JPS63150811A - Power cable - Google Patents
Power cableInfo
- Publication number
- JPS63150811A JPS63150811A JP29661186A JP29661186A JPS63150811A JP S63150811 A JPS63150811 A JP S63150811A JP 29661186 A JP29661186 A JP 29661186A JP 29661186 A JP29661186 A JP 29661186A JP S63150811 A JPS63150811 A JP S63150811A
- Authority
- JP
- Japan
- Prior art keywords
- polyethylene
- weight
- water
- parts
- maleic anhydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004698 Polyethylene Substances 0.000 claims description 14
- -1 polyethylene Polymers 0.000 claims description 14
- 229920000573 polyethylene Polymers 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 10
- 229920001684 low density polyethylene Polymers 0.000 claims description 6
- 239000004702 low-density polyethylene Substances 0.000 claims description 6
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 6
- 229920001912 maleic anhydride grafted polyethylene Polymers 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 4
- 240000005572 Syzygium cordatum Species 0.000 description 13
- 235000006650 Syzygium cordatum Nutrition 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000009413 insulation Methods 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010382 chemical cross-linking Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 description 2
- 239000004703 cross-linked polyethylene Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229920001179 medium density polyethylene Polymers 0.000 description 2
- 239000004701 medium-density polyethylene Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- HGTUJZTUQFXBIH-UHFFFAOYSA-N (2,3-dimethyl-3-phenylbutan-2-yl)benzene Chemical group C=1C=CC=CC=1C(C)(C)C(C)(C)C1=CC=CC=C1 HGTUJZTUQFXBIH-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 229920006112 polar polymer Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
- Organic Insulating Materials (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はポリエチレン寛カケープルの改&に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to the modification of polyethylene polymer.
(従来の技術)
ポリエチレンの優nた絶縁性金利用し、架橋により熱的
特性全向上した架橋ポリエチレンケーブル(XLPgケ
ーブル)は広く用いらnている。(Prior Art) Crosslinked polyethylene cables (XLPg cables), which utilize the excellent insulating properties of polyethylene and have completely improved thermal properties through crosslinking, are widely used.
(発明が改良すべき問題点)
このXLPgケーブルの弱点は同ケーブル特有の現象と
して絶縁体中の水分と局部的異常電界の存在によって水
トリーが発生し、ケーブルの絶縁性能を低下させる問題
がある。XLPE絶縁層中の水トリーは疎水性ポリマー
であるポリエチレン中に局部的に異常電界があると、そ
こに水が集中することによって起こると考えらnるつ
従って極性基を有し、ある程度親水性のあるボリマーヲ
ブレンドすることによって局部的異常電界部に水が集中
するのをふせぎ、it水トリー性の改善に効果が得らn
るものと考えらnるっ実際にエチレン酢酸ビニール共重
合体(gVA)やエチレンエチルアクリレート共重合体
+gBA)(zブレンドすることによって、耐水トリー
性を改善するという提案は既VC幾つか見受けられるう
しかしこ几らの絶縁組成物であっても水トリー抑止効果
は未まだ不十分であり、特に配点クラス電力ケーブルの
ように水中VC浸漬する状態があるような条件の厳しい
もとではより一層の耐水トリー性の改善が望まれている
。(Problems to be improved by the invention) The weak point of this XLPg cable is that water trees occur due to moisture in the insulator and the presence of local abnormal electric fields, which is a phenomenon unique to the cable, which deteriorates the insulation performance of the cable. . Water trees in the XLPE insulation layer are thought to occur when water is concentrated in polyethylene, which is a hydrophobic polymer, when there is a locally abnormal electric field. Therefore, it has polar groups and is hydrophilic to some extent. By blending certain polymers, it is possible to prevent water from concentrating in local abnormal electric field areas and improve the water tree property.
In fact, some VC proposals have already been made to improve water resistance by blending ethylene vinyl acetate copolymer (gVA) or ethylene ethyl acrylate copolymer + gBA) (z). Even with the insulating composition of Ushikoko et al., the water tree suppression effect is still insufficient, especially under severe conditions such as distribution class power cables where VC is immersed in water. It is desired to improve the water resistance of
(問題点を解決するための手段)
本発明は上記のような実情に鑑み、有極性ポリマーにつ
いて鋭意検討の結果、所定量の無水マレイン酸をグラフ
トした無水マレイン酸グラフトポリエチレンが有効であ
ることを見出した。そしてここに用いらnる無水マレイ
ン酸のグラフトitは0.5〜IO重量%であり、こf
′LjjHポリエチレン100重ik部に対し、2〜4
0重量部を配合することにより優れ定電カケ−プル全提
供することができる。(Means for Solving the Problems) In view of the above-mentioned circumstances, the present invention has been made based on intensive studies on polar polymers, and it has been found that maleic anhydride grafted polyethylene grafted with a predetermined amount of maleic anhydride is effective. I found it. The grafting rate of maleic anhydride used here is 0.5 to IO% by weight, and this
'LjjH 2 to 4 parts per 100 parts by weight of polyethylene
By blending 0 parts by weight, an excellent constant voltage capacitor can be provided.
なお本発明で用いら几る無水マレイン酸グラフトポリエ
チレンを構成するベースポリエチレンとしては、低密度
ポリエチレン(LDPB>、中密度ポリエチレン(MD
PB)、高密度ポリエチレン(HDPgl、直鎖状ポリ
エチレンのいずnか又はそnらの組付せたものが好まし
い。The base polyethylene constituting the maleic anhydride grafted polyethylene used in the present invention includes low density polyethylene (LDPB>), medium density polyethylene (MD
PB), high density polyethylene (HDPgl), linear polyethylene, or a combination thereof is preferred.
本発明で用いられる前記の無水マレイン酸グラフトポリ
エチレフ冑定童ブレンドし次組酸物は導体の外部に被覆
して用いらnるが、高温時の絶縁体の流動が問題となる
場合は架橋により高温時も流動を起さないように処理し
て用いるが、この架橋処理の手段は有機過酸化物を用い
る化学架橋。The maleic anhydride-grafted polyethylene resin blend used in the present invention is used by coating the outside of the conductor, but if flow of the insulator at high temperatures is a problem, crosslinking is required. This method of crosslinking treatment is chemical crosslinking using organic peroxides.
電子線等の放射線の照射による架橋及びシラン化剤ヲ用
いたシラン架橋のいずnによってもよい。Crosslinking may be performed by irradiation with radiation such as an electron beam or by silane crosslinking using a silanizing agent.
(作用)
本発明の絶縁層に於ては、はからずも水トリーの発生を
防止する作用を有するが、グラフトポリ重量%未満では
水トリー抑制に効・果がなく、10重量%を越えると誘
電特性、絶縁抵抗を悪化させるので好ましくない。又、
無水マレイン酸をグラフト化させるベースポリエチレン
として、低密度ポリエチレン(LDPE)、中密度ポリ
エチレン(MDPg)、高密度ポリエチレン(HDPg
l、直鎖状ポリエチレン等を用いることができるが、ケ
ーブルへの押出加工性、絶縁体の可撓性を考慮するとL
DPBiベースポリエチレンとすることがより望ましい
ものである。(Function) The insulating layer of the present invention unexpectedly has the effect of preventing the occurrence of water trees, but if it is less than 10% by weight of the grafted poly, it is not effective in suppressing water trees, and if it exceeds 10% by weight, the dielectric properties This is not preferable because it worsens insulation resistance. or,
Low density polyethylene (LDPE), medium density polyethylene (MDPg), high density polyethylene (HDPg) can be used as the base polyethylene to which maleic anhydride is grafted.
L, linear polyethylene, etc. can be used, but considering the extrusion processability into cables and the flexibility of the insulator, L
It is more desirable to use DPBi-based polyethylene.
