JPH0268810A - Power cable - Google Patents

Power cable

Info

Publication number
JPH0268810A
JPH0268810A JP22023988A JP22023988A JPH0268810A JP H0268810 A JPH0268810 A JP H0268810A JP 22023988 A JP22023988 A JP 22023988A JP 22023988 A JP22023988 A JP 22023988A JP H0268810 A JPH0268810 A JP H0268810A
Authority
JP
Japan
Prior art keywords
water
uldpe
water tree
cross
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22023988A
Other languages
Japanese (ja)
Inventor
Atsushi Suzuki
淳 鈴木
Susumu Takahashi
享 高橋
Isamu Tomaru
都丸 勇
Kenji Nagai
健二 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP22023988A priority Critical patent/JPH0268810A/en
Publication of JPH0268810A publication Critical patent/JPH0268810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To make it possible to obtain an excellent water tree resistivity by using cross-linked ultra low density polyethylene as an insulator. CONSTITUTION:Ultra low density polyethylene(ULDPE) having density 0.91-0.88g/cm<2> is used as an insulating material and cross-linked and coated. Since ULDPE has a similar structure to rubber and has less crystallization, condensed water is hard to be centralized, so that the development of water tree is prevented. It is thus possible to have a power cable having remarkable effectiveness of restraining the generation of water tree.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、耐水トリー性の向上を図ったプラスチック電
カケープルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a plastic electrical cable with improved water resistance.

〈従来の技術〉 ポリエチレンの優れた絶縁性を利用し、さらに架橋によ
り熱的特性を向上させた架橋ポリエチレンケーブル(以
下、XLPEケーブルという)は広く知られている。
<Prior Art> Cross-linked polyethylene cables (hereinafter referred to as XLPE cables), which utilize the excellent insulating properties of polyethylene and have improved thermal properties through cross-linking, are widely known.

〈発明が解決しようとする課題〉 このXLPEケーブルの弱点は、同ケーブル特有の現象
として、絶縁体中の水分と局部的異常電界の存在によっ
て、水トリーが発生し、ケーブルの絶縁性能が低下する
問題がある。
<Problem to be solved by the invention> The weakness of this XLPE cable is that, as a phenomenon unique to the cable, water trees occur due to moisture in the insulator and the presence of a localized abnormal electric field, reducing the insulation performance of the cable. There's a problem.

つまり、XLPE絶縁層中の水トリーは疎水性ポリマー
であるポリエチレン中に局部的に異常電界があると、そ
こに水が集中することによって起こると、考えられてい
る。
In other words, it is believed that water trees in the XLPE insulating layer occur when water is concentrated in polyethylene, which is a hydrophobic polymer, when there is an abnormal electric field locally.

特に、配電クラスの電カケープルのように水中に浸漬さ
れる状態があるような条件の厳しいもとでは、耐水トリ
ー性のより一層の改善が望まれている。
In particular, further improvement in water resistance is desired under severe conditions such as power distribution class power cables that are immersed in water.

そこで、本発明者等は種々の絶縁材料について検討した
ところ、低密度ポリエチレンにあって、密度が0.91
〜0.88 g/cm’と極めて低い、所謂超低密度ポ
リエチレン(以下、ULDPEという)を用い、これを
架橋させて被覆すると、極めて良好な耐水トリー性が得
られることを見出した。
Therefore, the present inventors investigated various insulating materials and found that low density polyethylene has a density of 0.91.
It has been found that when so-called ultra-low density polyethylene (hereinafter referred to as ULDPE), which has an extremely low density of ~0.88 g/cm', is crosslinked and coated, extremely good water resistance can be obtained.

本発明は、このような事実に基づいてなされたものであ
る。
The present invention has been made based on these facts.

〈課題を解決するだめの手段及びその作用〉つまり、本
発明の電カケープルは、架橋されたULDPE (密度
0.91〜0.88 g/cm3)を絶縁体に用いたも
のである。
<Means for Solving the Problems and Their Effects> In other words, the electric cable of the present invention uses crosslinked ULDPE (density 0.91 to 0.88 g/cm3) as an insulator.

そして、このULDPEの使用により、耐水トリー性の
改善が図られる理由としては、次のことが挙げられる。
The following are the reasons why the use of ULDPE improves water resistance.

先ず、水トリーは、ポリマー中の異常電界部に凝縮した
水分がマックスウェル応力等により、ポリマー中にミク
ロパス(微細通路)やクラック(亀裂)等の形成を伴い
ながら進展すると考えられる。ところが、ULDPEの
場合、結晶性が少ないゴム状に近い構造であるため、凝
縮水は集中しにくく、ULDPE中に均一に拡散される
傾向となるので、ミクロパスやクラック等が発生し難く
、すなわち水トリーの進展が防止されると考えられる。
First, water trees are thought to develop as water condensed in abnormal electric field areas in a polymer is accompanied by the formation of micropaths, cracks, etc. in the polymer due to Maxwell stress and the like. However, in the case of ULDPE, since it has a rubber-like structure with little crystallinity, condensed water is difficult to concentrate and tends to be uniformly diffused in ULDPE, making it difficult for micropasses and cracks to occur. It is thought that the development of trees is prevented.

また、この電カケープルを高温で使用した場合に懸念さ
れる絶縁体の流動変形を防止する手段として、適宜架橋
処理を施すものとする。この架橋処理の方法としては、
有機過酸化系の架橋剤を使用する化学架橋、電子線照射
等による照射架橋、シランカップリング剤等を用いるシ
ラン架橋等が挙げられる。ここで、有機過酸化系の架橋
剤としては、ジクミルパーオキサイド、■、3−ビス(
1−ブチルパーオキシ−イソプロビル)ベンゼン等が好
適に使用され、そして、その混入量としては1〜3重量
%程度が好ましい。
In addition, as a means to prevent flow deformation of the insulator, which is a concern when this electric cable is used at high temperatures, crosslinking treatment is appropriately performed. The method for this crosslinking treatment is as follows:
Examples include chemical crosslinking using an organic peroxide crosslinking agent, irradiation crosslinking using electron beam irradiation, and silane crosslinking using a silane coupling agent. Here, as the organic peroxide crosslinking agent, dicumyl peroxide, ■, 3-bis(
1-Butylperoxy-isopropyl)benzene and the like are preferably used, and the amount thereof to be mixed is preferably about 1 to 3% by weight.

さらに、必要に応じて、老化防止剤等として、例えば4
,4−チオビス−(6−L−ブチル−3−メチルフェノ
ール)、ペンタエリスリチル−テトラキス(3−(3,
5−ジーし一ブチルー4ヒドロキシフェニル)プロピオ
ネートコメタン等を単独であるいは併用して、0.1〜
0.3重量%程度配合してもよい。
Furthermore, if necessary, as an anti-aging agent etc., for example, 4
, 4-thiobis-(6-L-butyl-3-methylphenol), pentaerythrityl-tetrakis (3-(3,
5-Di-1-butyl-4-hydroxyphenyl)propionate comethane etc. alone or in combination, 0.1~
It may be blended in an amount of about 0.3% by weight.

〈実施例〉 本発明に係る電カケープルの絶縁体の配合は、次の如く
である。
<Example> The composition of the insulator of the electric cable according to the present invention is as follows.

先ず、使用するULDPEの密度は0.89g/Cm3
、メルトフローレシオ(MFR)は1゜5であり、この
ULDPEに、架橋剤としてジクミルパーオキサイドを
2,0重量%、老化防止剤として4,4−チオビス−(
6−t−ブチル−3−メチルフェノール)を0.25重
量%配合した(実施例1)。
First, the density of the ULDPE used is 0.89g/Cm3
, the melt flow ratio (MFR) was 1°5, and this ULDPE was mixed with 2.0% by weight of dicumyl peroxide as a crosslinking agent and 4,4-thiobis-( as an antiaging agent).
6-t-butyl-3-methylphenol) was added in an amount of 0.25% by weight (Example 1).

なお、比較のため、通常の架橋ポリエチレン(XLPE
)の配合物を作成した(比較例1)。
For comparison, ordinary cross-linked polyethylene (XLPE)
) was prepared (Comparative Example 1).

この際のベースポリエチレンは密度0.92g/cm’
、メルトフローレシオ(MFR)は1.2であり、架橋
剤と老化防止剤は上記実施例1と同種同量だけ配合した
The base polyethylene in this case has a density of 0.92 g/cm'
The melt flow ratio (MFR) was 1.2, and the crosslinking agent and antiaging agent were mixed in the same type and amount as in Example 1 above.

上記各配合物を夫々の配合量に従いロールミルにより加
熱下で混練した後、各々の樹脂混和物からプレス成形に
より大きさ10cmX10cm。
After kneading each of the above-mentioned blends under heating in a roll mill according to their blending amounts, each resin mixture was press-molded into a size of 10 cm x 10 cm.

厚さ1mmまたは3mmのシート状物を得た。この際の
プレス条件は温度180°C1時間30分とした。
A sheet-like product with a thickness of 1 mm or 3 mm was obtained. The pressing conditions at this time were a temperature of 180° C. and 1 hour and 30 minutes.

なお、こうして得られた各樹脂混和物からなるシートの
ゲル分率はいずれも85%以上であった。
Note that the gel fraction of the sheets made of each resin mixture thus obtained was all 85% or more.

この測定は、110°Cの温キシレン中に24時間浸漬
して未架橋部分のみを熔解せしめた後、乾燥してゲル分
率を測定するという方法によるものである。
This measurement is based on a method in which the material is immersed in warm xylene at 110° C. for 24 hours to melt only the uncrosslinked portion, and then dried and the gel fraction is measured.

次に、これらの樹脂混和物からなるシートの水トリー発
生数および誘電正接(tanδ)を測定し、第1表に示
した。
Next, the number of water tree occurrences and the dielectric loss tangent (tan δ) of sheets made of these resin mixtures were measured and shown in Table 1.

この際の水トリー発生数を測定するための水トリー試験
法および誘電正接(tanδ)測定法をに示した。なお
、水トリー試験法については第1図に基づいて説明する
A water tree test method and a dielectric loss tangent (tan δ) measurement method for measuring the number of water trees generated in this case are shown below. The water tree test method will be explained based on FIG. 1.

水トリー試験法 第1図において、1は試験試料として使用する絶縁性シ
ートである。この絶縁性シート1は上記樹脂混和物をプ
レス成形してなるシートであり、この水トリー試験にお
いては、厚さ3mmのものを使用する。このシート1の
底面には導電性塗料の塗布層2を設けて接地電極とする
と共に、シート1の上面には水槽4を設けて水電極を形
成して、これに10kV、1kHzの電圧を高圧電極3
より印加できるように構成する。この電極間に30日間
印加した後、上記シート1を煮沸して、このシート1上
に発生した水トリーを観察した。この際、50μm以上
の水トリーにのみ着目することとし、これらの発生数を
測定した。
Water tree test method In FIG. 1, 1 is an insulating sheet used as a test sample. This insulating sheet 1 is a sheet formed by press-molding the above-mentioned resin mixture, and in this water tree test, a sheet having a thickness of 3 mm is used. A coating layer 2 of conductive paint is provided on the bottom surface of the sheet 1 to serve as a ground electrode, and a water tank 4 is provided on the top surface of the sheet 1 to form a water electrode, to which a high voltage of 10 kV, 1 kHz is applied. Electrode 3
The structure is configured so that more power can be applied. After applying the voltage between the electrodes for 30 days, the sheet 1 was boiled and water trees generated on the sheet 1 were observed. At this time, we focused only on water trees with a diameter of 50 μm or more, and measured the number of these.

なお、ここで、発生数は、従来の架橋ポリエチレン(X
 L P E)を意図して作成した比較用シートに発生
した水トリーの数を100とした場合の相対数として記
した。
Note that here, the number of occurrences is based on conventional cross-linked polyethylene (X
The number is expressed as a relative number when the number of water trees generated on a comparison sheet prepared with the intention of LP E) is set to 100.

誘電正接(tanδ)測定法 誘電正接(tanδ)の測定には、上記各配合物からな
る厚さ1mmのシートを試料として用いる。これに、1
kV、50kHzの電圧を印加して、シエーリングブリ
ッジにより誘電正接(tanδ)を測定した。
Dielectric Loss Tangent (tan δ) Measuring Method For measuring the dielectric loss tangent (tan δ), a 1 mm thick sheet made of each of the above formulations is used as a sample. To this, 1
A voltage of kV and 50 kHz was applied, and the dielectric loss tangent (tan δ) was measured using a Schering bridge.

第1表 この第1表から、本発明実施例1の場合は、比較例1に
比べて、水トリー抑制効果があることが明らかであり、
かつ絶縁性能は従来品(比較例1)と同等であることが
判る。
Table 1 From Table 1, it is clear that Example 1 of the present invention has a water tree suppression effect compared to Comparative Example 1.
Moreover, it can be seen that the insulation performance is equivalent to that of the conventional product (Comparative Example 1).

次に、上記架橋ULDPEおよびXLPEを絶縁体とす
る電カケープルを作成した。このケーブルの構造は、導
体上に厚さ3mmの絶縁層を設け、さらに内部半導電層
および外部半導電層を形成した3層構造を有するもので
、通常外部に施す遮蔽やシースは省略した。この際、導
体として銅を用い、この導体断面積は100mm2とし
た。また、内部および外部半導電層にはエチレン−酢酸
ビニル共重合体に導電性カーボンブラックを配合した半
導電性混和物を使用し、押出被覆法によりその被覆層を
形成した。
Next, an electric cable was created using the above-mentioned crosslinked ULDPE and XLPE as insulators. The structure of this cable has a three-layer structure in which an insulating layer with a thickness of 3 mm is provided on the conductor, and an inner semiconducting layer and an outer semiconducting layer are formed, and the shielding or sheath that is normally applied to the outside is omitted. At this time, copper was used as the conductor, and the cross-sectional area of the conductor was 100 mm2. A semiconductive mixture of ethylene-vinyl acetate copolymer and conductive carbon black was used for the internal and external semiconductive layers, and the coating layers were formed by extrusion coating.

こうして作成した上記各電カケープルについて、以下に
示す浸水課電試験を行って、絶縁破壊電圧を求め、この
結果を第2表に示した。
For each of the above-mentioned power cables thus prepared, the following submergence electrification test was conducted to determine the dielectric breakdown voltage, and the results are shown in Table 2.

浸水課電試験 70°Cの温水中に上記各ケーブルを浸漬し、これに1
kV、10kHzの電圧を90日間印加した後、さらに
AC(50Hz)の電圧を5kV/30分のステップア
ップ条件で昇圧していき、絶縁破壊電圧を測定した。
Water immersion charging test Each of the above cables was immersed in 70°C warm water, and 1
After applying a voltage of kV and 10 kHz for 90 days, the AC (50 Hz) voltage was further increased under step-up conditions of 5 kV/30 minutes, and the dielectric breakdown voltage was measured.

第2表 一ブルによれば、密度が0.91〜0.88g/cm’
と極めて低いULDPEを用い、これを架橋させて被覆
するものであるため、絶縁性能(Lanδ等)が従来の
XLPEと同等程度であって、かつ水トリー発生の抑制
効果が大きく、浸水課電後の絶縁破壊電圧の低下もなく
、さらにULDPEの低い結晶化度により、可撓性の改
善も図れる。
According to Table 2, the density is 0.91 to 0.88 g/cm'
Since the coating uses ULDPE that has an extremely low temperature and is cross-linked, the insulation performance (Lanδ, etc.) is on the same level as conventional XLPE, and the effect of suppressing water tree generation is large, so that it can be There is no decrease in dielectric breakdown voltage, and flexibility can be improved due to the low crystallinity of ULDPE.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における水トリー試験法を説明するため
の説明図である。 特許出願人   藤倉電線株式会社 この第2表より、本発明実施例2の場合、比較例2に比
べて、浸水課電後の絶縁破壊電圧が高いことが判る。 〈発明の効果〉
FIG. 1 is an explanatory diagram for explaining the water tree test method in the present invention. Patent Applicant: Fujikura Electric Cable Co., Ltd. From this Table 2, it can be seen that in the case of Example 2 of the present invention, the dielectric breakdown voltage after water immersion electrification is higher than that in Comparative Example 2. <Effect of the invention>

Claims (1)

【特許請求の範囲】[Claims] 架橋された超低密度ポリエチレン(密度0.91〜0.
88g/cm^3)を絶縁体に用いた電力ケーブル。
Crosslinked ultra-low density polyethylene (density 0.91-0.
A power cable using 88g/cm^3) as an insulator.
JP22023988A 1988-09-02 1988-09-02 Power cable Pending JPH0268810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22023988A JPH0268810A (en) 1988-09-02 1988-09-02 Power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22023988A JPH0268810A (en) 1988-09-02 1988-09-02 Power cable

Publications (1)

Publication Number Publication Date
JPH0268810A true JPH0268810A (en) 1990-03-08

Family

ID=16748072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22023988A Pending JPH0268810A (en) 1988-09-02 1988-09-02 Power cable

Country Status (1)

Country Link
JP (1) JPH0268810A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210150A (en) * 1987-02-25 1988-08-31 Mitsubishi Cable Ind Ltd Coating polymer composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210150A (en) * 1987-02-25 1988-08-31 Mitsubishi Cable Ind Ltd Coating polymer composition

Similar Documents

Publication Publication Date Title
JP2838278B2 (en) Power cable
JP2838277B2 (en) Power cable
JPH0268810A (en) Power cable
JPS64767B2 (en)
JPH01100803A (en) Electric insulator for wire and cable
JPH0515007B2 (en)
JPS63150811A (en) Power cable
JPH0620530A (en) Water tree resistant cable
JPH036250A (en) Insulating composition and electric cable using the same
JPS61133253A (en) Crosslinkable electrically insulating composition
JP3777958B2 (en) Cross-linked polyethylene insulated power cable suitable for recycling
JPS63150810A (en) Power cable
JP2005223966A (en) Rubber molding part and insulated wire
JPH02305837A (en) Electrical insulation resin composition and power cable prepared therefrom
JPH02305813A (en) Electrical-insulating resin composition and power cable
JPH0245542A (en) Electrical insulating resin composition and power cable therefrom
JPH10312717A (en) Ac power cable
JPH08199013A (en) Semiconductive resin composition and crosslinked polyethylene insulated power cable
JPS62246946A (en) Resin composition
JPH02258851A (en) Electrical insulating resin composition
JPH01274307A (en) Conductive composite for power cable
JPH0425642B2 (en)
JPH01175107A (en) Electrical insulating composition and power cable
JP2001312921A (en) Direct-current insulating material
JPH0625482A (en) Semiconductor resin composition and power cable produced using the same