JPH0266807A - Insulation cable for outdoor use - Google Patents

Insulation cable for outdoor use

Info

Publication number
JPH0266807A
JPH0266807A JP21886988A JP21886988A JPH0266807A JP H0266807 A JPH0266807 A JP H0266807A JP 21886988 A JP21886988 A JP 21886988A JP 21886988 A JP21886988 A JP 21886988A JP H0266807 A JPH0266807 A JP H0266807A
Authority
JP
Japan
Prior art keywords
polyester
copper
benzotriazole
wire
olefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21886988A
Other languages
Japanese (ja)
Inventor
Ryunosuke Masui
増井 龍之助
Hiroyuki Oura
宏之 大浦
Chikashi Takeya
竹谷 千加士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP21886988A priority Critical patent/JPH0266807A/en
Publication of JPH0266807A publication Critical patent/JPH0266807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To prevent a stress corrosion wire breaking due to corrosive rain drops by extruding a mixture obtained by adding the respectively predetermined amounts of polyester plasticizer, benzotriazol and/or benzotriazol derivative to olefin resin to cover a copper conductor. CONSTITUTION:A mixture of 0.05 to 10 weight parts of polyester plasticizer and 0.1 to 5 weight parts of benzotriazol and/or benzotriazol derivative added to 100 weight parts of olefin resin is extruded and applied to cover a copper conductor, thereby forming a corrosion protection cover. In this case, there are used one or more of adipic acid polyester, sebacic acid polyester, phthalic acid polyester, adipic acid-propylene glycol polyester, adipic acid-1,3 butylene glycol polyester and the like as the polyester plasticizer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、屋外用配電線の硬銅撚線中に腐食性雨水が侵
入しても、銅線の変色がなく、応力腐食断線を防止する
屋外用ポリエチレン絶縁電線および屋外用架橋ポリエチ
レン絶縁電線に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention prevents discoloration of the copper wire even if corrosive rainwater enters the hard copper stranded wires of outdoor distribution lines, and prevents stress corrosion and disconnection. This invention relates to outdoor polyethylene insulated wires and outdoor crosslinked polyethylene insulated wires.

〔従来技術〕[Prior art]

従来、屋外用絶縁電線として、塩化ビニル絶縁電線(O
W)、ポリエチレン絶縁電線(OE)、架橋ポリエチレ
ン絶縁電線(OC)などが多用されているが、架線後、
電線内部に腐食性雨水が侵入して、銅線表面に黒色酸化
銅皮膜が生成し、数年にして硬銅撚線がナイフカット状
に異常断線する、いわゆる、応力腐食割れを起すことが
あり、電力保安上、重要な問題となっている。
Conventionally, vinyl chloride insulated wire (O
W), polyethylene insulated wire (OE), cross-linked polyethylene insulated wire (OC), etc.
When corrosive rainwater enters the inside of the wire, a black copper oxide film forms on the surface of the copper wire, which can lead to so-called stress corrosion cracking, where the hard copper strands break abnormally in the shape of a knife cut in a few years. This has become an important issue in terms of power security.

この応力腐食断線は、架線された架空配電線の引留部、
端末部又は接続部などから電線内部に侵入した雨水が絶
縁体と銅導体の空隙、撚線素線間の隙間に溜水し、電柱
間の撓み部分に滞留する。そして、濃縮されて腐食性溜
水となって銅線表面に厚い黒色酸化銅皮膜を形成し、そ
の皮膜のクランク部に露出する下地銅を選択的に溶解し
て断線させるもので、そして、架空配電線の絶縁被覆内
への雨水の侵入経過は、架空配電線が新しく架渉された
当初は比較的早く侵入し、雨水が溜溝されるにしたがっ
て次第に緩慢になり、5年程度経過した時点で満杯にな
り、その後の侵入はゼロに近い状態となる。
This stress corrosion disconnection is caused by the suspension of overhead power distribution lines.
Rainwater that has entered the inside of the wire from the terminal or connecting portion accumulates in the gaps between the insulator and the copper conductor, the gaps between the stranded wires, and accumulates in the bent portions between the utility poles. The water then becomes concentrated and corrosive, forming a thick black copper oxide film on the surface of the copper wire, selectively dissolving the underlying copper exposed at the crank part of the film and causing the wire to break. The progression of rainwater intrusion into the insulation coating of distribution lines is relatively quick when overhead distribution lines are first installed, and gradually slows down as rainwater is collected in ditches, until about 5 years later. After that, the number of intrusions becomes close to zero.

このような長期の腐食環境で発生する応力腐食断線に対
して、ベンゾトリアゾールをアルコールなどの揮発性溶
剤単独なものに溶解した溶液を硬銅撚線に塗布しても十
分な耐食性皮膜が形成されないため、長期の耐食効果が
期待できない問題がある。
Even if a solution of benzotriazole dissolved in a volatile solvent such as alcohol is applied to stranded hard copper wire, a sufficient corrosion-resistant film is not formed to prevent stress corrosion and disconnection that occurs in such long-term corrosive environments. Therefore, there is a problem that long-term corrosion resistance effects cannot be expected.

そのため解決手段として、■銅導体にそわせて犠牲電極
を設けるもの、■銅層防錆成分を添加した絶縁層を設け
るもの、■硬銅撚線内に水密性混和物を充填させたもの
、■ベンゾトリアゾールおよびその誘導体を流動パラフ
ィン、ポリブテン、シリコーン油などに溶解したものを
硬銅撚線上に塗布したものなどが提案されている。
Therefore, as a solution, 1) a sacrificial electrode is provided along the copper conductor, 2) an insulating layer is provided with an anti-rust component added to the copper layer, 2) a watertight mixture is filled in the hard copper strands, 2) It has been proposed that benzotriazole and its derivatives are dissolved in liquid paraffin, polybutene, silicone oil, etc. and coated on hard copper strands.

しかしながら、■については、犠牲電極の溶解が適切で
なく、銅導体の保護が十分でない問題がある。■につい
ては、絶縁層からの防錆剤の溶出に難があり、長期間鋼
の変色を防止させることが困難で、絶縁層の絶縁抵抗が
低下する好ましくない問題がある。■については、天然
ゴム、ブチルゴム、クロロプレンゴム、エチレンプロピ
レンゴム、シリコーンゴムなどに軟化剤を添加したもの
、又はペトロラクタムジェリ、ポリブテン、ポリイソブ
チレン、マイクロクリスタルワックス、ポリエチレンワ
ックス、大豆油などの混和物、あるいは、エチレン酢酸
ビニル共重合体に低分子ポリエチレン又は塩化ビニル共
重合体を配合した混和物など種々の水密混和物が提案さ
れているが、導体と絶縁体の双方に密着し、侵入する雨
水を完全に遮ぎって水密性とするには難があり、且つ製
造コストも高くつき、水密混和物の除去作業が煩わしく
、除去が十分でないときは接続部の通電特性が低下する
問題がある。■にっては、撥水性油を使用するため銅と
ベンゾトリアゾールとの防食皮膜の形成が困難で、その
使用によって絶縁体と硬銅撚線との密着性が低下し、引
抜き強度が不足するという問題がある。
However, regarding (2), there is a problem that the sacrificial electrode is not properly melted and the copper conductor is not sufficiently protected. Regarding (2), there is a problem in that the rust preventive agent is difficult to dissolve from the insulating layer, it is difficult to prevent discoloration of the steel for a long period of time, and there is an undesirable problem that the insulation resistance of the insulating layer decreases. For ■, natural rubber, butyl rubber, chloroprene rubber, ethylene propylene rubber, silicone rubber, etc. with a softener added, or mixtures of petrolactam gelatin, polybutene, polyisobutylene, microcrystal wax, polyethylene wax, soybean oil, etc. Alternatively, various watertight mixtures have been proposed, such as mixtures of ethylene-vinyl acetate copolymer and low-molecular-weight polyethylene or vinyl chloride copolymer, but they adhere to both conductors and insulators and prevent rainwater from penetrating. It is difficult to achieve watertightness by completely blocking the watertight admixture, and the manufacturing cost is also high. Removal of the watertight admixture is troublesome, and if the removal is not sufficient, there is a problem that the current carrying characteristics of the connection part deteriorates. ■Because water-repellent oil is used, it is difficult to form an anti-corrosion film between copper and benzotriazole, and its use reduces the adhesion between the insulator and the hard copper strands, resulting in a lack of pull-out strength. There is a problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、先に、特願昭63−37222号で出願
した銅用防錆剤組成物を銅線又は銅撚線上に塗布すれば
、銅表面上に強固な防錆皮膜を形成し、更に、該皮膜を
保護する皮膜が形成して、きびしい腐食環境にさらされ
ても耐食性にすぐれた防錆効果を発揮することを見出し
た。
The present inventors have previously discovered that if the copper rust preventive composition applied in Japanese Patent Application No. 63-37222 is applied to copper wire or copper stranded wire, a strong rust preventive film will be formed on the copper surface. Furthermore, it has been found that a film is formed to protect the film and exhibits a rust-preventing effect with excellent corrosion resistance even when exposed to a severe corrosive environment.

本発明は、前記の銅用防錆剤組成物を利用するものであ
って、架線された架空配電線の引留部、端末部又は接続
部などから該電線内部に侵入する雨水に対しても、硬銅
撚線の表面に強固な耐食性皮膜を形成し、長期にわたっ
て銅色を維持し、且つ腐食性雨水による応力腐食断線を
防止できる屋外用絶縁電線を提供することを目的とする
ものである。
The present invention utilizes the above rust preventive composition for copper, and is effective against rainwater that enters the inside of the overhead distribution line from the retention section, terminal section, connection section, etc. of the overhead distribution line. The object of the present invention is to provide an outdoor insulated electric wire that can form a strong corrosion-resistant film on the surface of a hard copper stranded wire, maintain its copper color over a long period of time, and prevent stress corrosion and disconnection caused by corrosive rainwater.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の構成は、銅導体上に、オレフィン系樹脂100
重量部に対してポリエステル系可塑剤0.05〜10重
量部、ベンゾトリアゾールおよび/又はベンゾトリアゾ
ール誘導体0.1〜5重量部を配合した混和物を押出被
覆し、該被覆上に、オレフィン系樹脂絶縁体を押出被覆
して屋外用絶縁電線とするものである。
The structure of the present invention is that an olefin resin 100 is placed on a copper conductor.
A mixture containing 0.05 to 10 parts by weight of a polyester plasticizer and 0.1 to 5 parts by weight of benzotriazole and/or benzotriazole derivative is extrusion coated, and an olefin resin is applied onto the coating by extrusion. An insulated wire for outdoor use is made by extrusion coating an insulator.

以下、本発明の構成について、更に説明する。The configuration of the present invention will be further explained below.

本発明において用いるオレフィン系樹脂とは、例えば低
密度ポリエチレン、エチレン−プロピレンラバー、エチ
レンープロピレンージエンターポリマー、ポリブテン、
エチレンエチルアクリレート共重合体、エチレン酢酸ビ
ニル共重合体、エチレン−酢酸ビニル−塩化ビニル三元
共重合体、ブチルゴム、ポリイソブチレンなどの樹脂の
1種又は2種以上を組合せて用いるものである。
The olefin resin used in the present invention includes, for example, low density polyethylene, ethylene-propylene rubber, ethylene-propylene-diene terpolymer, polybutene,
One or more resins such as ethylene ethyl acrylate copolymer, ethylene vinyl acetate copolymer, ethylene-vinyl acetate-vinyl chloride terpolymer, butyl rubber, and polyisobutylene are used in combination.

本発明で使用するポリエステル系可塑剤は、アジピン酸
系ポリエステル、セバシン酸系ポリエステル、フタル酸
系ポリエステル、アジピン酸−プロピレングリコール系
ポリエステル、アジピン酸−1,3ブチレングリコール
系ポリエステルなどで、これらの群の1種以上が使用で
きる。
The polyester plasticizer used in the present invention includes adipic acid polyester, sebacic acid polyester, phthalic acid polyester, adipic acid-propylene glycol polyester, adipic acid-1,3-butylene glycol polyester, etc. One or more of these can be used.

本発明で使用する銅用防錆剤としては、ベンゾトリアゾ
ールのほか、ベンゾトリアゾールモノエタノールアミン
塩、ベンゾトリアゾールジエチルアミン塩、ベンゾトリ
アゾールシクロへキシルアミン塩、ベンゾトリアゾール
モルホリン塩、ベンゾトリアゾールジイソプロビルアミ
ン塩、メチルベンゾトリアゾールシクロへキシルアミン
塩などのベンゾトリアゾール誘導体もベンゾトリアゾー
ルと同量で使用することができる。
In addition to benzotriazole, the rust inhibitors for copper used in the present invention include benzotriazole monoethanolamine salt, benzotriazole diethylamine salt, benzotriazole cyclohexylamine salt, benzotriazole morpholine salt, benzotriazole diisopropylamine salt, Benzotriazole derivatives such as methylbenzotriazole cyclohexylamine salt can also be used in the same amount as the benzotriazole.

ベンゾトリアゾールなどをポリエステル系可塑剤中に溶
解するには、ベンゾトリアゾールなどをメタノール、イ
ソプロピルアルコールなどのアルコール系溶剤に予め溶
解し、ポリエステル系可塑剤中に汁液し混合攪拌するこ
とにより均一に溶解することができる。
To dissolve benzotriazole etc. in a polyester plasticizer, dissolve the benzotriazole etc. in advance in an alcoholic solvent such as methanol or isopropyl alcohol, pour the liquid into the polyester plasticizer, mix and stir, and dissolve uniformly. be able to.

本発明においてオレフィン系樹脂100重量部に対して
、ポリエステル系可塑剤0.05〜10重量部配合する
のは、0.05重量部未満では防錆剤の添加にかかわら
ず、すぐれた防錆効果が期待できない。逆に、10重量
部を超える場合は、外被として使用するポリエチレン絶
縁体の絶縁面に過剰に可塑剤がブルームするので、屋外
用絶縁電線として好ましくない。
In the present invention, 0.05 to 10 parts by weight of the polyester plasticizer is blended with 100 parts by weight of the olefin resin, so that if it is less than 0.05 parts by weight, it has an excellent rust prevention effect regardless of the addition of the rust preventive agent. I can't expect that. On the other hand, if it exceeds 10 parts by weight, the plasticizer will excessively bloom on the insulating surface of the polyethylene insulator used as the jacket, which is not preferable for outdoor insulated wires.

好ましい可塑剤の配合量は0.2〜8重量部、より好ま
しくは0.2〜5重量部である。
The preferred amount of plasticizer is 0.2 to 8 parts by weight, more preferably 0.2 to 5 parts by weight.

本発明においてベンゾトリアゾールおよび/又はその誘
導体の配合量を0.1〜5重量部とするのは、0.1重
量部未満では可塑剤の配合にかかわらず、すぐれた防錆
皮膜を形成できず防錆効果が期待できない。逆に、5重
量部を超える場合は、防錆効果が飽和することになり、
経済性に欠けるので好ましくない。好ましい防錆剤の配
合量は0.2〜3重量部、より好ましくは0.3〜2重
量部である。
In the present invention, the blending amount of benzotriazole and/or its derivative is 0.1 to 5 parts by weight because if it is less than 0.1 part by weight, an excellent rust-preventing film cannot be formed regardless of the plasticizer content. Anti-rust effect cannot be expected. On the other hand, if it exceeds 5 parts by weight, the rust prevention effect will be saturated,
This is not desirable because it lacks economic efficiency. The preferred amount of the rust preventive is 0.2 to 3 parts by weight, more preferably 0.3 to 2 parts by weight.

前記したベンゾトリアゾールなどを溶解させたポリエス
テル系可塑剤をオレフィン系樹脂基材に配合した混和物
を銅撚線上に押出被覆し、該被覆上に、オレフィン系樹
脂絶縁体を押出被覆して屋外用絶縁電線とすると、前記
オレフィン系樹脂基材に配合したベンゾトリアゾールな
どを含むポリエステル系可塑剤が硬銅撚線の銅素線全表
面に急速にブルームして、銅表面に防錆成分との安定し
た防錆皮膜を形成し、更にその外周にベンゾトリアゾー
ルなどを含む撥水性のポリエステル系可塑剤による保護
皮膜を形成するものとなる。その後、硬銅撚線上に銅素
地が露出しても、それを修復するように防錆皮膜を形成
するので、僅かなすき間から屋外用絶縁電線内部に侵入
する腐食性雨水に硬銅撚線が浸された場合でも、硬銅撚
線全表面に形成されたベンゾトリアゾールとの防錆皮膜
と可塑剤による保護皮膜との二重皮膜によって、銅線の
酸化すなわち腐食を完全に防止することができ、応力腐
食割れを未然に防止できるものとなる。
A mixture of a polyester plasticizer in which benzotriazole and the like described above are dissolved in an olefin resin base material is extruded and coated onto stranded copper wire, and then an olefin resin insulator is extruded and coated on the coating for outdoor use. When used as an insulated wire, the polyester plasticizer containing benzotriazole, etc., blended into the olefin resin base material rapidly blooms on the entire surface of the copper strands of the hard copper stranded wire, creating a stable bond with the anti-rust component on the copper surface. In addition, a protective film made of a water-repellent polyester plasticizer containing benzotriazole or the like is formed on the outer periphery of the rust-preventive film. After that, even if the copper base is exposed on the hard copper stranded wire, a rust-preventing film is formed to repair it, so that the hard copper stranded wire is protected against corrosive rainwater that enters the inside of the outdoor insulated wire through small gaps. Even if the hard copper stranded wire is immersed in water, the double coating of benzotriazole and protective coating formed on the entire surface of the hard copper stranded wire can completely prevent oxidation or corrosion of the copper wire. This makes it possible to prevent stress corrosion cracking.

〔実施例〕〔Example〕

以下、本発明の実施例と比較例について説明する。 Examples and comparative examples of the present invention will be described below.

外径2mmφの硬銅撚線19本を同心撚りに撚り合せた
後、タンデム押出機によって硬銅撚線上に、第1表に示
すポリエステル系可塑剤とベンゾトリアゾールなどを含
むオレフィン系樹脂混和物を厚さ0.5mmになるよう
圧入被覆し、その外周に絶縁厚さ2.0mmのポリエチ
レン絶縁体を押出被覆して60mm”の屋外用ポリエチ
レン絶縁電線を製造した。得られた各屋外用ポリエチレ
ン絶縁電線について、以下に示す耐食性試験(注1、注
2)を行なった。
After concentrically twisting 19 hard copper strands with an outer diameter of 2 mmφ, an olefin resin mixture containing a polyester plasticizer, benzotriazole, etc. shown in Table 1 was applied to the hard copper strands using a tandem extruder. A 60 mm" outdoor polyethylene insulated wire was manufactured by press-fitting the insulation to a thickness of 0.5 mm, and then extruding and covering the outer periphery with a polyethylene insulator having an insulation thickness of 2.0 mm. The following corrosion resistance tests (Note 1, Note 2) were conducted on the electric wires.

その結果を第1表の下段に合わせて示す。The results are shown in the bottom row of Table 1.

(注1)製造後10日を経た屋外用ポリエチレン絶縁電
線から10cm長の試料を金ノコで切断し、絶縁体を剥
離して硬銅撚線を取り出し、導体素線の表面に付着する
油分を溶剤で洗い落とした後、濃度1100ppの硫化
ナトリウム水溶液に室温で30秒間浸漬した後取り出し
て、導体素線表面の変色状態を目視し、耐食性良否の判
定をした。判定基準は、○印を変色のないもの、Δ印を
所々に変色のあるもの、X印を明瞭に黒変色しているも
のとした。
(Note 1) Cut a 10 cm long sample from an outdoor polyethylene insulated wire that has been manufactured for 10 days using a hacksaw, peel off the insulator, take out the hard copper strands, and remove the oil that adheres to the surface of the conductor element wire. After washing it off with a solvent, it was immersed in a sodium sulfide aqueous solution with a concentration of 1100 pp for 30 seconds at room temperature, and then taken out, and the discolored state of the surface of the conductor strand was visually observed to judge whether the corrosion resistance was good or bad. The evaluation criteria were as follows: ◯ indicates no discoloration, Δ indicates discoloration in some places, and X indicates clear black discoloration.

(注2)製造後10日を経た屋外用ポリエチレン絶縁電
線から30cm長の試料を金ノコで切断し、これを濃度
1100ppのアンモニヤ水溶液に1/2浸漬し、60
℃で8時間、室温で16時間のヒートサイクルを1週間
続けては新しいアンモニヤ水溶液と取り替える腐食環境
に、8週間浸漬させた後、試料を取り出して絶縁体を剥
離して、導体上に生成する酸化銅の変色状態を目視し、
耐食性良否の判定をした。判定基準は(注1)と同様で
ある。
(Note 2) A 30 cm long sample was cut from an outdoor polyethylene insulated wire that had been manufactured for 10 days using a hacksaw, and 1/2 of the sample was immersed in an aqueous ammonia solution with a concentration of 1100 pp.
After being immersed in a corrosive environment for 8 weeks with a heat cycle of 8 hours at °C and 16 hours at room temperature and replaced with fresh ammonia solution, the sample is removed and the insulator is peeled off to form on the conductor. Visually check the discoloration of copper oxide,
The corrosion resistance was judged. The judgment criteria are the same as (Note 1).

結果かられかるように、実施例1〜6はいずれの試験に
おいても良好な結果を示すが、比較例1では、ポリエス
テル系可塑剤の配合が少ないため、可塑剤のプルームが
少なく、撚線19本撚りの内層7本の銅線表面に十分な
耐食性皮膜が形成されない。比較例2ではポリエステル
系可塑剤が配合されていないため、適当のベンゾトリア
ゾールが配合されても十分な耐食性皮膜が形成されない
。比較例3では、ポリエステル系可塑剤とベンゾトリア
ゾールが配合されていても、ベンゾトリアゾールの配合
量が適切でないと十分な耐食性皮膜が形成されず、好ま
しくない。
As can be seen from the results, Examples 1 to 6 show good results in all tests, but in Comparative Example 1, the amount of polyester plasticizer blended is small, so the plume of plasticizer is small, and the stranded wire 19 A sufficient corrosion-resistant film is not formed on the surface of the seven copper wires in the main twisted inner layer. In Comparative Example 2, since no polyester plasticizer was blended, a sufficient corrosion-resistant film could not be formed even if an appropriate benzotriazole was blended. In Comparative Example 3, even if the polyester plasticizer and benzotriazole were blended, if the blended amount of benzotriazole was not appropriate, a sufficient corrosion-resistant film would not be formed, which is not preferable.

耐食性試験(注1)についてみると、実施例1〜6では
銅との耐食性皮膜が良好に形成され、腐食環境に強いと
推考される。
Regarding the corrosion resistance test (Note 1), in Examples 1 to 6, a corrosion-resistant film with copper was formed well, and it is considered that the films are resistant to corrosive environments.

次に、前記実施例で示した外被に用いるポリエチレン絶
縁体に代えて、架橋剤(DCP)を配合したポリエチレ
ン絶縁体として、実施例と同様に行なって、公知の架橋
装置を用いて屋外用架橋ポリエチレン絶縁電線を製造し
た。その耐食性試験(注1、注2)の結果は第1表と同
様であった。
Next, in place of the polyethylene insulator used for the outer cover shown in the above example, a polyethylene insulator mixed with a crosslinking agent (DCP) was used in the same manner as in the example, and a known crosslinking device was used to make it suitable for outdoor use. A cross-linked polyethylene insulated wire was manufactured. The results of the corrosion resistance test (Note 1, Note 2) were the same as in Table 1.

又、前記実施例では、オレフィン系樹脂100重量部に
対して、ベンゾトリアゾールおよび/又はベンゾトリア
ゾール誘導体をメタノール、イソプロピルアルコールな
どのアルコール系溶剤に溶解し、ポリエステル系可塑剤
中に注液部合させた特定量を配合したオレフィン系樹脂
混和物を用いたが、ベンゾトリアゾールなどを含むポリ
エステル系可塑剤を炭酸カルシウム、クレーなどの白色
粉末充填剤とブレンドし、該ブレンド体をオレフィン系
樹脂100重量部に対して、可塑剤およびベンゾトリア
ゾールなどが本発明で特定する量を配合したオレフィン
系樹脂混和物として硬銅撚線上に実施例と同様に被覆し
て用いることができる。
Furthermore, in the above example, benzotriazole and/or benzotriazole derivatives were dissolved in an alcoholic solvent such as methanol or isopropyl alcohol based on 100 parts by weight of the olefinic resin, and the solution was poured into a polyester plasticizer. A polyester plasticizer containing benzotriazole and the like was blended with a white powder filler such as calcium carbonate and clay, and the blend was mixed with 100 parts by weight of an olefin resin. On the other hand, an olefin resin mixture containing a plasticizer, benzotriazole, etc. in the amounts specified in the present invention can be used by coating a hard copper stranded wire in the same manner as in the examples.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る屋外用ポリエチレン
絶縁電線および架橋ポリエチレン電線では、オレフィン
系樹脂基材に配合したベンゾトリアゾールなどを含むポ
リエステル系可塑剤が硬銅撚線の銅素線全表面にブルー
ムして、銅表面に防錆成分との安定した防錆皮膜を形成
し、更にその外周にベンゾトリアゾールなどを含む撥水
性のポリエステル系可塑剤による保護皮膜を形成するの
で、腐食性雨水が電線内部に侵入しても良好な耐食効果
を示し、この種の絶縁電線で発生している応力腐食断線
事故を未然に防止できる効果は大である。
As explained above, in the outdoor polyethylene insulated electric wire and crosslinked polyethylene electric wire according to the present invention, a polyester plasticizer containing benzotriazole etc. blended into the olefin resin base material is applied to the entire surface of the copper strands of the hard copper stranded wire. It blooms to form a stable rust-preventing film on the copper surface with rust-preventing ingredients, and a protective film made of a water-repellent polyester plasticizer containing benzotriazole is formed on the outer periphery of the copper surface, so corrosive rainwater can It shows good corrosion resistance even if it penetrates into the interior, and is highly effective in preventing stress corrosion disconnection accidents that occur in this type of insulated wire.

Claims (1)

【特許請求の範囲】[Claims] 銅導体上に、オレフィン系樹脂100重量部に対して、
ポリエステル系可塑剤0.05〜10重量部、ベンゾト
リアゾールおよび/又はベンゾトリアゾール誘導体0.
1〜5重量部を配合した混和物を押出被覆し、該被覆上
に、オレフィン系樹脂絶縁体を押出被覆して成ることを
特徴とする屋外用絶縁電線。
On the copper conductor, for 100 parts by weight of olefin resin,
0.05 to 10 parts by weight of polyester plasticizer, 0.05 to 10 parts by weight of benzotriazole and/or benzotriazole derivative.
1. An outdoor insulated wire, characterized in that the mixture is extrusion coated in an amount of 1 to 5 parts by weight, and an olefin resin insulator is extrusion coated on the coating.
JP21886988A 1988-08-31 1988-08-31 Insulation cable for outdoor use Pending JPH0266807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21886988A JPH0266807A (en) 1988-08-31 1988-08-31 Insulation cable for outdoor use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21886988A JPH0266807A (en) 1988-08-31 1988-08-31 Insulation cable for outdoor use

Publications (1)

Publication Number Publication Date
JPH0266807A true JPH0266807A (en) 1990-03-06

Family

ID=16726579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21886988A Pending JPH0266807A (en) 1988-08-31 1988-08-31 Insulation cable for outdoor use

Country Status (1)

Country Link
JP (1) JPH0266807A (en)

Similar Documents

Publication Publication Date Title
JP2000348542A (en) Rat proof electrical cable
JPH0266807A (en) Insulation cable for outdoor use
JPH0266805A (en) Insulation cable for outdoor use
JPH0266806A (en) Insulation cable for outdoor use
JPH0266808A (en) Insulation cable for outdoor use
JP5778105B2 (en) Watertight insulated wire
JP2007035456A (en) Watertight insulated cable
JPH01253117A (en) Watertight admixture
JP2009104991A (en) Watertight polyethylene insulated wire
JP3688319B2 (en) Watertight cable, cable
JPH11232931A (en) Insulated electric wire
JPH0267344A (en) Watertight mixture
JPH01294315A (en) Insulating wire and its manufacture
JPH09180549A (en) Water-tight admixture and water-tight electric wire using the water-tight admixture
JPH0650602B2 (en) Insulated wire and its manufacturing method
JPS63168911A (en) Water tight vinyl chloride insulated wire
JPH02181318A (en) Manufacture of insulated electric cable
JPH02148624A (en) Manufacture of insulating cable
JPH02148622A (en) Manufacture of insulating cable
JPH01253118A (en) Corrosion preventive insulated electric wire
JPH01301766A (en) Insulated wire and production thereof
JPH07101567B2 (en) Insulated wire / cable
JP2657507B2 (en) Watertight conductor
JPH0687379B2 (en) Insulated wire manufacturing method
JPH0128586Y2 (en)