, △7)・S (λ) dz... (2) Here, A is a proportionality constant, and it is a constant of proportionality, and the shape of the sample, specific heat, size, heat transfer coefficient, etc. is a function of

第(2)式に第(1)式を代入すると、dz(γ) 一へ/Io(λ )、 S (λ )(1e−2πΔγ
/λ)dz −A(/Io(λ )S(λ )dλ fΣIo  (λ)S(λ、e−2yrΔγ/λdλ)
                  ・・・ (3)
となる。
Substituting equation (1) into equation (2), dz(γ) 1/Io(λ), S(λ)(1e−2πΔγ
/λ)dz -A(/Io(λ)S(λ)dλ fΣIo(λ)S(λ, e-2yrΔγ/λdλ)
... (3)
becomes.

ここで、右辺の第1項は光路差Δ7−0の時の高さ変動
ΦdZ(○)に相当する。従って、第(3)式は dz (0)−dz (γ) =AJIo(λ)s(λ、e−2yrr/λdλ   
          ・・・(4)となる。
Here, the first term on the right side corresponds to the height variation ΦdZ(○) when the optical path difference is Δ7-0. Therefore, equation (3) is dz (0)-dz (γ) = AJIo(λ)s(λ, e-2yrr/λdλ
...(4).

ここでdz (0)−dz (7)=dZ (7)とお
くと、 dZ(γ)=Io(λ)s(λ)e−2y’rγ/λd
λ          ・・・(5)となる。
Here, if we set dz (0)-dz (7)=dZ (7), then dZ(γ)=Io(λ)s(λ)e-2y'rγ/λd
λ...(5).

これをフーリエ変換すると、 10 (γ)S(γ) Af2π ・・・ (6) となる。従って、光路差γを拌引しながら高さ方向の変
tl[dz(γ)を複数の点について測定し、これをフ
ーリエ変換することにより、I。
When this is Fourier transformed, it becomes 10 (γ) S (γ) Af2π (6). Therefore, by measuring the change in the height direction tl[dz(γ) at a plurality of points while stirring and pulling the optical path difference γ, and performing Fourier transform on this, I.

(γ)S(γ)を求めることができる。(γ)S(γ) can be obtained.

実際には、第(6)式を次の式で近似して級数計算を行
う。
Actually, series calculation is performed by approximating equation (6) with the following equation.

1o  (γ)S(γ) ・・・ (7) 光源の波長分布を予め測定しておき第(7)式をこれで
割ることにより、吸収係数S(λ)を求めることができ
る。なお、これらの計算は計算機31を用いて行なわれ
る。
1o (γ)S(γ) (7) By measuring the wavelength distribution of the light source in advance and dividing Equation (7) by this, the absorption coefficient S(λ) can be determined. Note that these calculations are performed using the computer 31.

この実施例では、光源1の全波長の光が帛に試料11に
照射されているため、効率が高く、信号/M音比の大き
な分光吸収特性を比較的短時間で測定できる特徴がある
In this embodiment, since light of all wavelengths from the light source 1 is irradiated onto the sample 11 at once, the efficiency is high and spectral absorption characteristics with a large signal/M sound ratio can be measured in a relatively short time.

第5図は本発明の第3の実施例を示す憫成図である。FIG. 5 is a diagram showing a third embodiment of the present invention.

この実施例では、探針12としてはダイヤモンドを用い
、板バネ24により固定用ブロック25に接続している
。板バネ24の裏面には金属製の探針26が取付けられ
ている。探針12と被検査試料11の距離は、両者の間
に触く原子間の反発力により板バネ24に伝達され、板
バネ24と金属製探針26との間のトンネル電流の変化
どして検出される。またブロック25は圧電素子よりな
るZ微初楯構23に固定されている。高さ方向検出装置
27は全体がX、Y、Zの租初門構(図示せ’Ill″
)に取付けられている。被検査試料11に対しては斜め
上方向から放射光40を照射するn@が取付けられてい
る。その構成、動作は第1の実施例で説明したものと同
じであるので省略する。
In this embodiment, diamond is used as the probe 12, and it is connected to a fixing block 25 by a plate spring 24. A metal probe 26 is attached to the back surface of the leaf spring 24. The distance between the probe 12 and the sample to be inspected 11 is determined by the change in tunnel current between the plate spring 24 and the metal probe 26, which is transmitted to the leaf spring 24 by the repulsive force between the atoms that touch between them. detected. Further, the block 25 is fixed to a Z-fine shield structure 23 made of a piezoelectric element. The height direction detection device 27 has an X, Y, and Z gate structure as a whole (see 'Ill' in the figure).
) is installed. An n@ is attached to the sample 11 to be inspected, which irradiates the synchrotron radiation 40 from diagonally above. Its configuration and operation are the same as those described in the first embodiment, so their description will be omitted.

