JPS6018747A - Apparatus for measuring coefficient of linear expansion - Google Patents

Apparatus for measuring coefficient of linear expansion

Info

Publication number
JPS6018747A
JPS6018747A JP12603483A JP12603483A JPS6018747A JP S6018747 A JPS6018747 A JP S6018747A JP 12603483 A JP12603483 A JP 12603483A JP 12603483 A JP12603483 A JP 12603483A JP S6018747 A JPS6018747 A JP S6018747A
Authority
JP
Japan
Prior art keywords
linear expansion
cooling element
thermoelectric cooling
minute
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12603483A
Other languages
Japanese (ja)
Inventor
Makoto Shimaoka
誠 嶋岡
Toshihiro Yamada
山田 俊宏
Tatsuji Sakamoto
坂本 達事
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12603483A priority Critical patent/JPS6018747A/en
Publication of JPS6018747A publication Critical patent/JPS6018747A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/16Investigating or analyzing materials by the use of thermal means by investigating thermal coefficient of expansion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To make it possible to measure the coefficient of linear expansion even with respect to a minute material with good accuracy, by heating or cooling the material to be measured received in a vacuum container by a thermoelectric cooling element to impart uniform temp. distribution to said material, and detecting the generated minute displacement amount. CONSTITUTION:A heating and cooling thermoelectric cooling element 7 is fixed to a fixed base plate 8 and a material 2 to be measured is placed on said element 7 while a quartz glass rod 11 and a minute displacement measuring apparatus 9 are further set. These apparatuses are received in a vacuum vessel 10 which is, in turn, evacuated by a vacuum exhaust apparatus 13. When a current is supplied to the thermoelectric cooling element 7, the material 2 is heated or cooled and the gap of the displacement measuring apparatus 9 changes and the change in a current is generated in a converter 16 to be detected by an ammeter 17. As mentioned above, by evacuating the vessel 10 to obtain a heat insulating state, and, by using the thermoelectric cooling element 7, the temp. distribution of the material 2 becomes uniform and coefficient of linear expansion can be measured even with respect to a minute material with good accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は線膨張係数測定装置に関し、特に微少材料の線
膨張係数測定に好適な測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a linear expansion coefficient measuring device, and particularly to a measuring device suitable for measuring the linear expansion coefficient of minute materials.

〔発明の背景〕[Background of the invention]