又、本発明で前記のグラフトポリエチレンのブレンドt
をポリ重量レン100重景部に対し2〜40重量部とし
念のは2重量部未満では水トリー抑止効果がなく、40
重量部を越えた場合は電力ケーブルとしての電気特性特
に誘電特性や絶縁抵抗を悪化させるう
なお本発明を実施する場合にポリエチレン100重量部
に対し、2〜40重量部のグラフトポリエチレンを添加
すれば水トリーの抑止効果は安定し。Further, in the present invention, the above-mentioned graft polyethylene blend t
2 to 40 parts by weight for 100 parts of polyurethane, and it is important to note that if it is less than 2 parts by weight, there will be no water tree deterrent effect, and 40 parts by weight will not be effective.
If the amount exceeds 100 parts by weight, the electrical properties, particularly the dielectric properties and insulation resistance of the power cable will deteriorate.However, when carrying out the present invention, 2 to 40 parts by weight of grafted polyethylene may be added to 100 parts by weight of polyethylene. The deterrent effect of water trees is stable.
電力ケーブルとしての電気特性特に誘電特性や絶縁抵抗
も一層優nたものを得ることができる。Even better electrical properties, especially dielectric properties and insulation resistance, can be obtained as a power cable.
本発明に於て用いらnる前記絶縁組成物中VCは所定量
の架橋剤(化学架橋の場合)、老化防止剤。VC in the insulating composition used in the present invention contains a predetermined amount of a crosslinking agent (in the case of chemical crosslinking) and an anti-aging agent.
その他必要に応じた添加剤を加えることができる。Other additives may be added as necessary.
(実施例) 以下本発明の実施例について述べる。(Example) Examples of the present invention will be described below.
(実施例1)
メルトインデックス(M、 I) 1.2の低密度ポリ
エチレン100重!1部に対し、各種無水マレイン酸グ
ラフトポリエチレン(グラフトit・・・・・・約2%
)を変量させてブレンドし、架橋剤としてジクミルノぞ
−オキサイド2重量部、劣化防止剤として4゜4′−チ
オビス−6(−第3ブチル−3−メチルフェノール)0
.2重i:部を加えて、混練し、組成物を作ったっ
各組成物を180℃X I Q minの条件でプレス
成型し、以下の試験を行なった。各組成物のプレス成型
後の80℃キシレン中24h「 浸漬乾燥後のゲル分率
Vi85%以上であった。(Example 1) 100 weight low density polyethylene with melt index (M, I) 1.2! For 1 part, various maleic anhydride grafted polyethylene (graft it...approximately 2%
) were blended in varying amounts, 2 parts by weight of dicumyl oxide as a crosslinking agent, and 0 parts by weight of 4゜4'-thiobis-6(-tert-butyl-3-methylphenol) as a deterioration inhibitor.
.. 2 parts were added and kneaded to prepare a composition. Each composition was press-molded under conditions of 180° C. and IQ min, and the following tests were conducted. After press molding each composition, the gel fraction Vi was 85% or more after immersion drying in xylene at 80° C. for 24 hours.
(1)水トリー試験:第1図に示す如く厚さ5餌の試験
試料1の底面に導電性塗料の塗布層2を設けて接地側電
極とするとともに試験試料1の上面には水槽4を設けて
水電極を形成し、こnに10kV、 L kHzの電圧
?高圧電極3より印加できるように構成し、上記電圧を
30日間印加後、試料を煮沸して水トリーヲ観察した。(1) Water tree test: As shown in Figure 1, a coated layer 2 of conductive paint is provided on the bottom surface of the test sample 1 with a thickness of 5 baits to serve as a ground electrode, and a water tank 4 is placed on the top surface of the test sample 1. A voltage of 10 kV, L kHz is applied to the water electrode. The structure was such that voltage could be applied from the high voltage electrode 3, and after applying the above voltage for 30 days, the sample was boiled and water trees were observed.
50μ以上の水トリー発生密度を観察し、比較用試料
(現用のXLPg)の発生数100に対する相対数とし
て表示した。The occurrence density of water trees of 50μ or more was observed and expressed as a relative number to the number of occurrences of 100 in the comparison sample (currently used XLPg).
(11)誘電正接(tanδ)測定:1電厚シートVC
1kV508zt圧を印加し、シエーリングブリッジに
より測定、上記各試験をし之結果は第1表のとおりであ
る。(11) Dielectric loss tangent (tan δ) measurement: 1 electric thick sheet VC
A pressure of 1 kV, 508 zt was applied, and the above tests were performed using a Schering bridge. The results are shown in Table 1.
第1表
無水マレイン酸グラフ)LDPE:三井石油化学製7)
’?−LF500 (MI=1.11無水マレイン酸グ
ラフ) M D P B :三井石油化学製アトマーN
gO50(MI=3.51
無水マレイン醸グラフ)HDPE:三井石油化学製アト
マーHB310 (MI=0.121(実施例2)
第1表の試料AI及び屋5の組成物を絶縁体とし導電力
ケーブルを作つ九。Table 1 Maleic anhydride graph) LDPE: Mitsui Petrochemical 7)
'? -LF500 (MI=1.11 maleic anhydride graph) M D P B: Mitsui Petrochemical Atmer N
gO50 (MI=3.51 anhydrous maleic graph) HDPE: Mitsui Petrochemical Atmer HB310 (MI=0.121 (Example 2) Conductive power cable using the compositions of samples AI and Ya5 in Table 1 as insulators Nine to make.
ケーブル構造は導体断面積200.7.絶縁厚3■、内
部押出半導電層、外部押出半導電層を有する3層構成か
らなるもので外部に施す遮蔽やシースは省略した。The cable structure has a conductor cross-sectional area of 200.7. It consists of a three-layer structure with an insulation thickness of 3 mm, an internal extruded semiconductive layer, and an external extruded semiconductive layer, and no external shielding or sheathing is required.
上記各ケーブルについて以下の浸水課電試験を行なった
結果を第2表に示す。Table 2 shows the results of the following submersion charging test for each of the above cables.
浸水課電試験:導体注水有の条件で70℃温水中1 k
Hz、 10 kV の電a190日間印加後、A
C(50Hz)の電圧’fr: 5 kV/30m1n
のステップアップの条件で昇圧して破壊電圧を求めた。Water immersion test: 1k in 70℃ warm water with conductor water injection
After applying an electric current of 10 kV at Hz for 190 days, A
Voltage of C (50Hz)'fr: 5 kV/30m1n
The breakdown voltage was determined by increasing the voltage under step-up conditions.
第2表
(発明の効果)
本発明は以上の比較試験から判るように、絶縁体を構成
する組成物中に無水マレイン酸グラフトポリエチレンを
所定量配合することによって、水トリー〇発生を著しく
抑制することができ浸水課電後の破壊電圧の低下を防ぐ
ことができる0Table 2 (Effects of the Invention) As can be seen from the above comparative tests, the present invention significantly suppresses the occurrence of water trees by incorporating a predetermined amount of maleic anhydride grafted polyethylene into the composition constituting the insulator. It is possible to prevent a decrease in breakdown voltage after flooding due to electrification.
第1図は水トリー試験の説明図である。 ■=試料 2:導電塗料 3:高圧電極 4:水道水 FIG. 1 is an explanatory diagram of the water tree test. ■=Sample 2: Conductive paint 3: High voltage electrode 4: Tap water
Claims (2)
マレイン酸グラフト量が0.5〜10重量%である無水
マレイン酸グラフトポリエチレン2〜40重量部を配合
してなる組成物の絶縁層が形成されていることを特徴と
する電力ケーブル(1) On the outside of the conductor, an insulating layer is formed of a composition consisting of 100 parts by weight of polyethylene and 2 to 40 parts by weight of maleic anhydride grafted polyethylene with a maleic anhydride grafting amount of 0.5 to 10% by weight. A power cable characterized by
されていることを特徴とする特許請求の範囲第1項記載
の電力ケーブル(2) The power cable according to claim 1, wherein the polyethylene is low-density polyethylene and is crosslinked.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29661186A JPH07107806B2 (en) | 1986-12-15 | 1986-12-15 | Power cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29661186A JPH07107806B2 (en) | 1986-12-15 | 1986-12-15 | Power cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63150811A true JPS63150811A (en) | 1988-06-23 |
JPH07107806B2 JPH07107806B2 (en) | 1995-11-15 |
Family
ID=17835795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29661186A Expired - Lifetime JPH07107806B2 (en) | 1986-12-15 | 1986-12-15 | Power cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07107806B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413745A (en) * | 1990-05-08 | 1992-01-17 | Ube Ind Ltd | Bonding polyethylene resin composition |
US6479590B1 (en) | 1998-09-16 | 2002-11-12 | Japan Polyolefins Co., Ltd. | Electrical insulating resin material, electrical insulating material, and electric wire and cable using the same |
JP2004363021A (en) * | 2003-06-06 | 2004-12-24 | Fujikura Ltd | Polyethylene mixture insulating material and manufacturing method of long power cable as well as dc power cable |
WO2013022206A2 (en) | 2011-08-08 | 2013-02-14 | (주) 엘지화학 | Crosslinked polyethylene composition |
-
1986
- 1986-12-15 JP JP29661186A patent/JPH07107806B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413745A (en) * | 1990-05-08 | 1992-01-17 | Ube Ind Ltd | Bonding polyethylene resin composition |
US6479590B1 (en) | 1998-09-16 | 2002-11-12 | Japan Polyolefins Co., Ltd. | Electrical insulating resin material, electrical insulating material, and electric wire and cable using the same |
JP2004363021A (en) * | 2003-06-06 | 2004-12-24 | Fujikura Ltd | Polyethylene mixture insulating material and manufacturing method of long power cable as well as dc power cable |
JP4623941B2 (en) * | 2003-06-06 | 2011-02-02 | 株式会社フジクラ | DC power cable manufacturing method |
WO2013022206A2 (en) | 2011-08-08 | 2013-02-14 | (주) 엘지화학 | Crosslinked polyethylene composition |
US9589700B2 (en) | 2011-08-08 | 2017-03-07 | Lg Chem, Ltd. | Cross-linked polyethylene compositions |
Also Published As
Publication number | Publication date |
---|---|
JPH07107806B2 (en) | 1995-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130206453A1 (en) | Semiconductive polyolefin composition which contains epoxy-groups | |
JPS63150811A (en) | Power cable | |
JP2838278B2 (en) | Power cable | |
JPS62100909A (en) | Power cable | |
JP2838277B2 (en) | Power cable | |
JPS63150810A (en) | Power cable | |
JPH09231839A (en) | Direct current cable | |
JP2001266650A (en) | Electric insulating composition and electric cable | |
JP3341593B2 (en) | Electrical insulating composition and electric wires and cables | |
JPH08185712A (en) | Electric wire and cable | |
JPH06267334A (en) | Electrically insulating composition and wire and/or cable | |
JPS5998403A (en) | Semiconductive composition | |
JPH08199013A (en) | Semiconductive resin composition and crosslinked polyethylene insulated power cable | |
JPS5986109A (en) | Plastic power cable | |
JPH01175107A (en) | Electrical insulating composition and power cable | |
JPH06309949A (en) | Anti-watertree electric power cable | |
JPH07288038A (en) | Electrical insulation resin composition, wire, and cable | |
JPH07288039A (en) | Electrical insulation resin composition, wire, and cable | |
JPS63160110A (en) | Power cable | |
JPH03122908A (en) | Electrically insulated cable | |
JPH01175108A (en) | Electrical insulating composition and power cable | |
JPH1012046A (en) | Electric insulation composition and wires/cables | |
JPH01229059A (en) | Insulating composition and power cable | |
JPS598209A (en) | Electrically insulated cable | |
JPH0625482A (en) | Semiconductor resin composition and power cable produced using the same |