この実施例によれば、絶縁物を測定する際にも金属膜で
被覆する必要がないため、非破壊検査に適している。ま
た、放射線40を試料11の上方向から照射するため、
放射線0に対して不透明の被検査試料上の付着物の測定
も可能となる。
According to this embodiment, there is no need to coat the insulator with a metal film when measuring the insulator, so it is suitable for non-destructive testing. In addition, since the radiation 40 is irradiated from above the sample 11,
It is also possible to measure deposits on a sample to be inspected that is opaque to zero radiation.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、試料11に照射する光の光源はシンクロ
トロン放射光に限るものではなく、波長可変型のCO2
レーザや、ダイオード型半導体レーザ等のレーザ光等の
単色光源を用いてもよい。また、熱放射型の連続光源等
あらゆる単色連続光源を利用できる。
Note that the present invention is not limited to the embodiments described above. For example, the light source for the light irradiated onto the sample 11 is not limited to synchrotron radiation, but is also a wavelength-tunable CO2
A monochromatic light source such as a laser or a laser beam such as a diode type semiconductor laser may be used. Further, any monochromatic continuous light source such as a thermal radiation type continuous light source can be used.

また放射線の照射方法としては、パルス状であってもよ
いし、連続に照射するものでもよい。
Furthermore, the radiation irradiation method may be pulsed or continuous.

また探針12の駆vJ機横は圧電素子を用いるものに限
らず、高い分解能で探針を移動できるものであればよい
Further, the side of the probe 12 that drives the probe 12 is not limited to one using a piezoelectric element, and may be of any type as long as it can move the probe with high resolution.

〔発明の効果] 以上説明したように本発明によれば、族1111線を照
Q!I L、た際の試料面の高さ変動を探針を用いて検
出することにより、微小部分の分光吸収特性を測定する
ように構成したため、0.1μm以下の分解能で試料面
の分光吸収特性を測定することができる。特に赤外領域
の分光特性は物体の同定に有効であるため、半導体素子
製造工程の際に付着する不純物の同定に極めて有効な効
果を発揮する。
[Effects of the Invention] As explained above, according to the present invention, the group 1111 line can be illuminated with Q! Since the structure is configured to measure the spectral absorption characteristics of minute parts by detecting the height fluctuation of the sample surface during I L using a probe, the spectral absorption characteristics of the sample surface can be measured with a resolution of 0.1 μm or less. can be measured. In particular, the spectral characteristics in the infrared region are effective for identifying objects, so they are extremely effective for identifying impurities that adhere during the semiconductor device manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は第1
図の実施例の動作を説明するための波形図、第3図は第
1図の実施例で使用した被検査試料の断面構成図、第4
図は本発明の第2の実施例を示す構成図、第5図は本発
明の第3の実施例を示す構成図、第6図は走査型トンネ
ル電子顕微鏡の概略構成図である。 11・・・被検査試料、12・・・探針、13・・・付
着物、14・・・X−Yステージ、15・・・金薄膜、
20・・・微vJ機構、21・・・X微vJ機構、22
・・・Y微動機構、23・・・Z微動l!構、24・・
・板バネ、25・・・固定用ブロック、26・・・金属
探針、27・・・高さ測定橢構、31・・・計算機、3
2・・・X−Y駆動回路、33・・・Z駆動回路、34
・・・トンネル電流検出回路、40・・・放射線、41
・・・光源、42・・・回折格子、43・・・シセッタ
、44・・・フィルタ、45・・・レンズ、46・・・
マイケルソン干渉計、47・・・ハーフミラ・・・同字
の反射鏡、4つ・・・可動の反射鏡。 第1図 第2図 第6図
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
FIG. 3 is a waveform diagram for explaining the operation of the embodiment shown in FIG.
5 is a block diagram showing a second embodiment of the present invention, FIG. 5 is a block diagram showing a third embodiment of the present invention, and FIG. 6 is a schematic block diagram of a scanning tunneling electron microscope. DESCRIPTION OF SYMBOLS 11... Sample to be inspected, 12... Probe, 13... Deposit, 14... X-Y stage, 15... Gold thin film,
20... Fine vJ mechanism, 21... X fine vJ mechanism, 22
...Y fine movement mechanism, 23...Z fine movement l! Structure, 24...
- Leaf spring, 25... Fixing block, 26... Metal probe, 27... Height measurement structure, 31... Calculator, 3
2...X-Y drive circuit, 33...Z drive circuit, 34
... tunnel current detection circuit, 40 ... radiation, 41
...Light source, 42...Diffraction grating, 43...Sissetta, 44...Filter, 45...Lens, 46...
Michelson interferometer, 47...half mirror...reflector with the same letter, 4...movable reflector. Figure 1 Figure 2 Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1)被検査試料の表面に対し該被検査試料表面の高さ
を測定するための探計を近接させる微動手段と、 前記被検査試料の表面の前記探針に対向する部位に単色
化された放射線を照射する照射手段と、放射線照射時と
未照射時の被検査試料表面の温度変化に伴う膨張収縮を
該試料表面の高さ変動として検知し、放射線に対する局
所的な分光吸収特性を測定する制御手段と を備えた表面分析装置。
(1) Fine movement means for bringing a probe for measuring the height of the surface of the sample to be inspected close to the surface of the sample to be inspected, and a portion of the surface of the sample to be inspected that faces the probe is made monochrome. irradiation means that irradiates radiation, and detects expansion and contraction due to temperature changes on the surface of the sample to be inspected during irradiation and non-irradiation as changes in the height of the sample surface, and measures local spectral absorption characteristics for radiation. A surface analysis device comprising: a control means for controlling a surface;
(2)放射線として赤外光を用い、その波長を掃引しな
がら局所的分光吸収特性を測定することを特徴とする請
求項1記載の表面分析装置。
(2) The surface analysis device according to claim 1, wherein infrared light is used as the radiation and local spectral absorption characteristics are measured while sweeping the wavelength of the infrared light.
(3)試料表面の高さを測定する手段として被検査試料
と探針の間に流れるトンネル電流を検出する手段を用い
ることを特徴とする請求項1記載の表面分析装置。
(3) The surface analysis apparatus according to claim 1, wherein means for detecting a tunnel current flowing between the sample to be inspected and the probe is used as the means for measuring the height of the sample surface.
(4)試料表面の高さを測定する手段として被検査試料
との探針に作用する原子間力を測定する手段を用いるこ
とを特徴とする請求項1記載の表面分析装置。
(4) The surface analysis apparatus according to claim 1, characterized in that the means for measuring the height of the sample surface is a means for measuring the atomic force acting on the probe with respect to the sample to be inspected.
(5)被検査試料の表面に対し該被検査試料の表面の高
さを検出するための探針を近接させる微動手段と、 前記被検査試料の前記探針に対向した部位にマイケルソ
ン型の干渉計を通過した放射線を照射する照射手段と、 前記マイケルソン型干渉計の固定反射鏡と可動反射鏡で
反射される放射線の光路差を掃引しながら、被検査試料
表面の高さ変動を前記探針を用いて検出する手段と、 この手段で検出した高さ変動の光路差依存性を計算処理
して局所分光吸収特性を求める手段とを有する表面分析
装置。
(5) fine movement means for bringing a probe close to the surface of the sample to be inspected for detecting the height of the surface of the sample to be inspected; an irradiation means for irradiating radiation that has passed through the interferometer; and an irradiation means that irradiates the radiation that has passed through the interferometer, and while sweeping the optical path difference between the radiation reflected by the fixed reflecting mirror and the movable reflecting mirror of the Michelson type interferometer, height fluctuations on the surface of the sample to be inspected are detected. A surface analysis device comprising a means for detecting using a probe, and a means for determining local spectral absorption characteristics by calculating the optical path difference dependence of the height fluctuation detected by this means.
JP63222993A 1988-09-06 1988-09-06 Surface analyzer Expired - Fee Related JP2777147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222993A JP2777147B2 (en) 1988-09-06 1988-09-06 Surface analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222993A JP2777147B2 (en) 1988-09-06 1988-09-06 Surface analyzer

Publications (2)

Publication Number Publication Date
JPH0269643A true JPH0269643A (en) 1990-03-08
JP2777147B2 JP2777147B2 (en) 1998-07-16

Family

ID=16791126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222993A Expired - Fee Related JP2777147B2 (en) 1988-09-06 1988-09-06 Surface analyzer

Country Status (1)

