JPH01270298A - Cooling structure for semiconductor element - Google Patents
Cooling structure for semiconductor elementInfo
- Publication number
- JPH01270298A JPH01270298A JP9872388A JP9872388A JPH01270298A JP H01270298 A JPH01270298 A JP H01270298A JP 9872388 A JP9872388 A JP 9872388A JP 9872388 A JP9872388 A JP 9872388A JP H01270298 A JPH01270298 A JP H01270298A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- heat conduction
- cooling
- semiconductor element
- semiconductor elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 34
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 239000002826 coolant Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 238000010438 heat treatment Methods 0.000 abstract description 3
- AEUKDPKXTPNBNY-XEYRWQBLSA-N mcp 2 Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)C1=CC=CC=C1 AEUKDPKXTPNBNY-XEYRWQBLSA-N 0.000 description 5
- 102100034871 C-C motif chemokine 8 Human genes 0.000 description 3
- 101710091437 Major capsid protein 2 Proteins 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、電子機器装置に使用される半導体素子を搭載
したパッケージの冷却方式に関し、特に単体当りの発熱
量は低いが搭載数が多い0MO8・RAM等の半導体素
子の冷却構造に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a cooling method for a package mounted with a semiconductor element used in an electronic equipment device, and in particular, the present invention relates to a cooling method for a package equipped with a semiconductor element used in an electronic equipment device, and in particular, the present invention relates to a cooling method for a package mounted with a semiconductor element used in an electronic device. -Related to cooling structures for semiconductor elements such as RAM.
一般に電子機器装置の一部を構成する記憶装置に使用さ
れるパッケージ上には、CMOS −RAM等のメモリ
系とその制御系から成る多種類の半導体素子が多数搭載
されている。近年に於けるこれらの半導体素子そのもの
の集積度の向上と、パッケージの大型化及びパッケージ
当りの搭載素子数の増大は、半導体素子の実装密度を飛
躍的に向上させた反面、半導体素子の増大した総発熱量
に対する、より高性能がっ高効率的な冷却技術の開発競
争に拍車をかけている。In general, a package used for a storage device that constitutes a part of an electronic device is equipped with a large number of semiconductor elements of various types including a memory system such as a CMOS-RAM and its control system. In recent years, improvements in the degree of integration of semiconductor devices themselves, larger packages, and an increase in the number of devices mounted per package have dramatically improved the packaging density of semiconductor devices. This is spurring competition to develop cooling technologies that have higher performance and efficiency in terms of total heat output.
冷却技術開発の流れは、自然空冷、強制空冷、空気流路
に冷媒を介在させる間接水冷、伝導水冷方式、浸漬方式
と進んできた。なお後者の方式になる程、コスト面では
不利であるが高い冷却能力が得られる。前述した記憶装
置に於いては、特に大型機の分野では制御系の半導体素
子の発熱量はしはや強制空冷の限界を越えたため、半導
体素子の発熱面を冷媒流路を有するコールドプレートに
熱的に結合させる伝導冷却方式に代表される水冷方式の
採用か活発である。The flow of cooling technology development has progressed to natural air cooling, forced air cooling, indirect water cooling that uses a refrigerant in the air flow path, conduction water cooling, and immersion. Note that the latter method is disadvantageous in terms of cost, but provides a higher cooling capacity. In the storage devices mentioned above, especially in the field of large machines, the heat generation of the semiconductor elements in the control system has exceeded the limit of forced air cooling, so the heat generating surface of the semiconductor element is heated by a cold plate with a coolant flow path. Water-cooling systems, such as conduction cooling systems, are being actively adopted.
水冷方式は、外部に冷水供給装置を必要とするものの、
強制空冷に於けるようなファンや空気取入口及び吐出口
等の空気流路を確保する必要がないため、実装形態の自
由度が大きい。また騒音規制含気にする必要もない。一
方、個々の発熱量が低く、パッケージ当りの搭載数が多
いメモリ系の半導体素子の冷却方式は、強制空冷方式が
効率面で最も適している。Although the water cooling method requires an external cold water supply device,
Since there is no need to provide air flow paths such as fans and air intake ports and discharge ports as in forced air cooling, there is a high degree of freedom in mounting form. Also, there is no need to comply with noise regulations. On the other hand, in terms of efficiency, forced air cooling is the most suitable cooling method for memory-based semiconductor devices, which each generate a small amount of heat and are mounted in a large number of devices per package.
上述の如く水冷方式、空冷方式いずれも利点、欠点があ
るが、制御系、メモリ系半導体素子を含む電子機器にお
いて制御系の半導体素子用の水冷方式とメモリ系の半導
体素子用の強制空冷方式を混在させるのは、上述した水
冷方式の利点を失わせる結果となる。そこで、ハラケー
ジ内に持ち込まれた水路の有効利用を図るためにもメモ
リ系の半導体素子に適した水冷方式による冷却構造が要
望されている。As mentioned above, both water-cooling and air-cooling systems have advantages and disadvantages, but in electronic equipment that includes control system and memory-based semiconductor devices, water-cooling methods for control system semiconductor devices and forced air cooling methods for memory-based semiconductor devices are recommended. Mixing them results in the loss of the advantages of the water cooling system described above. Therefore, in order to effectively utilize the water channels brought into the Hara cage, there is a demand for a cooling structure using a water cooling method suitable for memory semiconductor devices.
本発明に係る半導体素子の冷却構造は、プリント板と、
複数の半導体素子を搭載し前記プリント板に列設された
複数のマルチチップパッケージ(MCP)と、冷媒流路
を有するコールドプレートと、それぞれの間に前記マル
チチップパッケージそれぞれが位置するように列設され
前記コールドプレートと熱的に結合した複数の熱伝導板
と、前記熱伝導板と前記マルチチップパッケージとの間
に設けられ前記熱伝導板と前記マルチチップパッケージ
に互いに押し合う力を与える板バネとを含んで構成され
る。A semiconductor device cooling structure according to the present invention includes a printed board,
A plurality of multi-chip packages (MCPs) mounted with a plurality of semiconductor elements and arranged in a row on the printed board, a cold plate having a coolant flow path, and arranged in a row so that each of the multi-chip packages is located between each of them. a plurality of heat conductive plates thermally coupled to the cold plate; and a plate spring provided between the heat conductive plates and the multi-chip package and applying force to press the heat conductive plates and the multi-chip package toward each other. It consists of:
次に、本発明を図面を参照して実施例につき説明する。 Next, the present invention will be explained by way of example with reference to the drawings.
第1図は本発明の一実施例を示すパッケージの正面図で
ある。第2図は第1図に於けるA−A線断面図である。FIG. 1 is a front view of a package showing an embodiment of the present invention. FIG. 2 is a sectional view taken along line A--A in FIG. 1.
第1図、第2図に於いてプリント配線板1上には制御系
半導体素子8が中央部に、その上下にはメモリ系半導体
素子9を両面に搭載したDIP型の長板状MCP2が列
設されている(図中、11はMCP2の信号ピン)。長
板状MCP2の片面に対しては、同様に列設された長板
状熱伝導板3がクールシート(添加物により熱伝導性を
改善したシリコンゴム製のシート)10を介して半導体
素子9に接触しており、長板状熱伝導板3はさらに水流
7が通るパイプが設けられたコールドプレート5にロウ
付等によって熱的に結合されている。尚、コールドプレ
ート5は便宜的に発熱量の高い制御系半導体素子8の冷
却用としても示しである。In FIGS. 1 and 2, a control system semiconductor element 8 is placed in the center on a printed wiring board 1, and above and below it are rows of DIP type long plate-shaped MCPs 2 with memory system semiconductor elements 9 mounted on both sides. (In the figure, 11 is the signal pin of MCP2). On one side of the long plate-like MCP 2, similarly arranged long plate-like heat conductive plates 3 are connected to semiconductor elements 9 via a cool sheet (a sheet made of silicone rubber whose thermal conductivity has been improved by additives) 10. The elongated heat conductive plate 3 is further thermally coupled by brazing or the like to a cold plate 5 provided with a pipe through which a water flow 7 passes. For convenience, the cold plate 5 is also shown for cooling the control system semiconductor element 8 which generates a large amount of heat.
長板状MCP2のもう一方の面に搭載された半導体素子
9もクールシート10及び板バネ4を介して長板状熱伝
導板3に熱的に接触している。板バネ4は、長板状熱伝
導板3と長板状MCP2が互L1に押し合うような力を
与え、長板状熱伝導板3と長板状MCP2をクールシー
ト10(および板バネ4)を介して互いに密着させてい
る。半導体素子9が発生する熱は、素子ケースの放熱面
、クールシート10(および板バネ4)、長板状熱伝導
板3、コールドプレート5の順に達し、コールドプレー
ト5に設けられたパイプ内を流れる水流7によってパッ
ケージ外へ持ち去られる。The semiconductor element 9 mounted on the other surface of the elongated MCP 2 is also in thermal contact with the elongated heat conductive plate 3 via the cool sheet 10 and the leaf spring 4. The leaf spring 4 applies a force such that the long heat conductive plate 3 and the long plate MCP2 are pressed against each other L1, and the long heat conductive plate 3 and the long plate MCP2 are connected to the cool sheet 10 (and the leaf spring 4 ) are in close contact with each other. The heat generated by the semiconductor element 9 reaches the heat dissipation surface of the element case, the cool sheet 10 (and the leaf spring 4), the elongated heat conduction plate 3, and the cold plate 5 in this order, and then flows through the pipe provided in the cold plate 5. It is carried away from the package by the flowing water stream 7.
なお、第1図の6はコネクタを示す。また、長板状MC
P2は片面に半導体素子を搭載したSIP型でも構わな
い。またクールシート10の代わりに熱伝導性に優れた
コンパウンドを使用しても良い。Note that 6 in FIG. 1 indicates a connector. In addition, long plate-like MC
P2 may be an SIP type with a semiconductor element mounted on one side. Moreover, a compound with excellent thermal conductivity may be used instead of the cool sheet 10.
いずれにしろ、本実施例は、半導体素子の実装高さのバ
ラツキをある程度吸収でき、しかも廉価に構成できる。In any case, this embodiment can absorb variations in the mounting height of semiconductor elements to some extent and can be constructed at low cost.
以上説明した様に本発明は、発熱体である半導体素子を
設けたMCPをコールドプレートに結合した熱伝導板の
間に配置し、板バネによりMCPを(クールシート、板
バネを介して)熱伝導板に密着させることにより、個々
の発熱量は低いか搭載数の多いメモリ系の半導体素子の
冷却を水冷方式で効率よく実現できる。これによって実
装形態の自由度を拡げることができる利点がある。As explained above, in the present invention, an MCP provided with a semiconductor element as a heating element is arranged between heat conductive plates coupled to a cold plate, and a plate spring connects the MCP to the heat conductive plate (via a cool sheet and a plate spring). By placing them in close contact with each other, it is possible to efficiently cool memory-based semiconductor elements, which each generate a small amount of heat or have a large number of installed elements, using a water-cooling method. This has the advantage of increasing the degree of freedom in implementation.
第1図は本発明の一実施例の正面図、第2図は第1図に
示すA−A@面図である。
1・・・プリント配線板、2・・・長板状MCP、3・
・・長板状熱伝導板、4・・・板バネ、5・・・コール
ドプレート、6・・・コネクタ、7・・・水流、8・・
・制御系半導体素子、9・・・メモリ系半導体素子、1
0・・・クールシート、11・・・信号ビン。FIG. 1 is a front view of one embodiment of the present invention, and FIG. 2 is an AA@ plane view shown in FIG. 1. 1... Printed wiring board, 2... Long plate-shaped MCP, 3.
・・Long heat conduction plate, 4・Plate spring, 5・Cold plate, 6・Connector, 7・Water flow, 8・・
- Control system semiconductor element, 9...Memory system semiconductor element, 1
0...Cool sheet, 11...Signal bin.
Claims (1)
ト板に列設された複数のマルチチップパッケージと、冷
媒流路を有するコールドプレートと、それぞれの間に前
記マルチチップパッケージそれぞれが位置するように列
設され前記コールドプレートと熱的に結合した複数の熱
伝導板と、前記熱伝導板と前記マルチチップパッケージ
との間に設けられ前記熱伝導板と前記マルチチップパッ
ケージに互いに押し合う力を与える板バネとを含むこと
を特徴とする半導体素子の冷却構造。a printed board, a plurality of multi-chip packages mounted with a plurality of semiconductor elements and arranged in rows on the printed board, and a cold plate having a coolant flow path, arranged in rows such that each of the multi-chip packages is located between each of them. a plurality of heat conduction plates provided and thermally coupled to the cold plate; and a plate provided between the heat conduction plates and the multi-chip package and applying force to press the heat conduction plates and the multi-chip package toward each other. A cooling structure for a semiconductor device, characterized in that it includes a spring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63098723A JPH0767021B2 (en) | 1988-04-20 | 1988-04-20 | Semiconductor element cooling structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63098723A JPH0767021B2 (en) | 1988-04-20 | 1988-04-20 | Semiconductor element cooling structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01270298A true JPH01270298A (en) | 1989-10-27 |
JPH0767021B2 JPH0767021B2 (en) | 1995-07-19 |
Family
ID=14227439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63098723A Expired - Lifetime JPH0767021B2 (en) | 1988-04-20 | 1988-04-20 | Semiconductor element cooling structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0767021B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009230505A (en) * | 2008-03-24 | 2009-10-08 | Fujitsu Ltd | Board unit and electronic apparatus |
JP2010040886A (en) * | 2008-08-07 | 2010-02-18 | Hitachi Ltd | Electronic device |
WO2011110390A1 (en) * | 2010-03-08 | 2011-09-15 | International Business Machines Corporation | Liquid dimm cooling device |
JP2013131561A (en) * | 2011-12-20 | 2013-07-04 | Fujitsu Ltd | Radiator, lamination type electronic device, and electronic equipment |
WO2013175616A1 (en) * | 2012-05-24 | 2013-11-28 | 富士通株式会社 | Cooling structure for card-type electronic component, and electronic apparatus |
JP2013247257A (en) * | 2012-05-28 | 2013-12-09 | Nec Computertechno Ltd | Cooling device |
US8659897B2 (en) | 2012-01-27 | 2014-02-25 | International Business Machines Corporation | Liquid-cooled memory system having one cooling pipe per pair of DIMMs |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6172895U (en) * | 1984-10-18 | 1986-05-17 |
-
1988
- 1988-04-20 JP JP63098723A patent/JPH0767021B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6172895U (en) * | 1984-10-18 | 1986-05-17 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009230505A (en) * | 2008-03-24 | 2009-10-08 | Fujitsu Ltd | Board unit and electronic apparatus |
JP2010040886A (en) * | 2008-08-07 | 2010-02-18 | Hitachi Ltd | Electronic device |
GB2488738B (en) * | 2010-03-08 | 2014-02-12 | Ibm | Liquid dimm cooling device |
GB2488738A (en) * | 2010-03-08 | 2012-09-05 | Ibm | Liquid dimm cooling device |
CN102782837A (en) * | 2010-03-08 | 2012-11-14 | 国际商业机器公司 | Liquid DIMM cooling device |
JP2013520812A (en) * | 2010-03-08 | 2013-06-06 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Liquid DIMM cooling device |
WO2011110390A1 (en) * | 2010-03-08 | 2011-09-15 | International Business Machines Corporation | Liquid dimm cooling device |
US9245820B2 (en) | 2010-03-08 | 2016-01-26 | International Business Machines Corporation | Liquid DIMM cooling device |
DE112011100140B4 (en) | 2010-03-08 | 2019-07-11 | International Business Machines Corporation | DIMM liquid cooling unit |
JP2013131561A (en) * | 2011-12-20 | 2013-07-04 | Fujitsu Ltd | Radiator, lamination type electronic device, and electronic equipment |
US8659897B2 (en) | 2012-01-27 | 2014-02-25 | International Business Machines Corporation | Liquid-cooled memory system having one cooling pipe per pair of DIMMs |
WO2013175616A1 (en) * | 2012-05-24 | 2013-11-28 | 富士通株式会社 | Cooling structure for card-type electronic component, and electronic apparatus |
JP2013247257A (en) * | 2012-05-28 | 2013-12-09 | Nec Computertechno Ltd | Cooling device |
Also Published As
Publication number | Publication date |
---|---|
JPH0767021B2 (en) | 1995-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5049982A (en) | Article comprising a stacked array of electronic subassemblies | |
US5535094A (en) | Integrated circuit package with an integral heat sink and fan | |
US7420808B2 (en) | Liquid-based cooling system for cooling a multi-component electronics system | |
US4884168A (en) | Cooling plate with interboard connector apertures for circuit board assemblies | |
US4768581A (en) | Cooling system for semiconductor modules | |
US5719444A (en) | Packaging and cooling system for power semi-conductor | |
US7613001B1 (en) | Heat dissipation device with heat pipe | |
WO2018045933A1 (en) | Heat sink, heat dissipation apparatus, heat dissipation system and communication device | |
US20070234741A1 (en) | Heat radiator having a thermo-electric cooler and multiple heat radiation modules and the method of the same | |
US11129303B1 (en) | Cooling of server high-power devices using double-base primary and secondary heat sinks | |
JP5057838B2 (en) | Power semiconductor element cooling device | |
JPH01270298A (en) | Cooling structure for semiconductor element | |
US20210247151A1 (en) | Fluid-based cooling device for cooling at least two distinct first heat-generating elements of a heat source assembly | |
JPH07106640A (en) | Thermoelectric cooling unit | |
KR0136070B1 (en) | Electronic equipment | |
US20190035709A1 (en) | Electronic modules | |
JPS63192256A (en) | Integrated circuit cooling constitution | |
JP4150647B2 (en) | Electronic component cooling system | |
JPS63299258A (en) | Structure of cooling semiconductor device | |
JPH11294891A (en) | Cold source module and cold source unit utilizing the same | |
CN219437482U (en) | Combined temperature control device of imaging unit | |
JPH0563118B2 (en) | ||
JPH10256766A (en) | Forced air cooling structure for electronic apparatus | |
CN214254402U (en) | Small-size heat abstractor and contain device's alternating current motor | |
JP2001015675A (en) | Multi-chip module |