従来の線膨張係数測定装置は、第1図に示す如く、基板
1上に置かれた測定試料2の周りに加熱用コイル3を巻
き、さらに断熱材4で囲い、測定試料2を加熱用コイル
2によって加熱し、この加熱による測定試料2の変形を
石英ガラス5全通して微少変位測定装置6に伝え、基板
1からの相対変位量をめる構造が一般的であった。上記
の構造において、温度分布の均一な加熱用コイル3を作
成するにはコイル径、巻き数、巻き間かくなど多くの因
子があり、均一なものを得ることは困難であった。上記
の点から比較的均一々ものを得るためには測定試料2は
少なくとも30m程度の長さが必要であり、これ以下の
試料では測定バラツキが大きくなる欠点があった。また
、測定は常温以上の高温状態での測定にとどまり、たと
えば半導体部品で問題となる常温から一40c程度の線
膨張係数測定については別の装置が必要であった。
As shown in FIG. 1, the conventional linear expansion coefficient measuring device winds a heating coil 3 around a measurement sample 2 placed on a substrate 1, surrounds it with a heat insulating material 4, and wraps the measurement sample 2 around the heating coil. 2, and the deformation of the measurement sample 2 caused by this heating is transmitted through the entire quartz glass 5 to the minute displacement measuring device 6, and the amount of relative displacement from the substrate 1 is measured. In the above structure, there are many factors such as coil diameter, number of turns, and winding spacing in order to create a heating coil 3 with a uniform temperature distribution, and it has been difficult to obtain a uniform heating coil 3. From the above point, in order to obtain relatively uniform results, the measurement sample 2 must have a length of at least 30 m, and samples shorter than this have the disadvantage of large measurement variations. Furthermore, measurements are limited to measurements at high temperatures above room temperature, and a separate device is required to measure the coefficient of linear expansion from room temperature to about -40c, which is a problem with semiconductor components, for example.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み微少材料を均一な温度分布に加
熱・冷却させ熱によって発生した変位量を精度よく測定
する構造を具える線膨張係数測定装置を提供することを
目的としたものである。
In view of the above points, it is an object of the present invention to provide a linear expansion coefficient measuring device having a structure for heating and cooling a minute material to a uniform temperature distribution and accurately measuring the amount of displacement generated by the heat. be.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、測定試料を真空容器に収
納し、容器内を10−” Torr以下の真空に排気す
ることにより断熱状態とし、熱電冷却素子で加熱・冷却
し々から試料の膨張・収縮を測定しようとしたものであ
る。
The characteristics of the present invention are that the measurement sample is stored in a vacuum container, the inside of the container is evacuated to a vacuum of 10-" Torr or less to create an adiabatic state, and the sample is expanded by heating and cooling with a thermoelectric cooling element.・This was an attempt to measure contraction.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の線膨張係数測定装置の一実施例を第2図
によね説明する。まず測定試料2の加熱・冷却用熱電冷
却素子7を固定基板8上に接着固定しておく。つぎに測
定試料2を熱電冷却素子7上に置き、さらに石英ガラス
棒11、微少変位測定装置9をセットする。微少変位測
定装置9と固定基板8は相対変位を起こさないように固
定し、石英ガラス棒11は測定試料2の変形とともに動
くように支持する。これらの装置はすべて真空容器10
中に入れ真空排気装置i¥13で排気する。熱電冷却素
子用電源12、温度計15、微少変位測定装置用変換器
16、電流計17はそれぞれ真空容器外に設けて測定す
る。この装置の測定は、まず、熱電冷却素子用電源12
から熱電冷却素子7に通電すると、担11定試料2は加
熱あるいは冷却される。この時測定試料2は膨張あるい
は収縮を起こし、この動きに対応して石英ガラス棒11
が上下する。この上下動に対応して石英ガラス棒11上
部に接合したAt材などの上面部材14と微少変位測定
装置9との間の間隙が変化し、微少変位測定装置用変換
器16を経て電流変化として出力される。電流変化量と
微少変位測定装置9の変位量との間の関係はあらかじめ
めておき、熱電対15′で測定した試料温度と試料変位
量との関係から線膨張係数をめる。
Hereinafter, one embodiment of the linear expansion coefficient measuring device of the present invention will be described with reference to FIG. First, the thermoelectric cooling element 7 for heating and cooling the measurement sample 2 is adhesively fixed onto the fixed substrate 8. Next, the measurement sample 2 is placed on the thermoelectric cooling element 7, and the quartz glass rod 11 and minute displacement measuring device 9 are further set. The minute displacement measuring device 9 and the fixed substrate 8 are fixed so as not to cause relative displacement, and the quartz glass rod 11 is supported so as to move with the deformation of the measurement sample 2. All these devices are vacuum containers10
Put it inside and evacuate using the vacuum evacuation device i ¥13. The power supply 12 for the thermoelectric cooling element, the thermometer 15, the converter 16 for the minute displacement measuring device, and the ammeter 17 are each provided outside the vacuum container for measurement. Measurement using this device begins with the power supply 12 for the thermoelectric cooling element.
When the thermoelectric cooling element 7 is energized, the carrier 11 fixed sample 2 is heated or cooled. At this time, the measurement sample 2 expands or contracts, and the quartz glass rod 11 responds to this movement.
goes up and down. Corresponding to this vertical movement, the gap between the top surface member 14 such as an At material bonded to the top of the quartz glass rod 11 and the minute displacement measuring device 9 changes, and the current changes through the minute displacement measuring device converter 16. Output. The relationship between the amount of current change and the amount of displacement of the minute displacement measuring device 9 is determined in advance, and the coefficient of linear expansion is calculated from the relationship between the sample temperature measured by the thermocouple 15' and the amount of sample displacement.

ところで、本発明で使用した熱電冷却素子7は、直流電
流を通電すると、ベルチェ効果によりたとえば第2図7
a面側が冷却し%7b7bが発熱する。したがって、7
a面側と7b面側との間に温度差が生じ、この温度差に
基づき熱電冷却素子7は変形する。したがって、本装置
使用に当っては、まず熱電冷却素子7自身の変位量と温
度との関係を杷握しておく必要がある。第3図は本装置
を用いて熱電冷却素子7自身の変位量と温度との関係を
測定した結果を示したものである。この結果を基に、た
とえば、測定試料2としてAt材(たて5×よと5×長
さ10)全測定すると第4図の結果となる。測定値はま
ず7b面を基準とした温度と変位量との関係、すなわち
図中の一点鎖線Aで示す測定値tAt材+熱電素子)が
得られ、この値から第3図の関係を差し引いたものが真
のAt材変位量と彦る。(図中、実線Bで示す。)なお
、図中破線Cは計算値を示す。とれに基づきAt材の線
膨張係数をめると23. I X 10= (tr’)
となり、一般的なAt材の線膨張係数’k 23.6 
Xl 0−’ (C−1) とした場合、長さ10鯛の
寸法のものを精度98%でめることができる。
By the way, when the thermoelectric cooling element 7 used in the present invention is energized with DC current, due to the Beltier effect, for example, as shown in FIG.
The a side cools and %7b7b generates heat. Therefore, 7
A temperature difference occurs between the a side and the 7b side, and the thermoelectric cooling element 7 deforms based on this temperature difference. Therefore, when using this device, it is first necessary to establish the relationship between the displacement amount of the thermoelectric cooling element 7 itself and the temperature. FIG. 3 shows the results of measuring the relationship between the displacement amount and temperature of the thermoelectric cooling element 7 itself using this device. Based on this result, for example, when measuring the entire At material (vertical 5 x width 5 x length 10) as measurement sample 2, the results shown in FIG. 4 are obtained. First, the measured value is the relationship between temperature and displacement based on plane 7b, that is, the measured value tAt material + thermoelectric element shown by the dashed line A in the figure, and the relationship shown in Figure 3 is subtracted from this value. The amount of displacement is similar to that of the true At material. (Indicated by a solid line B in the figure.) In addition, a broken line C in the figure indicates a calculated value. If we calculate the linear expansion coefficient of the At material based on the bending, we get 23. I x 10= (tr')
Therefore, the linear expansion coefficient 'k of general At material is 23.6
When Xl 0-' (C-1), it is possible to measure a length of 10 sea breams with an accuracy of 98%.

本実施例によれば、従来のコイルヒータの間接加熱に比
べ小さな熱電冷却素子で試別加熱することができるため
装置が小型になる。また、加熱の他に電極を切り換える
と冷却することができ、従来の場合新たに冷却のため冷
凍機等を使用する必要が生じ、装置製作費が安く済む。
According to this embodiment, trial heating can be performed using a smaller thermoelectric cooling element than in the conventional indirect heating using a coil heater, so that the apparatus becomes smaller. Furthermore, in addition to heating, cooling can be achieved by switching the electrodes, and in the conventional case, it would be necessary to use a refrigerator or the like for cooling, and the manufacturing cost of the device can be reduced.

このように装置が小型化できることにより、加熱・冷却
が従来に比べ容易に行うことができ短時間で試験できる
Since the device can be miniaturized in this way, heating and cooling can be performed more easily than in the past, and testing can be performed in a shorter time.

また、従来のコイルヒータ加熱では試料の外周を被うた
め試料を観察することができないが、本発明によると試
料の一面のみを加熱・冷却することで十分であり、外部
から温度変化に伴なう試料観察を行えるなどの効果があ
る。
In addition, with conventional coil heater heating, the sample cannot be observed because it covers the outer periphery of the sample, but according to the present invention, it is sufficient to heat and cool only one side of the sample, and it is possible to heat and cool only one side of the sample from the outside. This has the advantage of allowing for sample observation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、微少な寸法のも
のの線膨張係数を精度よくしかも効率よく測定すること
ができる。
As explained above, according to the present invention, the coefficient of linear expansion of an object with minute dimensions can be measured accurately and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の線膨張係数測定装置の一例の縦断面図、
第2図は本発明の線膨張係数測定装置の一実施例の縦断
面図、第3図は熱電冷却素子の温度変化に対する変位量
を示した図、第4図は本発明の線膨張係数測定装置でA
t材を測定した結果を示した図である。 2・・・測定試料、7・・・熱電冷却素子、8・・・固
定基板、9・・・微少変位測定装置、10・・・真空容
器% 11・・・石英ガラス棒、12・・・熱電冷却素
子用電源、15・・・温度計、16・・・微少変位測定
装置用変換器、17・・・電流計。 薗1図
Figure 1 is a vertical cross-sectional view of an example of a conventional linear expansion coefficient measuring device.
Fig. 2 is a vertical cross-sectional view of one embodiment of the linear expansion coefficient measuring device of the present invention, Fig. 3 is a diagram showing the amount of displacement of a thermoelectric cooling element with respect to temperature change, and Fig. 4 is a linear expansion coefficient measuring device of the present invention. A with the device
It is a figure showing the result of measuring T material. 2... Measurement sample, 7... Thermoelectric cooling element, 8... Fixed substrate, 9... Minute displacement measuring device, 10... Vacuum container% 11... Quartz glass rod, 12... Power supply for thermoelectric cooling element, 15... Thermometer, 16... Converter for minute displacement measuring device, 17... Ammeter. Sono 1 map

Claims (1)

【特許請求の範囲】 微少部あるいは微少材料の温度変化に伴なう膨張・収縮
を測定する線膨張係数測定装置において、前記材料を真
空容器に収納し、熱電冷却素子で。 加熱・冷却することにより、前記材料に均一な温度分布
を与え発生した変位量を微少変位測定装置により検出す
ること全特徴とする線膨張係数測定装置。
[Scope of Claim] A linear expansion coefficient measuring device for measuring expansion and contraction of a microscopic part or microscopic material due to temperature changes, wherein the material is housed in a vacuum container and a thermoelectric cooling element is used. A linear expansion coefficient measuring device characterized in that a uniform temperature distribution is given to the material by heating and cooling, and the amount of displacement generated is detected by a minute displacement measuring device.
JP12603483A 1983-07-13 1983-07-13 Apparatus for measuring coefficient of linear expansion Pending JPS6018747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12603483A JPS6018747A (en) 1983-07-13 1983-07-13 Apparatus for measuring coefficient of linear expansion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12603483A JPS6018747A (en) 1983-07-13 1983-07-13 Apparatus for measuring coefficient of linear expansion

Publications (1)

Publication Number Publication Date
JPS6018747A true JPS6018747A (en) 1985-01-30

Family

ID=14925040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12603483A Pending JPS6018747A (en) 1983-07-13 1983-07-13 Apparatus for measuring coefficient of linear expansion

Country Status (1)

Country Link
JP (1) JPS6018747A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269643A (en) * 1988-09-06 1990-03-08 Toshiba Corp Surface analysis instrument
CN109490307A (en) * 2019-01-24 2019-03-19 沈阳工程学院 Device based on pinhole imaging system metal linear expansion coefficient measurement
CN112763536A (en) * 2020-12-31 2021-05-07 上海工程技术大学 Device and method for measuring linear expansion coefficient of material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269643A (en) * 1988-09-06 1990-03-08 Toshiba Corp Surface analysis instrument
CN109490307A (en) * 2019-01-24 2019-03-19 沈阳工程学院 Device based on pinhole imaging system metal linear expansion coefficient measurement
CN109490307B (en) * 2019-01-24 2023-11-03 沈阳工程学院 Device for measuring metal linear expansion coefficient based on small hole imaging
CN112763536A (en) * 2020-12-31 2021-05-07 上海工程技术大学 Device and method for measuring linear expansion coefficient of material

Similar Documents

Publication Publication Date Title
Vieland et al. Specific heat of niobium-tin
US3456490A (en) Differential thermal analysis
JP2019523884A (en) Encapsulated instrument substrate device for obtaining measurement parameters in high temperature process applications
Sandenaw et al. The electrical resistivity and thermal conducitvity of plutonium metal
CN112219272B (en) In-situ temperature sensing substrate, system and method
Gotoh et al. A gold/platinum thermocouple reference table
JP2007218591A (en) Hybrid-type surface thermometer, apparatus, and method for measuring temperature distribution
JPS6018747A (en) Apparatus for measuring coefficient of linear expansion
JPH07324991A (en) Apparatus for measuring thermoelectric characteristic
Burkov et al. Methods and apparatus for measuring thermopower and electrical conductivity of thermoelectric materials at high temperatures
JP3608241B2 (en) Thermal deformation measuring device
Yarlagadda et al. Low temperature thermal conductivity, heat capacity, and heat generation of PZT
Weeks et al. Apparatus for the Measurement of the Thermal Conductivity of Solids
Iero et al. Heat flux sensor for power loss measurements of switching devices
Sale An automatic spherical high temperature adiabatic calorimeter
Green et al. Measurement of thermal diffusivity of semiconductors by Ångström's method
Das et al. A calorimeter for operation in the temperature range 2–150 K
Antoniou et al. Calorimeter for simultaneous measurement of thermal properties and dimensional changes
Edler et al. The melting point of palladium using miniature fixed points of different ceramic materials: Part I—Principles and performances
Sasaki et al. A recording device for surface temperature measurements
Černý et al. Determination of Heat of Adsorption on Clean Solid Surfaces
Veltcheva et al. Experiences in Calibrating Industrial Platinum Resistance Sensors Between− 196 C and 80 C
Heaton Thermoelectrical cooling: Material characteristics and applications
Iero et al. Heat flux-based sensor for the measurement of the power dissipated by switching devices
SU1744519A1 (en) Temperature measuring device