Country Link
JP (1) JP2777147B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247557A (en) * 1989-03-20 1990-10-03 Olympus Optical Co Ltd Optoacoustic spectrometer
JPH02287246A (en) * 1989-04-07 1990-11-27 Internatl Business Mach Corp <Ibm> Instrument and method for measuring absorption
WO2005103647A1 (en) * 2004-04-21 2005-11-03 Japan Science And Technology Agency Quantum beam aided atomic force microscopy and quantum beam aided atomic force microscope
JP2009216425A (en) * 2008-03-07 2009-09-24 Mitsui Chemical Analysis & Consulting Service Inc Foreign matter analytical sample, and foreign matter analytical method
JP2013036914A (en) * 2011-08-10 2013-02-21 Sumitomo Osaka Cement Co Ltd Method for identifying constituent material and component analysis method
JP2014202677A (en) * 2013-04-08 2014-10-27 株式会社堀場製作所 Infrared absorption measurement instrument and infrared absorption measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184806A (en) * 1983-04-01 1984-10-20 サ−マ−ウエイブ・インコ−ポレ−テツド Method and device for measuring thickness of thin-film
JPS6018747A (en) * 1983-07-13 1985-01-30 Hitachi Ltd Apparatus for measuring coefficient of linear expansion
JPS63121740A (en) * 1986-11-11 1988-05-25 Toshiba Corp Surface analyzing method and its device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184806A (en) * 1983-04-01 1984-10-20 サ−マ−ウエイブ・インコ−ポレ−テツド Method and device for measuring thickness of thin-film
JPS6018747A (en) * 1983-07-13 1985-01-30 Hitachi Ltd Apparatus for measuring coefficient of linear expansion
JPS63121740A (en) * 1986-11-11 1988-05-25 Toshiba Corp Surface analyzing method and its device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247557A (en) * 1989-03-20 1990-10-03 Olympus Optical Co Ltd Optoacoustic spectrometer
JPH02287246A (en) * 1989-04-07 1990-11-27 Internatl Business Mach Corp <Ibm> Instrument and method for measuring absorption
WO2005103647A1 (en) * 2004-04-21 2005-11-03 Japan Science And Technology Agency Quantum beam aided atomic force microscopy and quantum beam aided atomic force microscope
JP2005308554A (en) * 2004-04-21 2005-11-04 Japan Science & Technology Agency Quantum line-supported atomic force microscopic method, and quantum line-supported atomic force microscope
US7534999B2 (en) 2004-04-21 2009-05-19 Japan Science And Technology Agency Quantum beam aided atomic force microscopy and quantum beam aided atomic force microscope
JP4596813B2 (en) * 2004-04-21 2010-12-15 独立行政法人科学技術振興機構 Quantum beam assisted atomic force microscopy and quantum beam assisted atomic force microscopy
JP2009216425A (en) * 2008-03-07 2009-09-24 Mitsui Chemical Analysis & Consulting Service Inc Foreign matter analytical sample, and foreign matter analytical method
JP2013036914A (en) * 2011-08-10 2013-02-21 Sumitomo Osaka Cement Co Ltd Method for identifying constituent material and component analysis method
JP2014202677A (en) * 2013-04-08 2014-10-27 株式会社堀場製作所 Infrared absorption measurement instrument and infrared absorption measurement method

Also Published As

Publication number Publication date
JP2777147B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
US4964726A (en) Apparatus and method for optical dimension measurement using interference of scattered electromagnetic energy
US6563591B2 (en) Optical method for the determination of grain orientation in films
US6348967B1 (en) Method and device for measuring the thickness of opaque and transparent films
US6661519B2 (en) Semiconductor impurity concentration testing apparatus and semiconductor impurity concentration testing method
US6212939B1 (en) Uncoated microcantilevers as chemical sensors
KR20010091010A (en) Apparatus and method for evaluating electric characteristics of semiconductor
US8622612B2 (en) Method and apparatus for determining the thermal expansion of a material
US5344236A (en) Method for evaluation of quality of the interface between layer and substrate
EP3293525A1 (en) Method and apparatus for chemical and optical imaging with a broadband source
US10139295B2 (en) Methods for in-plane strain measurement of a substrate
US20030210405A1 (en) Dual-spot phase-sensitive detection
JPH0269643A (en) Surface analysis instrument
US20030210402A1 (en) Apparatus and method for dual spot inspection of repetitive patterns
WO2004113885A1 (en) Optical waveform measurement device and measurement method thereof, complex refractive index measurement device and measurement method thereof, and computer program recording medium containing the program
Voegeli et al. A quick convergent-beam laboratory X-ray reflectometer using a simultaneous multiple-angle dispersive geometry
Wu et al. Non-destructive evaluation of thin film coatings using a laser-induced surface thermal lensing effect
EP3988928A1 (en) Thermophysical property value measurement device and thermophysical property value measurement method
US5736745A (en) Contamination evaluating apparatus
EP3918275B1 (en) Method of determining the strength limit and the degree of cracking of a material using an optical interferometry method
US20020109505A1 (en) Device for testing a material that changes shape when an electric and/or magnetic field is applied
JP2953742B2 (en) Surface roughness evaluation method
Thalhammer et al. Physically rigorous modeling of internal laser-probing techniques for microstructured semiconductor devices
RU2025656C1 (en) Device for non-destructive measuring of thickness of dielectric and semiconductor films in predetermined point
JPH04198745A (en) X-ray diffracting method
JP2790410B2 (en) High sensitivity color difference observation method for film thickness and refractive index

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees