JPH0268496A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0268496A
JPH0268496A JP21776788A JP21776788A JPH0268496A JP H0268496 A JPH0268496 A JP H0268496A JP 21776788 A JP21776788 A JP 21776788A JP 21776788 A JP21776788 A JP 21776788A JP H0268496 A JPH0268496 A JP H0268496A
Authority
JP
Japan
Prior art keywords
flow path
ram air
cooled
elements
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21776788A
Other languages
Japanese (ja)
Other versions
JP2676811B2 (en
Inventor
Hidefumi Saito
英文 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63217767A priority Critical patent/JP2676811B2/en
Publication of JPH0268496A publication Critical patent/JPH0268496A/en
Application granted granted Critical
Publication of JP2676811B2 publication Critical patent/JP2676811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently cool the fluid to be cooled, by providing one pair of electric-conductive plates that are connected with the same type of Peltier elements and arranged at a certain distance, and by furnishing a cooling fluid path on one end of the plates, and a flow path for the fluid to be cooled on the other end. CONSTITUTION:When direct current is applied to Peltier elements, N-type element 3 releases heat at + side and absorbs heat at - wide, and P-type element 4 absorbs heat at - side and releases heat at + side. As both the elements 3 and 4 are connected so that the up sides are + side, and down sides are -side, both the elements 3 and 4 absorb heat at the compressed air flow path 12 side and release heat at the ram air flow path 11 side. Therefore, as the compressed air is cooled by the ram air that flows between the elements 3 or the elements 4 arranged in element arrangement parts 2, and simultaneously cooled by both the elements 3 and 4, the compressed air is efficiently cooled even when a large amount of low temperature ram air is not available.

Description

【発明の詳細な説明】 A0発明の目的 (1)産業上の利用分野 本発明は熱交換器に関し、特に、航空機等の空気調和シ
ステムに用いるのに好適な熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION A0 Object of the Invention (1) Field of Industrial Application The present invention relates to a heat exchanger, and particularly to a heat exchanger suitable for use in an air conditioning system of an aircraft or the like.

(2)従来の技術 一般に、ジェットエンジンを備えた航空機では、ジェッ
トエンジンのコンプレッサで圧縮されたエアの一部を、
機外から採り入れた低温のラムエアにより冷却して、こ
の冷却した圧縮エアを各種機器のクーリングに使用して
いる。
(2) Conventional technology In general, in aircraft equipped with a jet engine, a portion of the air compressed by the jet engine compressor is
It is cooled by low-temperature ram air taken from outside the machine, and this cooled compressed air is used to cool various equipment.

前記圧縮エアの冷却は、従来、熱伝導プレートの両側面
上に圧縮エア用流路およびラムエア用流路をそれぞれ備
えた熱交換器を用いて、高温の圧縮エア側から低温のラ
ムエア側に熱伝導プレートを介して熱を直接伝導させる
ことにより行っている。
Conventionally, the compressed air is cooled using a heat exchanger that has a compressed air flow path and a ram air flow path on both sides of a heat conduction plate, and heat is transferred from the high temperature compressed air side to the low temperature ram air side. This is done by directly conducting heat through conductive plates.

却流体用流路を形成し、他方の外側に被冷却流体(3)
発明が解決しようとする課題 しかし、前記従来の熱交換器による圧縮エアの冷却方法
では、例えば航空機が低空を飛行していたり地上を走行
していたりするような場合、温度の低いラムエアを多量
に得ることができず、圧縮エアを効率よく冷却すること
ができないという問題点があった。
A flow path for cooling fluid is formed, and a fluid to be cooled (3) is formed on the other outside.
Problems to be Solved by the Invention However, with the conventional method of cooling compressed air using a heat exchanger, for example, when an aircraft is flying at a low altitude or traveling on the ground, it is difficult to use a large amount of low-temperature ram air. There was a problem that the compressed air could not be efficiently cooled.

本発明は前述の事情に鑑みてなされたもので、温度の低
いラムエア(冷却流体)が多量に得られない場合でも、
圧縮エア(被冷却流体)を効率よく冷却できるようにす
ることを課題とする。
The present invention was made in view of the above-mentioned circumstances, and even when a large amount of low-temperature ram air (cooling fluid) is not available,
The objective is to efficiently cool compressed air (fluid to be cooled).

