JPH0267472A - Pressure control method for vacuum equipment - Google Patents
Pressure control method for vacuum equipmentInfo
- Publication number
- JPH0267472A JPH0267472A JP63219792A JP21979288A JPH0267472A JP H0267472 A JPH0267472 A JP H0267472A JP 63219792 A JP63219792 A JP 63219792A JP 21979288 A JP21979288 A JP 21979288A JP H0267472 A JPH0267472 A JP H0267472A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- pump
- pressure
- rotational speed
- revolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 10
- 239000012530 fluid Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 abstract description 32
- 230000001276 controlling effect Effects 0.000 abstract description 9
- 239000012495 reaction gas Substances 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 description 22
- 230000006698 induction Effects 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 8
- 238000005086 pumping Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 241000555745 Sciuridae Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Non-Positive Displacement Air Blowers (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
[従来の技術]
従来の半導体製造装置では、半導体ガス導入管に供給ガ
ス流量調節弁を設けると共に、真空容器と広域ターボ分
子ポンプとの間に真空容器内圧力調節弁を設けてG)る
。供給ガス流通調節弁では、半導体ガス導入管のガス流
量を熱線流量計等によって計測し、この計測データに基
づいてその弁開度を高精度にフィードバック制御され、
真空容器内圧力調節弁では、真空容器に取り付けられた
高精度ダイヤフラム式真空計等で得られた圧力信号に基
づいてその弁開度をフィードバック制御される。これに
より、半導体ガスの8it量と真空容器内の圧力とをそ
れぞれ所望の値に保ち、この状態で均一のallを形成
することを可能にしている。[Detailed Description of the Invention] [Industrial Application Field] [Prior Art] In conventional semiconductor manufacturing equipment, a semiconductor gas introduction pipe is provided with a supply gas flow rate control valve, and a supply gas flow rate control valve is provided between a vacuum vessel and a wide area turbomolecular pump. A pressure regulating valve inside the vacuum container is provided in G). In the supply gas flow control valve, the gas flow rate of the semiconductor gas introduction pipe is measured using a hot wire flowmeter, etc., and the valve opening degree is highly precisely feedback controlled based on this measurement data.
In the vacuum vessel internal pressure regulating valve, the valve opening degree is feedback-controlled based on a pressure signal obtained from a high-precision diaphragm vacuum gauge or the like attached to the vacuum vessel. This makes it possible to maintain the 8 liter amount of semiconductor gas and the pressure inside the vacuum container at desired values, and to form a uniform all in this state.
[発明が解決しようとする課題]
従来の半導体製造装置の排気系装置では、真空容器内の
真空度を所望の値に正確に設定するために、その真空容
器内圧力調節弁に、ステッピングモータ等を用いた高分
解能を有する高価な可変圧力調節弁が必要とされた。ま
た、半導体製造装置の製造工程では、真空容器内にウェ
ハ搬入後に広域ターボ分子ポンプで真空容器内を10−
4〜10−6Torr程度の高い真空状態とし、その後
この状態に半導体ガスを定常流量で流すとともに可変圧
力調節弁をフィードバック制御して10 ”Torr程
度の圧力状態に維持する。従って、稼動初期の圧力と定
常圧力との差が大きいこと、及びガス流量調節弁が一定
流聞を流すだけの制御であることのため、真空容器内の
圧力が定常に保たれるまでに長い時間を要するという不
具合があった。[Problems to be Solved by the Invention] In conventional exhaust system equipment for semiconductor manufacturing equipment, in order to accurately set the degree of vacuum in the vacuum container to a desired value, a stepping motor or the like is installed in the vacuum container pressure control valve. An expensive variable pressure regulating valve with high resolution was required. In addition, in the manufacturing process of semiconductor manufacturing equipment, after the wafer is loaded into the vacuum container, a wide area turbo molecular pump is used to pump the inside of the vacuum container for 10-10 minutes.
A high vacuum state of about 4 to 10-6 Torr is created, and then a semiconductor gas is passed through this state at a steady flow rate, and the variable pressure control valve is feedback-controlled to maintain the pressure state at about 10" Torr. Therefore, the pressure at the initial stage of operation is The problem is that it takes a long time for the pressure inside the vacuum vessel to be maintained at a constant level because there is a large difference between there were.
本発明の目的は、上記問題に鑑み、従来の半導体製造装
置等の排気系装置において使用されていた可変圧力調節
弁を不要とすることによって排気系装置の簡素化、低廉
化を図るとともに、定常状態に移行するまでの時間を短
縮化する真空装置の圧力制御方法を提供することにある
。In view of the above-mentioned problems, an object of the present invention is to simplify and reduce the cost of the exhaust system by eliminating the need for a variable pressure control valve that has been used in conventional exhaust systems such as semiconductor manufacturing equipment. It is an object of the present invention to provide a pressure control method for a vacuum device that shortens the time required for transition to a state.
[課題を解決するための手段1
本発明の真空装置の圧力制御方法では、真空容器内の圧
力を決定するとともに、定常状態時に真空容器内に所定
の流体流量が供給されたとぎ、真空容器内を所定の真空
状態に保つ真空ポンプを含む真空装置において、真空ポ
ンプを所定の回転速度で回転させて定常状態時よりも高
い真空状態を作り、その後真空ポンプの回転速度を目標
回転速度に低下させて真空容器内の圧力を定常状態時に
近づけ、その後真空容器内の圧力に基づいて真空ポンプ
の回転速度を制御する。[Means for Solving the Problems 1] In the pressure control method for a vacuum device of the present invention, the pressure in the vacuum container is determined, and when a predetermined fluid flow rate is supplied into the vacuum container in a steady state, the pressure in the vacuum container is determined. In a vacuum device that includes a vacuum pump that maintains a predetermined vacuum state, the vacuum pump is rotated at a predetermined rotation speed to create a higher vacuum state than in the steady state, and then the rotation speed of the vacuum pump is reduced to the target rotation speed. The pressure inside the vacuum container is brought close to the steady state, and then the rotational speed of the vacuum pump is controlled based on the pressure inside the vacuum container.
[実施例] 以下に本発明の実施例を添付図面に従って説明する。[Example] Embodiments of the present invention will be described below with reference to the accompanying drawings.
第1図は半導体製造8i置における真空装置の一実施例
を示す。1は半導体基板が収容される真空容器、2.3
はそれぞれガス導入管に取り付けられた流量調節弁、2
a、3aは流量検出器、4は真空容器1内の圧力を検出
するダイヤフラム式真空計等の圧力検出器である。5は
内部に誘導モータを含む広域ターボ分子ポンプ、6は広
域ターボ分子ポンプ5の回転速度制御装置である。回転
速度制御装置6は圧力検出器4からの圧力信号と広域タ
ーボ分子ポンプ5の回転速度状態に係る信号と流量検出
器2a、3aからの流量に係る信号とを入力し、広域タ
ーボ分子ポンプ5に対し回転速度制御信号を供給する。FIG. 1 shows an embodiment of a vacuum apparatus for semiconductor manufacturing 8i. 1 is a vacuum container in which a semiconductor substrate is housed; 2.3
2 are flow rate control valves attached to the gas introduction pipes, respectively.
3a and 3a are flow rate detectors, and 4 is a pressure detector such as a diaphragm vacuum gauge for detecting the pressure inside the vacuum container 1. 5 is a wide-area turbo-molecular pump including an induction motor therein, and 6 is a rotation speed control device for the wide-area turbo-molecular pump 5. The rotational speed control device 6 inputs the pressure signal from the pressure detector 4, the signal related to the rotational speed state of the wide-area turbomolecular pump 5, and the signal related to the flow rate from the flow rate detectors 2a and 3a, and controls the wide-area turbomolecular pump 5. A rotation speed control signal is supplied to the
また、7は油回転ポンプ、8.9.10は空気圧式操作
弁、11は排気管である。Further, 7 is an oil rotary pump, 8, 9, 10 is a pneumatic operation valve, and 11 is an exhaust pipe.
上記広域ターボ分子ポンプ5の詳細な構造の一例を第2
図、第3図、第4図に基づいて説明する。An example of the detailed structure of the wide-area turbomolecular pump 5 is shown in the second example.
This will be explained based on FIG. 3, FIG. 4, and FIG.
内部に配置された回転体101は、上部において多段に
配設された動翼群101aと、下部において回転体10
1の外周に数条に形成されたネジ溝部101bとからな
る。回転体101は、互いに隣接し合う!ll買の間に
配置された静翼群102とネジ溝部101bに対向する
円筒形のステータ103のそれぞれに接触しない状態で
高速回転することにより、ポンプ作用を生じる。動翼と
静翼の正面図を第3図に示し、回転体101の外周に形
成されるネジ溝部101bの正面図を第4図に示す。図
示された実施例では、軸受は部材として上下2組のラジ
アル磁気軸受け104a、104bと、1組のスラスト
磁気軸受け105とを用いており、回転手段として一般
的なアウタロータ形式のかご形三相誘導モータ106を
用いている。この構成により、回転体101は、各磁気
軸受けの部分で完全に浮上し、動翼群101aが静翼群
102と、ネジ溝部101bがステータ103および上
下の各補助軸受け107.108等と全く接触せず、こ
れにより高速回転を可能にする。また、図中109及び
110は回転体101の挙動を常時計測する非接触変位
センサ、111は回転体1o1の回転速度を非接触状態
で計測する回転速度センサである。回転体101が浮動
状態で回転しているときには、上記非接触変位センサの
出力によって上記磁気軸受は部分にかかる電圧や電流が
PIDllillされ、上記回転速度センサの出力によ
って誘導モータ106にかかる印加電圧が制御される。The rotating body 101 disposed inside includes a rotor blade group 101a arranged in multiple stages in the upper part, and a rotating body 101 in the lower part.
1, and several threaded grooves 101b formed on the outer periphery of the threaded groove 101b. The rotating bodies 101 are adjacent to each other! A pumping action is produced by rotating at high speed without contacting the stator vane group 102 arranged between the stator blades 102 and the cylindrical stator 103 facing the threaded groove portion 101b. FIG. 3 shows a front view of the moving blade and stationary blade, and FIG. 4 shows a front view of the threaded groove portion 101b formed on the outer periphery of the rotating body 101. In the illustrated embodiment, the bearings include two sets of upper and lower radial magnetic bearings 104a, 104b and one set of thrust magnetic bearings 105, and the rotating means is a squirrel cage three-phase induction of a general outer rotor type. A motor 106 is used. With this configuration, the rotating body 101 completely floats at each magnetic bearing, and the rotor blade group 101a is in complete contact with the stator blade group 102, and the threaded groove portion 101b is in complete contact with the stator 103 and the upper and lower auxiliary bearings 107, 108, etc. This enables high-speed rotation. Further, in the figure, 109 and 110 are non-contact displacement sensors that constantly measure the behavior of the rotating body 101, and 111 is a rotation speed sensor that measures the rotational speed of the rotating body 1o1 in a non-contact state. When the rotating body 101 is rotating in a floating state, the output of the non-contact displacement sensor changes the voltage and current applied to the magnetic bearing, and the output of the rotational speed sensor changes the voltage applied to the induction motor 106. controlled.
ここで、第1図に示された広域ターボ分子ポンプ5と油
回転ポンプ7の各ポンプ作用を真空容器1の内圧制御と
の関連で説明する。半導体製造用の真空容器1は、広域
ターボ分子ポンプ5で真空容器内を一度高真空まで引く
ことにより大気中に含まれる水蒸気等のガスを排出され
、その後、流1!1m節弁2.3を介して反応ガス等を
定流量だけ真空容器1へ流し続けると共に広域ターボ分
子ポンプ5で真空容器1内圧力を一定に保つのに必要な
ガス量を真空容器1から引くことにより、真空容器内の
反応ガスの流量と真空容器内の圧力を一定に保つように
操作される。この状態で真空容器内に搬入されたウェハ
等に薄膜が形成される。ポンプ5による前記操1作は、
ウェハ等に一層の薄膜を形成するたびに行われる。前記
操作の関連で、真空容器1側に設けられた広域ターボ分
子ポンプ5、次段に設けられた油回転ポンプ7は次のよ
うに用いられる。広域ターボ分子ポンプ5において、真
空容器1側の黄部は、吸気口側圧力1 Q −2Pa程
度以下でその性能を発揮し、数101/sec〜数10
001/secの排気速度を有し、半導体生成前の真空
容器内のガス排出を行う。また広域ターボ分子ポンプ5
の排気側のネジ溝部は、吸気口側圧力10−2〜102
Pa程度で性能を発揮し、数105CCH〜数1000
SCCHの排気流量を有し、半導体製造中の反応ガス等
の排気作用を行う。また、油回転ポンプ7は、広域ター
ボ分子ポンプ5等が排気効果を発揮できる圧力にまで真
空容器1を低真空に引く粗引きポンプであり、102P
a程度以上で性能を発揮する。これらのポンプ5.7の
性能を第5図に示す。実線は広域ターボ分子ポンプ5の
排気性能を示し、破線はねじ溝部を有しないターボ分子
ポンプの排気性能を示し、−点鎖線は油回転ポンプ7の
排気性能を示す。この図からもわかるように、本実施例
で用いる広域ターボ分子ポンプ5は、1O−2Pa〜1
02Pa程度において、従来のターボ分子ポンプに較べ
多くの流量を流せる。なお、第5図の試験結果は、排気
速度10001/Sを有する複合分子ポンプとターボ分
子ポンプ、及び240m3/hrの排気速度を有する油
回転ポンプの性能を示している。Here, the pumping operations of the wide-area turbomolecular pump 5 and the oil rotary pump 7 shown in FIG. 1 will be explained in relation to the internal pressure control of the vacuum vessel 1. A vacuum container 1 for semiconductor manufacturing is once drawn to a high vacuum by a wide-area turbo molecular pump 5 to exhaust gases such as water vapor contained in the atmosphere, and then a flow rate of 1.1 m is controlled by a valve 2.3. By continuing to flow a constant flow of reaction gas, etc. into the vacuum vessel 1 through The reaction gas flow rate and the pressure inside the vacuum vessel are maintained constant. In this state, a thin film is formed on the wafer etc. carried into the vacuum container. The above operation by the pump 5 is as follows:
This process is performed every time a thin film is formed on a wafer or the like. In connection with the above operation, the wide area turbo molecular pump 5 provided on the vacuum vessel 1 side and the oil rotary pump 7 provided at the next stage are used as follows. In the wide area turbo molecular pump 5, the yellow part on the side of the vacuum vessel 1 exhibits its performance at an inlet side pressure of about 1 Q -2 Pa or less, and has a speed of several 101/sec to several 10
It has an evacuation speed of 0.001/sec and performs gas evacuation from the vacuum container before semiconductor production. In addition, wide area turbo molecular pump 5
The thread groove on the exhaust side of
Demonstrates performance at around Pa, from several 105 CCH to several 1000
It has an exhaust flow rate of SCCH and performs the function of exhausting reaction gas, etc. during semiconductor manufacturing. Further, the oil rotary pump 7 is a roughing pump that pulls the vacuum container 1 to a low vacuum to a pressure that allows the wide area turbo molecular pump 5 etc. to exert an evacuation effect.
Demonstrates performance above grade a. The performance of these pumps 5.7 is shown in FIG. The solid line shows the pumping performance of the wide-area turbomolecular pump 5, the broken line shows the pumping performance of the turbomolecular pump without a threaded groove, and the dashed line shows the pumping performance of the oil rotary pump 7. As can be seen from this figure, the wide range turbomolecular pump 5 used in this example has a pressure of 1O-2Pa to 1
At about 0.02 Pa, it can flow a larger flow rate than conventional turbomolecular pumps. The test results shown in FIG. 5 show the performance of a composite molecular pump and a turbo molecular pump having a pumping speed of 10001/S, and an oil rotary pump having a pumping speed of 240 m3/hr.
従って、真空容器1は、先ず油回転ポンプ7により10
2Pa程度の低真空状態に粗引きされ、その後、広域タ
ーボ分子ポンプ5によって、前述の通り、最初に半導体
製造前のガス排出のため高い真空状態まで引かれ、次に
半導体製造のため設定圧力となるよう内圧を調整される
。ただし、真空容器1内の圧力を上記の設定圧力に制御
することにおいて、後述の如く、広域ターボ分子ポンプ
5の回転速度に関し更に2段階の回転速度制御が行われ
る。Therefore, the vacuum container 1 is first pumped by the oil rotary pump 7.
It is roughly drawn to a low vacuum state of about 2 Pa, and then, as mentioned above, it is drawn to a high vacuum state by the wide area turbo molecular pump 5 to exhaust gas before semiconductor manufacturing, and then to the set pressure for semiconductor manufacturing. The internal pressure is adjusted so that However, in controlling the pressure inside the vacuum container 1 to the above-mentioned set pressure, the rotation speed of the wide-area turbomolecular pump 5 is further controlled in two stages, as will be described later.
次に、前述の如く真空容器1内の圧力を調整する広域タ
ーボ分子ポンプ5の回転速度を制御する回転速度制御装
置16の具体的回路構成を第6図に基づいて説明する。Next, a specific circuit configuration of the rotational speed control device 16 that controls the rotational speed of the wide-area turbomolecular pump 5 that adjusts the pressure inside the vacuum vessel 1 as described above will be explained based on FIG. 6.
第6図中−点鎖線で示された6が前述の回転速度制御1
1′VA置である。回転速度制御装置l16は、制御演
算回路201と電圧制御回路202とブレーキ制御回路
203とモータ駆動回路204と回転速度検出回路20
5とから構成される。制御演算回路201には、圧力検
出器4からの真空容器内の圧力に係る信号、回転速度検
出回路205において上記の回転速度センサの出力信号
に基づいて検出される回転速度に係る信号、iil量調
節弁2.3の流量検出器2a、3aからのガス流量に係
る信号がそれぞれ入力される。制御演算回路201はこ
れらの入力信号によって与えられるデータを参考にして
広域ターボ分子ポンプ5の回転速度が後述する如き予め
定められた状態で変化するように制御するための指示値
を出力する。電圧制御回路202は制御演算回路201
から与えられた回転速度を決める指示値を対応する電圧
信号に変換し、ブレーキ制御回路203は制御演算回路
201から与えられた回転速度を低下させるための指示
値を電圧信号に変換する。電圧制御回路202とブレー
キ制御回路203の各出力信号はモータ駆動回路204
に供給され、ここで広域ターボ分子ポンプ5内の誘導モ
ータを駆動できる電圧レベルに変換する。なお、電圧制
御回路202の出力信号は制御演算回路201にフィー
ドバックされ、これにより広域ターボ分子ポンプ5の回
転速度が正確かつ迅速に目標値になるように制御される
。In Fig. 6, 6 indicated by the dotted chain line is the rotational speed control 1 mentioned above.
It is set at 1'VA. The rotation speed control device l16 includes a control calculation circuit 201, a voltage control circuit 202, a brake control circuit 203, a motor drive circuit 204, and a rotation speed detection circuit 20.
It consists of 5. The control calculation circuit 201 includes a signal related to the pressure in the vacuum container from the pressure detector 4, a signal related to the rotational speed detected in the rotational speed detection circuit 205 based on the output signal of the above-mentioned rotational speed sensor, and the amount of iil. Signals related to the gas flow rate from the flow rate detectors 2a and 3a of the control valve 2.3 are respectively input. The control calculation circuit 201 refers to the data provided by these input signals and outputs an instruction value for controlling the rotational speed of the wide area turbomolecular pump 5 to change in a predetermined state as described later. The voltage control circuit 202 is the control calculation circuit 201
The brake control circuit 203 converts the instruction value for determining the rotational speed given from the control calculation circuit 201 into a corresponding voltage signal, and the brake control circuit 203 converts the instruction value for reducing the rotational speed given from the control calculation circuit 201 into a voltage signal. Each output signal of the voltage control circuit 202 and the brake control circuit 203 is sent to the motor drive circuit 204.
The voltage level is then converted to a voltage level that can drive the induction motor in the wide-area turbomolecular pump 5. Note that the output signal of the voltage control circuit 202 is fed back to the control calculation circuit 201, whereby the rotational speed of the wide-area turbomolecular pump 5 is controlled to accurately and quickly reach the target value.
回転速度側W装置6による広域ターボ分子ポンプ5の回
転速度制御方法の原理を次に説明する。The principle of the method of controlling the rotational speed of the wide area turbomolecular pump 5 using the rotational speed side W device 6 will be explained next.
回転速度の制御はサイリスタを利用した一次電圧制御方
式によって行われる。真空容器1内の圧力を圧力検出器
4を介してフィードバックすることにより回転速度を制
御する場合には、誘導モータの1次回路に加える電圧の
実効値Vは、基本的に(但し、P;真空容器内圧力、C
−03;定数)の式で与えられる。このように制御すれ
ば、広域ターボ分子ポンプ5の回転速度と排気流量との
間に第7図に示す関係があるので、真空容器内の圧力を
安定させることができる。The rotation speed is controlled by a primary voltage control method using a thyristor. When controlling the rotation speed by feeding back the pressure inside the vacuum vessel 1 via the pressure detector 4, the effective value V of the voltage applied to the primary circuit of the induction motor is basically (where P; Vacuum vessel internal pressure, C
−03; constant). If controlled in this way, the relationship shown in FIG. 7 exists between the rotational speed of the wide-area turbomolecular pump 5 and the exhaust flow rate, so that the pressure inside the vacuum container can be stabilized.
ところが、■式による制御方式では真空容器1内の圧力
を設定状態にまで移行させるのに時間がかかる。そこで
、本発明では、設定状態に安定させるために要する時間
を短縮化するために、更に誘導モータのモータ駆動回路
204に加える電圧を2段階に分けて制御することとす
る。つまり、真空容器1内の圧力を高い真空状態から設
定状態まで移行させるにあたって、真空容器内の圧力と
設定圧力との差・が大きい状態では、第1の段階として
、真空容器1の容積と、ガス導入管に取り付けられた流
ffi調節弁2.3からのガス流量に係る信号と、広域
ターボ分子ポンプ5の排気性能とによって目標とする回
転速度を算出し、誘導モータに対して直流制動又は回生
制動をかけて目標回転速度に到達した状態又は目標回転
速度に接近した状態とし、その後第2段階として真空容
器内の圧力をフィードバックすることにより回転速度を
制御する。この場合の理論的な制御性について次に述べ
る。However, in the control method using the formula (2), it takes time to shift the pressure inside the vacuum container 1 to the set state. Therefore, in the present invention, in order to shorten the time required to stabilize the set state, the voltage applied to the motor drive circuit 204 of the induction motor is controlled in two stages. That is, when the pressure inside the vacuum container 1 is transferred from a high vacuum state to a set state, in a state where the difference between the pressure inside the vacuum container and the set pressure is large, the volume of the vacuum container 1 is changed as a first step. A target rotational speed is calculated based on the signal related to the gas flow rate from the flow ffi control valve 2.3 attached to the gas introduction pipe and the exhaust performance of the wide area turbomolecular pump 5, and the induction motor is subjected to direct current braking or Regenerative braking is applied to bring the target rotational speed into a state of reaching or approaching the target rotational speed, and then, as a second step, the rotational speed is controlled by feeding back the pressure inside the vacuum container. Theoretical controllability in this case will be described next.
半導体製造時の真空容器1内の圧力は10−1〜102
Torr以下という真空状態であり、その排気速度は数
100〜数10003CCHであるため、ポンプの圧縮
仕事に必要なトルクは、ポンプの回転部と対向する静止
部の面積及び間隙、圧縮ガス流体の粘性、回転速度によ
り決まる摩擦損失に必要なトルクに比較して小さなもの
となり、約107分の1程度である。そこでポンプ回転
中の回転体のトルクについて状態方程式を求めると、上
述のポンプの圧縮仕事に必要なトルクは無視できるので
、
Jθ=T −T −■
R
但し、に回転体の慣性モーメント
θ;回転角加速度
■、;モータの出力トルク
TR;回転体の摩擦損失トルク
ここで三相モータでは
4πr 3
なるトルクの式、及び、
なる関係があるから、両式より誘導モータのトルクとモ
ータ駆動回路にかける電圧との関係は、で表わされる。The pressure inside the vacuum container 1 during semiconductor manufacturing is 10-1 to 102
Since the vacuum state is less than Torr and the pumping speed is several hundred to several tens of thousand CCH, the torque required for the compression work of the pump depends on the area and gap between the rotating part and the stationary part of the pump, and the viscosity of the compressed gas fluid. , is small compared to the torque required for friction loss determined by the rotational speed, and is about 1/107th. Therefore, if we find the equation of state for the torque of the rotating body while the pump is rotating, we can ignore the torque required for the compression work of the pump mentioned above, so Jθ=T −T −■ R However, the moment of inertia of the rotating body θ; rotation Angular acceleration ■, ; Output torque of the motor TR; Friction loss torque of the rotating body Here, for a three-phase motor, the torque equation is 4πr 3 and the relationship is as follows. From both equations, the torque of the induction motor and the motor drive circuit can be calculated. The relationship with the applied voltage is expressed as:
′
但し、N :モータ極数
f;回転周波数
I:1次側コイル1相当たりに流す電流r1 ;1次側
抵抗
r2;1次側に換算した2次側抵抗
■;1次側にかける電圧の実効値
X;モータ回路の漏れリアクタンス
ここで、特にf−AV+8なる制御を行うものとし、ま
た、回転体の慣性モーメントJが非常に大きいので電圧
Vと電流Iの位相が同相であり、Sが小さいとすると、
0式は更に、
K2.に3:定数
で表わされ、■は■■式より
一〇
となる。但し、K1.A、Bは定数。' However, N: Number of motor poles f; Rotation frequency I: Current flowing per one coil on the primary side r1; Primary resistance r2; Secondary resistance converted to the primary side ■; Voltage applied to the primary side Effective value of If is small, then
0 type further includes K2. 3: Represented by a constant, ■ becomes 10 from the formula ■■. However, K1. A and B are constants.
一方、負荷トルクは、ガスによる摩擦損失■8だけを考
えてよいから、
一■
但し、μ;
δ:
S「
R。On the other hand, for the load torque, only the friction loss due to gas (■8) can be considered, so μ; δ: S' R.
θ ;
ガスの粘性係数
回転体と対向する静止壁との間隙
:摩擦損失を生じる回転体表面積
二回転中心から、摩*a失を生じる面
までの距離
角速度
となる。これらの係数をより簡単に表わせば、Jθ−K
V−K O−K θ−に3−■となり、モータの
一次電圧Vを制御することにより、回転速度θを常に安
定に1lltllすることができることがわかる。θ; Gas viscosity coefficient Gap between the rotating body and the opposing stationary wall: Distance from the rotation center of the rotating body surface area that causes friction loss to the surface that causes friction*a loss is the angular velocity. Expressing these coefficients more simply, Jθ−K
It can be seen that V-K OK θ- becomes 3-■, and by controlling the primary voltage V of the motor, the rotational speed θ can always be stably maintained at 1lltll.
また先に述べた真空容器1内の圧力に関する制御性につ
いて述べる。理想気体の状態方程式(真空中では、十分
希薄であるので、理想気体であると考えてよい)の関係
より、真空容器内の状態方程式として
P:真空容器内圧力
■o:真空容器内体積
Qi ;ガス吸入体積流量
Qo=ガス排気体積流5m
Rg:ガス定数
T:真空容器内温度
が成り立つ。更に、広域ターボ分子ポンプ5の排気8!
恒と吸気圧との間には、第8図に示す関係がある。第8
図によれば、排気流量は、約1O−1TOrr〜1QT
orrの吸気圧に対し、はぼ一定であり、この範囲では
回転速度のみの関数であると考えられるから、
Q −に6θ十に7 −■
に、、に、:定数
とおくことができる。0式を[相]式に代入して−に8
−に9θ
に8.に、:定数
一■
なる関係が成立つ。0式を変形して、
θ−K 1o P + K 11 −◎θ−
一に1oP
−[相]
が成り立つから、この両式を0式に代入し−JK1゜P
−に4V+に1゜(K2+に5)P−(K2+に5 )
K11−に3
、’、JK10P−−に4 V−に1(、(K2+に5
)P+(K2+に5)K11+に3
が得られる。これより、先と同様に、真空容器1内の圧
力Pに関してフィードバックし、ISモータの一次電圧
Vを制御することにより、真空容器内の圧力Pを制御す
ることができる。Also, the controllability regarding the pressure inside the vacuum vessel 1 mentioned above will be described. From the relationship of the equation of state of an ideal gas (in a vacuum, it is sufficiently diluted, it can be considered an ideal gas), the equation of state inside the vacuum container is: P: Pressure inside the vacuum container o: Volume inside the vacuum container Qi ;Gas suction volumetric flow rate Qo=gas exhaust volumetric flow rate 5m Rg: gas constant T: temperature inside the vacuum container. Furthermore, the exhaust 8 of the wide area turbo molecular pump 5!
There is a relationship between constant and intake pressure as shown in FIG. 8th
According to the figure, the exhaust flow rate is approximately 1O-1 TOrr ~ 1QT
For the intake pressure of orr, is almost constant and is considered to be a function only of the rotational speed in this range, so Q - can be set as 6θ 7 -■, , , : constant. Substituting the 0 expression into the [phase] expression and converting it into -8
− to 9θ to 8. The following relationship holds true: :Constant 1■. Transforming formula 0, θ−K 1o P + K 11 −◎θ−
Since 1oP - [phase] holds true, substituting these two equations into the 0 equation -JK1゜P
− to 4 V+ to 1° (K2+ to 5) P− (K2+ to 5)
3 to K11-, ', 4 to JK10P-- 1 to V- (, (5 to K2+)
) P+ (5 for K2+) 3 for K11+ is obtained. From now on, as before, the pressure P inside the vacuum vessel 1 can be controlled by feeding back the pressure P inside the vacuum vessel 1 and controlling the primary voltage V of the IS motor.
上記の如く、最終的に真空容器1内の圧力を圧力検出器
4で検出し、圧力検出器4の出力する圧力信号のみでポ
ンプ回転速度を制御する。本発明による回転速度制御方
法によれば、真空容器内圧力を一定に保つことができる
のみでなく、真空容器内圧力と目標圧力との間において
例えば0.2Torr以上の差がある場合、真空容器1
の内容積と、広域ターボ分子ポンプ5の排気特性と、吸
入ガス流量と、目標圧力等から算出される目標回転速度
まで、誘導モータの回転速度を直ちに制御し、その後圧
力検出器4の出力する圧力信号により誘導モータの回転
速度を制御することにより、迅速な真空容器内圧力の定
常化を図ることができる。第9図は真空容器1内の圧力
を高い真空状態から定常状態へと移行する際の真空容器
内圧力の収束状態を示す。第9図において半導体ガス導
入時を0分とし、導入後1分経過後制御開始とする。As described above, the pressure inside the vacuum container 1 is finally detected by the pressure detector 4, and the pump rotation speed is controlled only by the pressure signal output from the pressure detector 4. According to the rotational speed control method according to the present invention, not only can the pressure inside the vacuum vessel be kept constant, but also when there is a difference of, for example, 0.2 Torr or more between the pressure inside the vacuum vessel and the target pressure, 1
The rotational speed of the induction motor is immediately controlled to the target rotational speed calculated from the internal volume of the wide-area turbomolecular pump 5, the exhaust characteristics of the wide-area turbomolecular pump 5, the intake gas flow rate, the target pressure, etc., and then the pressure detector 4 outputs the By controlling the rotational speed of the induction motor using the pressure signal, the pressure inside the vacuum container can be quickly stabilized. FIG. 9 shows the convergence state of the pressure inside the vacuum container 1 when the pressure inside the vacuum container 1 is transferred from a high vacuum state to a steady state. In FIG. 9, the time when the semiconductor gas is introduced is set to 0 minutes, and the control is started 1 minute after the introduction.
次に回転速度制御装置6によって前述した回転速度制御
方法が行われる時の回転速度制御装置6の動作状態を第
10図に基づいて説明する。広域ターボ分子ポンプ5の
誘導モータは、前述の通りV−fインバータで制御され
、その印加電圧を変化させることにより回転速度を制御
される。直流電源電圧をサイリスタを通して誘導モータ
に加え、サイリスタのゲートに加えるパルスを制御し、
サイリスタの休止時間と導通時間との比tr /l。Next, the operating state of the rotation speed control device 6 when the rotation speed control device 6 performs the above-mentioned rotation speed control method will be described based on FIG. 10. The induction motor of the wide-area turbomolecular pump 5 is controlled by the Vf inverter as described above, and its rotational speed is controlled by changing the applied voltage. Apply DC power supply voltage to the induction motor through a thyristor, control the pulses applied to the gate of the thyristor,
The ratio of the rest time to the conduction time of the thyristor tr /l.
を変えることにより誘導モータに加わる平均電圧Vtは
、
n
(V、;直流電源電圧)
で表わされ、誘導モータの回転速度を電圧制御で変化さ
せることができる。この駆動回路は従来より広く知られ
ている。回転速度制御装置6は、半導体製造前の真空容
器1内のガス排出中においては回転速度検出回路205
と電圧制御回路202を用いた制御を行い、内圧が設定
圧力になるまで広域ターボ分子ポンプ5を最高回転速度
(例えば、2400Orpm)で回転させる。真空容器
1のガス排出終了後、半導体ガスを流量調節弁2.3よ
り所定の流量流し続けると共に、一方回転速度i制御装
置6は半導体ガス流量と真空容器1の容積と広域ターボ
分子ポンプ5の排気性能とによって求められる広域ター
ボ分子ポンプ5の目標回転速度まで広域ターボ分子モー
タ5の回転速度を低下させるため回転速度検出回路20
5とブレーキ制御回路203を用いた回生制動又は逆相
III動を行う。The average voltage Vt applied to the induction motor by changing is expressed as n (V,; DC power supply voltage), and the rotational speed of the induction motor can be changed by voltage control. This drive circuit has been widely known. The rotational speed control device 6 controls the rotational speed detection circuit 205 during gas discharge from the vacuum container 1 before semiconductor manufacturing.
Control is performed using the voltage control circuit 202, and the wide-area turbomolecular pump 5 is rotated at the maximum rotational speed (for example, 2400 rpm) until the internal pressure reaches the set pressure. After the gas discharge from the vacuum container 1 is completed, the semiconductor gas continues to flow at a predetermined flow rate from the flow rate control valve 2.3, while the rotational speed i control device 6 controls the semiconductor gas flow rate, the volume of the vacuum container 1, and the wide area turbo molecular pump 5. A rotational speed detection circuit 20 is used to reduce the rotational speed of the wide-area turbomolecular motor 5 to the target rotational speed of the wide-area turbomolecular pump 5 determined by the exhaust performance.
5 and brake control circuit 203 to perform regenerative braking or reverse phase III operation.
目標回転速度に到達後、回転速度制御装置6は第10図
に示される制御を施し、真空容器1内の圧力に係る信号
で広域ターボ分子ポンプ5の回転速度をPIDt、1j
lL、、真空容器1内の圧力を所定値にて一定に保つ。After reaching the target rotation speed, the rotation speed control device 6 performs the control shown in FIG.
1L, the pressure inside the vacuum container 1 is kept constant at a predetermined value.
なお、本発明では、誘導モータを2段階で制御するばか
りでなく、ガス排出終了侵直ちに真空容器1の内圧力に
係る信号で誘導モータの回転速度をPIDIlllIO
することも可能である。In addition, in the present invention, the induction motor is not only controlled in two stages, but also the rotational speed of the induction motor is controlled by the signal related to the internal pressure of the vacuum vessel 1 as soon as the gas discharge ends.
It is also possible to do so.
また、制御演算回路201をマイコンで実現し、マイコ
ンの入力部にデジタルスイッチを設けることにより、真
空容器1の容積や複合分子ポンプの目標回転速度等を入
力できるようにしておけばより操作性が増す。Furthermore, by implementing the control calculation circuit 201 with a microcomputer and providing a digital switch in the input section of the microcomputer, it is possible to input the volume of the vacuum container 1, the target rotation speed of the composite molecular pump, etc., thereby improving operability. Increase.
さらに、前記実施例では広域ターボ分子ポンプを用いた
例を説明したが、ネジ溝底分子ポンプの場合でも本発明
を同様に適用することができる。Further, in the above embodiments, an example using a wide area turbo molecular pump has been described, but the present invention can be similarly applied to a thread groove bottom molecular pump.
[発明の効果]
以上の説明で明らかなように本発明によれば、真空装置
における広域ターボ分子ポンプやネジ溝底分子ポンプ等
の真空ポンプの回転速度を直接制御することによって従
来装置で必要とされた可変圧力調節弁を使用しなくても
済むので、真空装置の排気系を簡素化、低廉化すること
ができると共に、真空ポンプの回転速度の制御を所定の
複数段階に分けて行うようにしたため、真空装置におい
て短時間で目的とする状態を得ることができ、特に半導
体製造装置等に適用した場合には製造プロセスに要する
時間の短縮化を達成することができる。[Effects of the Invention] As is clear from the above explanation, according to the present invention, by directly controlling the rotational speed of a vacuum pump such as a wide-area turbo molecular pump or a screw groove bottom molecular pump in a vacuum device, it is possible to achieve the advantages that are required in conventional devices. Since there is no need to use a variable pressure control valve, the exhaust system of the vacuum device can be simplified and lowered in cost, and the rotation speed of the vacuum pump can be controlled in multiple predetermined stages. Therefore, the desired state can be obtained in a short time in a vacuum apparatus, and the time required for the manufacturing process can be shortened, especially when applied to semiconductor manufacturing equipment or the like.
第9図は真空容器内圧力の変化を示す特性図、第10図
は回転速度制御装置の動作状態を示した回路図である。FIG. 9 is a characteristic diagram showing changes in the pressure inside the vacuum container, and FIG. 10 is a circuit diagram showing the operating state of the rotation speed control device.
4、4,
第1図は半導体製造装置に適用された本発明に係る真空
装置の一実施例を示す構成図、第2図は広域ターボ分子
ポンプの詳細な構造を示す縦断面図、
第3図は広域ターボ分子ポンプの動翼と静翼の正面図、
第4図は広域ターボ分子ポンプのネジ溝部の正面図、
第5図は各種ポンプの性能を示す特性図、第6図は回転
速度側m装置の具体的構成を示す回路図、
第7図は広域ターボ分子ポンプの回転速度と排気流量と
の関係を示す特性図、
第8図は広域ターボ分子ポンプの吸気圧力と排気流量と
の関係を示す特性図、
[符号の説明]
1・・・・・・真空容器
2.3・・・・・・ガス流量調節弁
2a、3a・・・・・・流量検出器
4・・・・・・圧力検出器
5・・・・・・広域ターボ分子ポンプ
6・・・・・・回転速度制御装置
7・・・・・・油回転ポンプFig. 1 is a configuration diagram showing an embodiment of a vacuum device according to the present invention applied to semiconductor manufacturing equipment, Fig. 2 is a vertical cross-sectional view showing the detailed structure of a wide-area turbo molecular pump, and Fig. 3 is a wide-area turbo molecular pump. Figure 4 is a front view of the rotor blades and stationary blades of a molecular pump, Figure 4 is a front view of the thread groove of a wide-area turbo molecular pump, Figure 5 is a characteristic diagram showing the performance of various pumps, Figure 6 is a diagram of the rotation speed side m device. A circuit diagram showing the specific configuration. Figure 7 is a characteristic diagram showing the relationship between the rotational speed and exhaust flow rate of the wide-area turbo-molecular pump. Figure 8 is a characteristic diagram showing the relationship between the intake pressure and exhaust flow rate of the wide-area turbo-molecular pump. Figure, [Explanation of symbols] 1... Vacuum vessel 2.3... Gas flow rate control valves 2a, 3a... Flow rate detector 4... Pressure detection Device 5... Wide area turbo molecular pump 6... Rotation speed control device 7... Oil rotary pump
Claims (1)
時に前記真空容器内に所定の流体流量が供給されたとき
、前記真空容器内を所定の真空状態に保つ真空ポンプを
含む真空装置において、前記真空ポンプを所定の回転速
度で回転させて前記定常状態時よりも高い真空状態を作
り、その後前記真空ポンプの回転速度を目標回転速度に
低下させて前記真空容器内の圧力を定常状態時に近づけ
、その後前記真空容器内の圧力に基づいて前記真空ポン
プの回転速度を制御することを特徴とする真空装置の圧
力制御方法。(1) In a vacuum device including a vacuum pump that determines the pressure inside the vacuum container and maintains the inside of the vacuum container in a predetermined vacuum state when a predetermined fluid flow rate is supplied into the vacuum container in a steady state, The vacuum pump is rotated at a predetermined rotational speed to create a vacuum state higher than that in the steady state, and then the rotational speed of the vacuum pump is reduced to a target rotational speed to bring the pressure in the vacuum container closer to the steady state. . A pressure control method for a vacuum device, comprising: thereafter controlling the rotational speed of the vacuum pump based on the pressure within the vacuum container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63219792A JP2663549B2 (en) | 1988-09-02 | 1988-09-02 | Pressure control method for vacuum equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63219792A JP2663549B2 (en) | 1988-09-02 | 1988-09-02 | Pressure control method for vacuum equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0267472A true JPH0267472A (en) | 1990-03-07 |
JP2663549B2 JP2663549B2 (en) | 1997-10-15 |
Family
ID=16741097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63219792A Expired - Lifetime JP2663549B2 (en) | 1988-09-02 | 1988-09-02 | Pressure control method for vacuum equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2663549B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0385393A (en) * | 1989-08-29 | 1991-04-10 | Ntn Corp | Motor control device for vacuum pump |
JPH0533044A (en) * | 1991-07-26 | 1993-02-09 | Daido Steel Co Ltd | Vacuum furnace |
JPH09317641A (en) * | 1996-05-30 | 1997-12-09 | Daikin Ind Ltd | Vacuum exhauster |
JPH10177222A (en) * | 1996-12-19 | 1998-06-30 | Fuji Photo Film Co Ltd | X-ray radiographing device |
JP2000064959A (en) * | 1998-08-18 | 2000-03-03 | Nichiden Mach Ltd | Exhaust system |
JP2001295761A (en) * | 2000-04-11 | 2001-10-26 | Ebara Corp | Evacuation system |
JP2002541541A (en) * | 1999-04-07 | 2002-12-03 | アルカテル | System for regulating the pressure in a vacuum chamber, vacuum pumping unit equipped with this system |
JP2003532283A (en) * | 2000-04-20 | 2003-10-28 | アルカテル | Method and apparatus for adjusting the atmosphere in a process chamber |
JP2006291952A (en) * | 2005-04-05 | 2006-10-26 | Alcatel | Rapidly pumping out enclosure while limiting energy consumption |
JP2014148703A (en) * | 2013-01-31 | 2014-08-21 | Ulvac Japan Ltd | Sputtering device |
JP2018204448A (en) * | 2017-05-31 | 2018-12-27 | 株式会社島津製作所 | Rotational speed control device for vacuum pump motor, vacuum pump |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103982409B (en) * | 2014-05-27 | 2016-08-17 | 浙江耀达智能科技股份有限公司 | Water pump constant pressure frequency conversion controller |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60138291A (en) * | 1983-12-27 | 1985-07-22 | Tokuda Seisakusho Ltd | Pressure control device of gas |
-
1988
- 1988-09-02 JP JP63219792A patent/JP2663549B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60138291A (en) * | 1983-12-27 | 1985-07-22 | Tokuda Seisakusho Ltd | Pressure control device of gas |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0385393A (en) * | 1989-08-29 | 1991-04-10 | Ntn Corp | Motor control device for vacuum pump |
JPH0533044A (en) * | 1991-07-26 | 1993-02-09 | Daido Steel Co Ltd | Vacuum furnace |
JPH09317641A (en) * | 1996-05-30 | 1997-12-09 | Daikin Ind Ltd | Vacuum exhauster |
JPH10177222A (en) * | 1996-12-19 | 1998-06-30 | Fuji Photo Film Co Ltd | X-ray radiographing device |
JP2000064959A (en) * | 1998-08-18 | 2000-03-03 | Nichiden Mach Ltd | Exhaust system |
JP2002541541A (en) * | 1999-04-07 | 2002-12-03 | アルカテル | System for regulating the pressure in a vacuum chamber, vacuum pumping unit equipped with this system |
JP2001295761A (en) * | 2000-04-11 | 2001-10-26 | Ebara Corp | Evacuation system |
JP2003532283A (en) * | 2000-04-20 | 2003-10-28 | アルカテル | Method and apparatus for adjusting the atmosphere in a process chamber |
JP2006291952A (en) * | 2005-04-05 | 2006-10-26 | Alcatel | Rapidly pumping out enclosure while limiting energy consumption |
JP2014148703A (en) * | 2013-01-31 | 2014-08-21 | Ulvac Japan Ltd | Sputtering device |
JP2018204448A (en) * | 2017-05-31 | 2018-12-27 | 株式会社島津製作所 | Rotational speed control device for vacuum pump motor, vacuum pump |
Also Published As
Publication number | Publication date |
---|---|
JP2663549B2 (en) | 1997-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0267472A (en) | Pressure control method for vacuum equipment | |
EP1081380A1 (en) | Device and method for evacuation | |
US8297311B2 (en) | Controlling gas partial pressures for process optimization | |
US5746581A (en) | Method and apparatus for evacuating vacuum system | |
US5074747A (en) | Vacuum pump | |
US5219269A (en) | Vacuum pump | |
JPH10220373A (en) | Control method and device for volumetric flow amount of vacuum pump | |
EP1515423A2 (en) | Motor control system and vacuum pump equipped with the motor control system | |
JPH05231381A (en) | Method and device for controlling vacuum exhaust capacity of dry vacuum pump and dry vacuum pump and semiconductor manufacturing vacuum processor | |
JPS62195492A (en) | Surging preventing device for turbocompressor | |
US6454524B1 (en) | Vacuum pump and vacuum apparatus | |
US2935242A (en) | Pumping apparatus | |
US20220235779A1 (en) | Variable inlet conductance vacuum pump, vacuum pump arrangement and method | |
JPH03107599A (en) | Control system of axial-flow pump device | |
JPH02153294A (en) | Variable capacity type vacuum pump | |
WO2021112021A1 (en) | Evacuation device and vacuum pump used in same | |
JP7427437B2 (en) | Vacuum evacuation equipment and vacuum pump used therein | |
JPH03275997A (en) | Variable displacement vacuum pump | |
JPS6332180A (en) | Vacuum pump controlling method | |
JPH06249187A (en) | Vacuum pump and driving method therefor | |
JPS60138291A (en) | Pressure control device of gas | |
JP2005105851A (en) | Vacuum pump and vacuum device | |
CN115143299B (en) | Vacuum valve and vacuum equipment | |
JPS62169416A (en) | Method and equipment for controlling pressure of vacuum apparatus | |
JPH0282000A (en) | Operational condition detecting method for turbo molecular pump |