B8発明の構成 (1)課題を解決するための手段 前記課題を解決するために本発明は、同じ型のペルチェ
素子によって接続されるとともに間隔を保たれた一対の
導電性プレートの一方の外側に冷用流路を形成したこと
を特徴とする。
B8 Structure of the Invention (1) Means for Solving the Problems In order to solve the above problems, the present invention provides a method for solving the problems described above. It is characterized by forming a cooling flow path.

(2)作 用 前記構成によれば、ペルチェ素子の被冷却流体用流路側
の部分で吸熱して、ペルチェ素子の冷却流体用流路側の
部分で放熱するようにペルチェ素子に電流を流すと、ペ
ルチェ素子は被冷却流体から熱を奪って、冷却流体に放
熱する。
(2) Effect According to the above configuration, when a current is passed through the Peltier element so that heat is absorbed in the part of the Peltier element on the side of the flow path for the fluid to be cooled, and heat is radiated in the part of the Peltier element on the side of the flow path for the cooling fluid, The Peltier element removes heat from the fluid to be cooled and radiates it to the cooling fluid.

(3)実施例 以下、図面に基づいて本発明による熱交換器を航空機の
空気調和システムに適用した場合の一実施例を説明する
(3) Example Hereinafter, an example in which the heat exchanger according to the present invention is applied to an air conditioning system of an aircraft will be described based on the drawings.

第1図において、本実施例の熱交換器Hは、図示しない
ハウジングの内部に、銅、アルミニウム、ステンレス等
により形成された導電性プレート1゜1 ・・・を複数
枚備えている。これらの導電性プレト]、  ]、・・
・は、互いに所定の間隔をおいて配置されており、これ
らの導電性プレー1−1.1・・・によって画成される
複数段の空隙のうち、上方から(または下方から)偶数
番目に位置する空隙によってペルチェ素子配列部2,2
.・・・が構成されている。このペルチェ素子配列部2
,2.・・・には、上段(第1図中、上から2番目の空
隙)から順に、複数個のN型ペルチェ素子3および複数
個のP型ペルチェ素子4が交互に配列されている。
In FIG. 1, the heat exchanger H of this embodiment includes a plurality of conductive plates 1.1 made of copper, aluminum, stainless steel, etc., inside a housing (not shown). These conductive plates], ],...
・ are arranged at a predetermined interval from each other, and among the multiple stages of gaps defined by these conductive plays 1-1.1... Peltier element arrangement parts 2, 2 depending on the space located
.. ...is configured. This Peltier element array section 2
,2. ..., a plurality of N-type Peltier elements 3 and a plurality of P-type Peltier elements 4 are arranged alternately in order from the upper stage (the second gap from the top in FIG. 1).

そして、これらのペルチェ素子3.4によって各ペルチ
ェ素子配列部2を構成する上、下一対の前記導電性プレ
ート1,1が接続されている。
The upper and lower pairs of conductive plates 1, 1 forming each Peltier element array section 2 are connected by these Peltier elements 3.4.

ペルチェ素子配列部2の幅方向(第1図中、X方向)一
端部は、図示しない航空機の機体に設けられたラムエア
(冷却流体)取入口5に連通し途中に開閉弁6が介装さ
れた第1ラムエア導入路7に接続され、他端部は熱交換
後のラムエアの排気路(図示せず)に接続されている。
One end in the width direction (X direction in FIG. 1) of the Peltier element array section 2 communicates with a ram air (cooling fluid) intake port 5 provided in the body of an aircraft (not shown), and an on-off valve 6 is interposed in the middle. The other end is connected to a first ram air introduction path 7, and the other end is connected to an exhaust path (not shown) for ram air after heat exchange.

そして第1うムエア導入路7よりペルチェ素子配列部2
の複数のN型ペルチェ素子3.3.・・・またはP型ペ
ルチェ素子4,4.・・・間に流入したラムエアは矢印
A方向に排出される。ペルチェ素子配列部2の長手方向
(第1図中、X方向)両端部には、このペルチェ素子配
列部2の内部に圧縮エア(被冷却流体)が流入するのを
防ぐ閉鎖部材8が設けられている。また前記複数枚の導
電性プレート1.1・・・のうち、最上段および最下段
に位置するプレートは途中にスイッチ9を備えたリード
線等を介して電源10の+側および一側にそれぞれ接続
されでいる。
Then, from the first air introduction path 7 to the Peltier element arrangement section 2.
A plurality of N-type Peltier elements 3.3. ...or P-type Peltier element 4, 4. ...The ram air that has flowed in between is discharged in the direction of arrow A. Closing members 8 are provided at both ends in the longitudinal direction (X direction in FIG. 1) of the Peltier element array section 2 to prevent compressed air (fluid to be cooled) from flowing into the Peltier element array section 2. ing. Further, among the plurality of conductive plates 1.1..., the plates located at the top and bottom are connected to the + side and one side of the power supply 10, respectively, via lead wires with a switch 9 in the middle. Connected.

前記複数枚の導電性プレー1−1.1.・・・によって
画成される複数段の空隙のうち、奇数番目に位置する空
隙によってラムエア用流路(冷却流体用流路)11およ
び圧縮エア用流路(被冷却流体用流路)12が構成され
ている。前記両流路11゜12は、本実施例では上段(
第1図中、最上段の空隙)から下段に向けて、ラムエア
用流路11と圧縮エア用流路12とが交互に配置されて
いる。
The plurality of conductive plates 1-1.1. The ram air flow path (cooling fluid flow path) 11 and the compressed air flow path (cooled fluid flow path) 12 are formed by the odd-numbered air gaps among the multiple stages of air gaps defined by... It is configured. In this embodiment, both the flow paths 11 and 12 are connected to the upper stage (
In FIG. 1, ram air passages 11 and compressed air passages 12 are alternately arranged from the top gap to the bottom.

ラムエア用流路11の内部には、導電性を有する1枚の
波形板によって、幅方向(第1図中、X方向)に沿って
延びる多数のフィン13が形成されている。このラムエ
ア用流路11の幅方向一端部は、前記ラムエア取入口5
に連通し途中に開閉弁14が介装された第2ラムエア導
入路15に接続され、他端部は熱交換後のラムエアの排
気路(図示せず)に接続されている。そして、第2ラム
エア導入路15よりラムエア用流路1工に流入したラム
エアは矢印B方向に排出される。またラムエア用流路1
1の長手方向(第1図中、Y方向)両端部には、このラ
ムエア用流路11に圧縮エアが流入するのを防く閉鎖部
材16が設レノられている。
Inside the ram air flow path 11, a large number of fins 13 extending along the width direction (X direction in FIG. 1) are formed by a single conductive corrugated plate. One end in the width direction of this ram air passage 11 is connected to the ram air intake port 5.
The second ram air introduction passage 15 is connected to a second ram air introduction passage 15 having an on-off valve 14 interposed therebetween, and the other end is connected to an exhaust passage (not shown) for ram air after heat exchange. The ram air that has flowed into the ram air passage 1 from the second ram air introduction passage 15 is discharged in the direction of arrow B. Also, ram air flow path 1
Closing members 16 for preventing compressed air from flowing into the ram air flow path 11 are provided at both ends of the ram air flow path 11 in the longitudinal direction (Y direction in FIG. 1).

前記圧縮エア用流路12の内部には、前記ラムエア用流
路11の場合と同様に、導電性を有する1枚の波形板に
よって、長手方向(第1図中、Y方向)に沿って延びる
多数のフィン17が形成されている。この圧縮エア用流
路12の長手方向−端部は、図示しないジェットエンジ
ンのコンプレツサ18に連通する圧縮エア導入路19に
接続され、他端部は熱交換後の冷却された圧縮エアを機
内の各種機器に導くクーリング用エア供給路(図示セず
)に接続されている。そして圧縮エア導入路19より圧
縮エア用流路12に流入したラムエアは矢印C方向に送
られる。また、圧縮エア用流路12の幅方向(第1図中
、X方向)両端部には、この圧縮エア用流路12にラム
エアが流入するのを防ぐ閉鎖部材20が設けられている
Inside the compressed air flow path 12, as in the case of the ram air flow path 11, a single conductive corrugated plate extends along the longitudinal direction (Y direction in FIG. 1). A large number of fins 17 are formed. The longitudinal end of this compressed air flow path 12 is connected to a compressed air introduction path 19 that communicates with a compressor 18 of a jet engine (not shown), and the other end is connected to a compressed air introduction path 19 that communicates with a compressor 18 of a jet engine (not shown), and the other end of the compressed air flow path 12 is connected to a compressed air introduction path 19 that communicates with a compressor 18 of a jet engine (not shown). It is connected to a cooling air supply path (not shown) that leads to various devices. The ram air flowing into the compressed air flow path 12 from the compressed air introduction path 19 is sent in the direction of arrow C. Further, closing members 20 are provided at both ends of the compressed air flow path 12 in the width direction (X direction in FIG. 1) to prevent ram air from flowing into the compressed air flow path 12.

次に、前述の構成を備えた本実施例の作用を説明する。Next, the operation of this embodiment having the above-described configuration will be explained.

電源10のスイッチ9を入れて導電性プレート1、フィ
ン13.17および両ペルチェ素子3゜4に直流電流を
流すと、N型ペルチェ素子3は+側で放熱、−例で吸熱
し、またP型ペルチェ素子4は+側で吸熱、−側で放熱
する。本実施例では、第1図に示すように両ペルチェ素
子3.4の上方が+側、下方が一例となるように両ペル
チェ素子3.4が電源10に接続されているので、第1
2図において、N型およびP型の各ペルチェ素子3.4
は圧縮エア用流路12側で吸熱し、ラムエア用流路11
側で放熱する。そこで、航空機の飛行中に第1.第2ラ
ムエア導入路7.15に介装された開閉弁6.14を開
弁状態にして、ラムエア取入口5からラムエアをペルチ
ェ素子配列部2およびラムエア用流路11に導くと、前
記両ペルチェ素子3,4は圧縮エア用流路12を流れる
高温の圧縮エアから熱を奪いそれをラムエア用流路11
を流れる低温のラムエアに放熱する。したがって圧縮エ
アは、各ペルチェ素子配列部2に配列されたN型ペルチ
ェ素子3またはP型ペルチェ素子4間を流れるラムエア
によって冷却されると同時に、前記両ペルチェ素子3.
4の作用によっても冷却されるので、例えば航空機が低
空を飛行中であって温度の低いラムエアを多量に得られ
ないような場合でも圧縮エアを効率よく冷却することが
できる。
When the switch 9 of the power supply 10 is turned on and a direct current flows through the conductive plate 1, the fins 13.17, and both Peltier elements 3.4, the N-type Peltier element 3 radiates heat on the + side, absorbs heat on the - side, and The type Peltier element 4 absorbs heat on the + side and radiates heat on the - side. In this embodiment, as shown in FIG. 1, both Peltier elements 3.4 are connected to the power supply 10 so that the upper side of both Peltier elements 3.4 is the + side, and the lower side is connected to the power supply 10.
In Figure 2, each N-type and P-type Peltier element 3.4
absorbs heat on the compressed air flow path 12 side, and the ram air flow path 11
Dissipate heat on the side. Therefore, during the flight of the aircraft, the first When the on-off valve 6.14 installed in the second ram air introduction path 7.15 is opened and ram air is introduced from the ram air intake port 5 to the Peltier element array section 2 and the ram air flow path 11, both the Peltier The elements 3 and 4 take heat from the high temperature compressed air flowing through the compressed air flow path 12 and transfer it to the ram air flow path 11.
The heat is radiated to the low-temperature ram air flowing through. Therefore, the compressed air is cooled by the ram air flowing between the N-type Peltier elements 3 or the P-type Peltier elements 4 arranged in each Peltier element array section 2, and at the same time, the compressed air is cooled by the ram air flowing between the N-type Peltier elements 3 or the P-type Peltier elements 4 arranged in each Peltier element arrangement section 2.
Since the compressed air is also cooled by the action of 4, the compressed air can be efficiently cooled even when, for example, the aircraft is flying at a low altitude and a large amount of low-temperature ram air cannot be obtained.

また航空機が、温度の低いラムエアを多量に得ることの
できる高空を飛行中である場合には、ペルチェ素子3,
4に通電せずに、ペルチェ素子配列部2およびラムエア
用流路11に流入するラムエアのみで圧縮エアを冷却す
ることもできる。この場合、第2ラムエア導入路15例
の開閉弁】4を閉弁状態、第1ラムエア導入路7側の開
閉弁6を開弁状態として、ペルチェ素子配列部2にのみ
ラムエアを導入するようにしてもよい。
Furthermore, when the aircraft is flying at a high altitude where a large amount of low-temperature ram air can be obtained, the Peltier element 3,
It is also possible to cool the compressed air only by the ram air flowing into the Peltier element array section 2 and the ram air flow path 11 without energizing the Peltier element array section 4 . In this case, the on-off valve 4 of the second ram air introduction path 15 is closed, and the on-off valve 6 on the first ram air introduction path 7 side is opened, so that ram air is introduced only into the Peltier element arrangement section 2. It's okay.

さらにペルチェ素子3.4に通電し、第1ラムエア導入
路7側の開閉弁6を閉弁状態、第2ラムエア導入路15
側の開閉弁14を開弁状態として、ラムエア用流路11
にのみラムエアを流入させ、このラムエアとペルチェ素
子3.4とにより圧縮エアを冷却するようにしてもよい
Further, the Peltier element 3.4 is energized, the on-off valve 6 on the first ram air introduction path 7 side is closed, and the second ram air introduction path 15 is closed.
With the on-off valve 14 on the side open, the ram air flow path 11
It is also possible to allow ram air to flow only into the ram air and cool the compressed air using the ram air and the Peltier element 3.4.

以上、本発明による熱交換器の一実施例を詳述したが、
本発明は、前記実施例に限定されるものではなく、特許
請求の範囲に記載された本発明を逸脱することなく、種
々の小設計変更を行うことが可能である。
Above, one embodiment of the heat exchanger according to the present invention has been described in detail.
The present invention is not limited to the embodiments described above, and various minor design changes can be made without departing from the scope of the invention as set forth in the claims.

たとえば、本実施例では、ペルチェ素子配列部2および
両流路11,12をそれぞれ複数段に積層して熱交換器
を構成した例を示したが、−層のペルチェ素子配列部2
の両側に、ラムエア用流路11および圧縮エア用流路1
2をそれぞれ一層だけ形成して熱交換器を構成すること
も可能である。
For example, in this embodiment, an example is shown in which the heat exchanger is constructed by laminating the Peltier element arrangement section 2 and both flow channels 11 and 12 in multiple stages, but the Peltier element arrangement section 2 in the - layer
A ram air passage 11 and a compressed air passage 1 are provided on both sides of the
It is also possible to form a heat exchanger by forming only one layer of each of 2.

また、第1.第2ラムエア導入路7,15に開閉弁6.
14を設けずに、常にペルチェ素子配列部2およびラム
エア用流路11の両方にラムエアを導入するように構成
することも可能である。
Also, 1st. An on-off valve 6.
It is also possible to configure so that ram air is always introduced into both the Peltier element arrangement section 2 and the ram air flow path 11 without providing the ram air flow path 14.

さらに、本実施例では、航空機の空気調和システムに用
いる例を示したが、これに限られることはなく、被冷却
流体を冷却流体で冷却する形式であればどの様な熱交換
器にも適用することが可能である。
Furthermore, although this example shows an example of use in an aircraft air conditioning system, the application is not limited to this, and can be applied to any type of heat exchanger that cools the fluid to be cooled with a cooling fluid. It is possible to do so.

C3発明の効果 前述の本発明の熱交換器によれば、温度の低い冷却流体
が多量に得られない場合でも、被冷却流体を効率よく冷
却することができる。
C3 Effects of the Invention According to the heat exchanger of the present invention described above, even when a large amount of low-temperature cooling fluid is not available, the fluid to be cooled can be efficiently cooled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の一部省略全体斜視図、第2
Mは同実施例の要部の部分拡大断面図である。 1・・・導電性プレート、3・・・N型ペルチェ素子、
4・・・P型ペルチェ素子、11・・・ラムエア用流路
(冷却流体用流路)、12・・・圧縮エア用流路(被冷
却流体用流路)、H・・・熱交換器
FIG. 1 is a partially omitted overall perspective view of one embodiment of the present invention, and FIG.
M is a partial enlarged sectional view of the main part of the same embodiment. 1... Conductive plate, 3... N-type Peltier element,
4... P-type Peltier element, 11... Ram air flow path (cooling fluid flow path), 12... Compressed air flow path (cooled fluid flow path), H... Heat exchanger

Claims (1)

【特許請求の範囲】[Claims] 同じ型のペルチェ素子によって接続されるとともに間隔
を保たれた一対の導電性プレートの一方の外側に冷却流
体用流路を形成し、他方の外側に被冷却流体用流路を形
成した熱交換器。
A heat exchanger in which a cooling fluid flow path is formed on the outside of one of a pair of conductive plates that are connected by the same type of Peltier element and are spaced apart, and a flow path for the cooled fluid is formed on the outside of the other. .
JP63217767A 1988-08-31 1988-08-31 Heat exchanger Expired - Fee Related JP2676811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63217767A JP2676811B2 (en) 1988-08-31 1988-08-31 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63217767A JP2676811B2 (en) 1988-08-31 1988-08-31 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH0268496A true JPH0268496A (en) 1990-03-07
JP2676811B2 JP2676811B2 (en) 1997-11-17

Family

ID=16709414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63217767A Expired - Fee Related JP2676811B2 (en) 1988-08-31 1988-08-31 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2676811B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302801A (en) * 1990-11-16 1994-04-12 Mitsubishi Denki Kabushiki Kaisha Laser bonding apparatus
US6334311B1 (en) * 1999-03-05 2002-01-01 Samsung Electronics Co., Ltd. Thermoelectric-cooling temperature control apparatus for semiconductor device fabrication facility
JP2009059000A (en) * 2007-08-29 2009-03-19 Internatl Business Mach Corp <Ibm> Technology for cooling device
DE102018116155A1 (en) * 2018-07-04 2020-01-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft aircraft
CN115235682A (en) * 2022-09-21 2022-10-25 无锡芯感智半导体有限公司 Packaging structure and method of MEMS pressure sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133556A (en) * 1986-11-26 1988-06-06 Japan Steel Works Ltd:The Equipment-cooling device using thermoelectric cooling element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133556A (en) * 1986-11-26 1988-06-06 Japan Steel Works Ltd:The Equipment-cooling device using thermoelectric cooling element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302801A (en) * 1990-11-16 1994-04-12 Mitsubishi Denki Kabushiki Kaisha Laser bonding apparatus
US6334311B1 (en) * 1999-03-05 2002-01-01 Samsung Electronics Co., Ltd. Thermoelectric-cooling temperature control apparatus for semiconductor device fabrication facility
JP2009059000A (en) * 2007-08-29 2009-03-19 Internatl Business Mach Corp <Ibm> Technology for cooling device
DE102018116155A1 (en) * 2018-07-04 2020-01-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft aircraft
CN115235682A (en) * 2022-09-21 2022-10-25 无锡芯感智半导体有限公司 Packaging structure and method of MEMS pressure sensor

Also Published As

Publication number Publication date
JP2676811B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
EP2092250B1 (en) Direct thermoelectric chiller assembly
US3907032A (en) Tube and fin heat exchanger
US10475724B2 (en) Heat exchangers for dual-sided cooling
US6557354B1 (en) Thermoelectric-enhanced heat exchanger
CA2887962C (en) Thermoelectric cooling device including a liquid heat exchanger disposed between air heat exchangers
JP4719747B2 (en) EGR gas power generator
US20100199687A1 (en) Temperature control device
AU2004309560B2 (en) Heat exchanger
JPH02228096A (en) Cold chasse for electronic circuit board
BR102014003631A2 (en) air charge cooler, and inlet manifold including the same
KR101473899B1 (en) A Heat Exchanger using Thermoelectric Modules
JP2002164491A (en) Stacked cooler
US2539870A (en) Crossflow heat exchanger
JPH0268496A (en) Heat exchanger
JP3556799B2 (en) Thermoelectric generator
JPH0256591B2 (en)
JP2019086183A (en) Heat transfer device
RU125757U1 (en) COOLER OF COMPUTER COMPUTER MODULES
JP2001124490A (en) Heat exchanger and cooling system
KR20110115247A (en) Thermoelectric power generating heat exchanger
KR20190099702A (en) Structure for battery cooling
JPH01270298A (en) Cooling structure for semiconductor element
JPS63192256A (en) Integrated circuit cooling constitution
KR20110080237A (en) Heat exchanger using thermoelectric modules
JPH07183676A (en) Heat sink for electronic module

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees