JPH02148622A - Manufacture of insulating cable - Google Patents

Manufacture of insulating cable

Info

Publication number
JPH02148622A
JPH02148622A JP63304579A JP30457988A JPH02148622A JP H02148622 A JPH02148622 A JP H02148622A JP 63304579 A JP63304579 A JP 63304579A JP 30457988 A JP30457988 A JP 30457988A JP H02148622 A JPH02148622 A JP H02148622A
Authority
JP
Japan
Prior art keywords
insulator
wire
copper
polyester plasticizer
stranded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63304579A
Other languages
Japanese (ja)
Other versions
JPH06101260B2 (en
Inventor
Ryunosuke Masui
増井 龍之助
Hiroyuki Oura
宏之 大浦
Masanori Takizawa
正則 滝沢
Chikashi Takeya
竹谷 千加士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP63304579A priority Critical patent/JPH06101260B2/en
Publication of JPH02148622A publication Critical patent/JPH02148622A/en
Publication of JPH06101260B2 publication Critical patent/JPH06101260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain an insulating cable keeping copper color for a long period and having a satisfactory adhesion between an insulator and a hard copper stranded wire by applying a rust preventive solution to the hard copper stranded wire. CONSTITUTION:A rust preventive solution consisting of 0.1-10wt.% of benzotriazole or/and benzotriazole derivative, 0.2-10wt.% of a polyester plasticizer, and the remaining of a solvent is applied to the surface of a hard copper stranded wire, and then an insulating coating layer is formed on the outer circumference of the resulting hard copper stranded wire. In this case, the addition amount of the polyester plasticizer is successively reduced from the center of the stranded conductor toward the direction contacting with the insulator. Before coating of the insulator, the polyester plasticizer addition amount in the rust preventive solution applied to the copper element wire made in contact with the insulator is made 0-0.3wt.%. Hence, an insulating cable having an excellent adhesion with the upper stranded copper element wire contacting with the insulator and excellent anti-corrosive film and protective film on the stranded conductor can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベンゾトリアゾール防錆溶液を用いて、銅撚
線表面の変色が長期にわたって防止される絶縁電線およ
び電カケープルの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing insulated wires and power cables in which discoloration of the surface of stranded copper wires is prevented for a long period of time using a benzotriazole anticorrosion solution.

〔従来の技術〕[Conventional technology]

従来、銅線および銅撚線の保管中、又は絶縁電線の製造
工程中および電線保管中において、銅線表面や撚線導体
表面が変色することがあり、その対策として種々の製造
工程で銅線、銅撚線などに銅用防請溶液が塗布されてい
る。
Conventionally, during the storage of copper wires and copper stranded wires, or during the manufacturing process of insulated wires, and during the storage of wires, the surfaces of copper wires and stranded wire conductors may discolor. , Copper protection solution is applied to copper stranded wires, etc.

一方、屋外用配電線として塩化ビニル絶縁電線(OW)
、ポリエチレン絶縁電線(OE)、架橋ポリエチレン絶
縁電線(OC)などが多用されているが、架線後、数年
にしてm線表面に黒色酸化銅皮膜が生成し、稀に硬銅撚
線がナイフカット状に異常断線する、いわゆる、応力腐
食割れを起すことがあり、電力保安上、重要な問題とな
っている。
On the other hand, vinyl chloride insulated wire (OW) is used as an outdoor distribution line.
, polyethylene insulated wires (OE), cross-linked polyethylene insulated wires (OC), etc. are often used, but a black copper oxide film forms on the surface of the m-wires several years after the wiring is completed, and in rare cases, hard copper stranded wires become knife-like. Abnormal disconnection in the shape of a cut, so-called stress corrosion cracking, may occur, which is an important problem in terms of power safety.

この応力腐食割れは、端末から電線内部に侵入した雨水
が電線の空隙に溜水し、濃縮されて腐食性溜水となって
銅線表面に厚い黒色酸化銅皮膜を形成し、その皮膜のク
ラック部に露出する下地銅を選択的に溶解するという腐
食要因と、硬銅撚線の加工時に生ずる曲げ応力および電
線のドラム巻き時に生ずる曲げ応力に抗して架線時に生
じる応力などの応力要因との相互作用で起るものとされ
ている。
This stress corrosion cracking occurs when rainwater enters the wire from the terminal and accumulates in the wire's voids, condenses and becomes corrosive water that forms a thick black copper oxide film on the surface of the copper wire, causing cracks in the film. The corrosion factor that selectively melts the underlying copper exposed in the parts, and the stress factor such as the bending stress that occurs when processing hard copper strands and the stress that occurs when overhead wires are used against the bending stress that occurs when winding the wire in a drum. It is said to occur through interaction.

このような長期の腐食環境で発生する応力腐食割れに対
して、ベンゾトリアゾールをアルコールなどの揮発性溶
剤単独なものに溶解した溶液を硬銅撚線に塗布しても十
分な耐食性皮膜が形成されないため、長期の耐食効果が
期待できず、応力腐食割れを起す問題がある。
To prevent stress corrosion cracking that occurs in such long-term corrosive environments, applying a solution of benzotriazole dissolved in a volatile solvent such as alcohol alone to hard copper strands does not form a sufficient corrosion-resistant film. Therefore, long-term corrosion resistance cannot be expected, and there is a problem of stress corrosion cracking.

そのため解決手段として、■銅相防錆成分を添加した絶
縁層を用いる方法、■硬銅撚線内に水密コンパウンドを
充填する方法、■ベンゾトリアゾール誘導体を流動パラ
フィン、ポリブテン、シリコーン油などに溶解したもの
を硬銅撚線上に塗布する方法などが提案されている。
Therefore, as a solution, ■ a method of using an insulating layer to which a copper-phase rust-preventive component is added, ■ a method of filling a watertight compound into hard copper strands, and ■ a method of dissolving benzotriazole derivatives in liquid paraffin, polybutene, silicone oil, etc. A method has been proposed in which the material is coated on hard copper stranded wire.

しかしながら、■については、絶縁層からの防錆剤の溶
出に難があり、長期間鋼の変色を防止させることが困難
で、絶縁層の絶縁抵抗が低下する好ましくない問題があ
る。■については、製造コストが高く、水密コンパウン
ドの除去作業が煩わしく、除去が十分でないときは接続
部の通電特性が低下する問題がある。■については、そ
の使用によって絶縁体と硬銅撚線との密着性が低下し、
引抜き強度が不足するという問題がある。
However, regarding (2), there is a problem in that the rust preventive agent is difficult to dissolve from the insulating layer, it is difficult to prevent discoloration of the steel for a long period of time, and there is an undesirable problem that the insulation resistance of the insulating layer is reduced. As for (2), there are problems in that the manufacturing cost is high, the removal work of the watertight compound is troublesome, and if the removal is not sufficient, the current conduction characteristics of the connection part are deteriorated. Regarding ■, the adhesion between the insulator and the hard copper strands decreases due to its use.
There is a problem that the pull-out strength is insufficient.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、先に特願昭63−37221号でベンゾ
トリアゾール又は/およびベンゾトリアゾール誘導体と
ポリエステル系可塑剤の特定量を溶剤中に溶解させた防
錆溶液を硬銅t?8.線に塗布し、次いで絶縁体を被覆
する絶縁電線の製造方法について出願したが、絶縁電線
を架渉するに際し、絶縁体と硬銅撚線との密着性を評価
するきびしい導体引抜き試験では、必ずしも満足できな
いことがわかった。
The present inventors previously disclosed in Japanese Patent Application No. 63-37221 that a rust preventive solution containing benzotriazole or/and a benzotriazole derivative and a polyester plasticizer dissolved in a solvent was prepared using hard copper t. 8. Although we applied for a manufacturing method for insulated wire that coats the wire and then coats it with an insulator, it is not always possible to conduct a rigorous conductor pull test to evaluate the adhesion between the insulator and the hard copper strands when wiring the insulated wire. I found that I was not satisfied.

本発明は、上記の問題に鑑みてなされたもので、硬銅撚
線に防錆溶液を塗布することにより、銅線や硬銅撚線の
表面上に強固な耐食性皮膜を形成し、硬銅撚線内部に腐
食性雨水が侵入しても、長期にわたって銅色を維持し、
且つ絶縁体と硬銅撚線との密着性が良好な絶縁電線およ
び電カケープルの製造方法を提供することを目的とする
ものである。
The present invention was made in view of the above problems, and by applying an anti-corrosion solution to the hard copper stranded wire, a strong corrosion-resistant film is formed on the surface of the copper wire or the hard copper stranded wire. Even if corrosive rainwater enters the stranded wire, it maintains its copper color for a long time.
Another object of the present invention is to provide a method for producing an insulated wire and a power cable that have good adhesion between an insulator and a hard copper strand.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の構成は、硬銅撚線の表面にベンゾトリアゾール
又は/およびベンゾトリアゾール誘導体0.1〜IO重
量%、ポリエステル系可塑剤0.2〜10重量%、残部
が溶剤からなる防錆溶液を塗布した後、前記硬銅撚線の
外周に絶縁被覆層を形成させる方法において、撚導体の
中心から絶縁体と接する方向に向かってポリエステル系
可塑剤の添加量を順次少なくし、絶縁体を被覆する前に
絶縁体と接する銅素線に塗布する防錆溶液中のポリエス
テル系可塑剤添加量を0〜0.3重量%とするものであ
る。
The structure of the present invention is such that a rust preventive solution consisting of 0.1 to IO weight % of benzotriazole or/and benzotriazole derivative, 0.2 to 10 weight % of a polyester plasticizer, and the balance being a solvent is applied to the surface of the hard copper stranded wire. After coating, in the method of forming an insulating coating layer on the outer periphery of the stranded hard copper wire, the amount of polyester plasticizer added is gradually decreased from the center of the stranded conductor in the direction of contact with the insulator to coat the insulator. The amount of polyester plasticizer added to the antirust solution applied to the copper wire in contact with the insulator is 0 to 0.3% by weight.

以下、本発明の構成について更に詳細に説明する。Hereinafter, the configuration of the present invention will be explained in more detail.

本発明に使用する防錆溶液において、ベンゾトリアゾー
ルの添加量をo、1−io重量%とするのは、10重量
%以上添加しても耐食性皮膜がより以上形成されないた
めに、防錆効果が飽和に達し、過剰量は析出するので好
ましくない。
In the rust preventive solution used in the present invention, the amount of benzotriazole added is o, 1-io wt% because even if it is added in an amount of 10 wt% or more, a corrosion-resistant film is not formed. Saturation is reached and excessive amounts lead to precipitation, which is undesirable.

逆に、0.1重量%以下の添加量では、十分な耐食性皮
膜が形成されないため、防錆効果が得られない、ベンゾ
トリアゾールの好ましい添加量は1〜5重量%である。
On the other hand, if the amount of benzotriazole added is 0.1% by weight or less, a sufficient corrosion-resistant film will not be formed and no rust-preventing effect will be obtained.The preferred amount of benzotriazole to be added is 1 to 5% by weight.

ポリエステル系可塑剤の使用量を0.2〜10重量%と
するのは、10重量%以上では塗布後、撚線導体上に粘
つきが残ると共に導体引抜き試験が好ましくない、逆に
、O,tU量%未満では、形成する耐食性−皮膜に対す
る保護作用に欠けるため、十分な防錆効果が得られにく
い。
The reason why the amount of polyester plasticizer used is 0.2 to 10% by weight is because if it is more than 10% by weight, stickiness remains on the stranded conductor after application and the conductor pullout test is not preferable. If the amount of tU is less than %, the protective effect against the corrosion-resistant film formed is lacking, so that it is difficult to obtain a sufficient rust-preventing effect.

次に本発明の構成で、撚導体の中心から絶縁体と接する
方向に向かってポリエステル系可塑剤の添加量を順次少
なくし、絶縁体を被覆する前に絶縁体と接する銅素線に
塗布する防錆溶液中のポリエステル系可塑剤添加量を0
〜0.3重量%とするのは、19本の硬銅同心撚線の製
造過程において、中心素線と6本の下撚り素線はポリエ
ステル系可塑剤量の多い防錆溶液を、12本の上撚りに
は前者より少ないポリエステル系可塑剤を添加した防錆
溶液をそれぞれ塗布し、塗布後の硬銅撚線上に絶縁体を
被覆するに際し、ポリエステル系可塑剤の添加量を0〜
0.3重量%とした防錆溶液を適宜選択して塗布し速乾
させて、絶縁体と接する12本上撚り素線上に残留する
ポリエステル系可塑剤の保護皮膜厚を少なくして絶縁体
を被覆すると、絶縁体と硬!rI撚線との密着性が向上
でき、すぐれた耐食性と架渉に適した絶縁電線とするこ
とができるためである。
Next, in the configuration of the present invention, the amount of polyester plasticizer added is gradually decreased from the center of the twisted conductor toward the direction of contact with the insulator, and the amount of polyester plasticizer is applied to the copper wire in contact with the insulator before coating the insulator. The amount of polyester plasticizer added in the anti-corrosion solution was reduced to 0.
The reason why the concentration is ~0.3% by weight is that during the manufacturing process of 19 hard copper concentric strands, the center strand and 6 pre-twisted strands were treated with a rust preventive solution containing a large amount of polyester plasticizer. A rust preventive solution containing less polyester plasticizer than the former is applied to the ply-twisted wire, and when coating the insulator on the hard copper strands after application, the amount of polyester plasticizer added is 0 to 0.
Apply an appropriately selected anti-corrosion solution containing 0.3% by weight and dry quickly to reduce the thickness of the protective film of the polyester plasticizer remaining on the 12 twisted wires in contact with the insulator. When coated, it becomes an insulator and hard! This is because the adhesion to the rI stranded wire can be improved, and an insulated wire with excellent corrosion resistance and suitable for wiring can be obtained.

この場合、本発明で示すポリエステル系可塑剤の添加量
を特定上限量から中間量の防錆溶液を用いて、中心素線
と下撚り素線および上撚り素線にそれぞれ塗布したもの
は、絶縁体と接する上撚り12本素線の表面にはポリエ
ステル系可塑剤の保護皮膜が厚く残留するため、絶縁体
を施すと絶縁体と硬銅撚線との密着性が低下して好まし
くない。そこで、ポリエステル系可塑剤を添加しない防
錆溶液を塗布して、上撚り12本の素線上に残留するポ
リエステル系可塑剤の保護皮膜の厚さを薄い状態に改質
し、更に耐食性を付与して絶縁体と硬銅撚線との密着性
を向上させるようにする。
In this case, if the center strand, the first stranded strands, and the first stranded strands are coated with a rust preventive solution containing an intermediate amount of the polyester plasticizer shown in the present invention from the specified upper limit, the insulation Since a thick protective film of polyester plasticizer remains on the surface of the 12 ply twisted wires that come into contact with the body, applying an insulator is not preferable because the adhesion between the insulator and the hard copper strands decreases. Therefore, we applied an anti-corrosion solution that does not contain polyester plasticizer to reduce the thickness of the protective film of polyester plasticizer remaining on the 12 twisted wires, thereby further imparting corrosion resistance. to improve the adhesion between the insulator and the hard copper stranded wire.

次に、7本の硬銅同心撚線の場合、中心素線と6本の上
撚り素線で構成されているため、撚導体の中心から絶縁
体と接する方向に向かってポリエステル系可塑剤の添加
量を順次少なくして塗布することもできるが、別法とし
て一種類の防錆溶液の塗布によって上撚り素線上に残留
するポリエステル系可塑剤の保護皮膜が厚くなるときは
、絶縁体と接する銅素線に塗布する防錆溶液中のポリエ
ステル系可塑剤の添加量を0〜0.5重量%として塗布
し、絶縁体と硬銅撚線との密着性を向上させるようにす
ることができる。19本の硬銅同心撚線についても一種
類の防錆溶液の塗布によって上撚り素線上に残留するポ
リエステル系可塑剤の保護皮膜が厚くなるときは、前記
7本の同心撚線と同様に行って絶縁体と硬銅撚線との密
着性を向上させるようにすることができる。
Next, in the case of seven hard copper concentric strands, since it is composed of a center strand and six top-twisted strands, polyester plasticizer is applied from the center of the stranded conductor in the direction of contact with the insulator. It is possible to reduce the amount of the anti-rust solution and apply it, but as an alternative method, if the protective film of the polyester plasticizer remaining on the ply-stranded wire becomes thicker by applying one kind of anti-corrosion solution, it is possible to reduce the amount of the anti-corrosion solution. The amount of polyester plasticizer added to the antirust solution applied to the copper wire can be 0 to 0.5% by weight to improve the adhesion between the insulator and the hard copper stranded wire. . For the 19 hard copper concentric strands, if the protective film of the polyester plasticizer remaining on the ply-stranded strands becomes thicker due to the application of one type of anti-rust solution, apply the same method as for the 7 concentric strands described above. This can improve the adhesion between the insulator and the hard copper stranded wire.

本発明で使用するポリエステル系可塑剤は、アジピン酸
系ポリエステル、セパシン酸系ポリエステル、フタル酸
系ポリエステル、アジピン酸−プロピレングリコール系
ポリエステル、アジピン酸−1,3ブチレングリコール
系ポリエステルなどで、これらの群の1種以上が使用で
きる。
The polyester plasticizer used in the present invention includes adipic acid polyester, sepacic acid polyester, phthalic acid polyester, adipic acid-propylene glycol polyester, adipic acid-1,3-butylene glycol polyester, etc. One or more of these can be used.

使用する溶剤はベンゾトリアゾール又は/およびベンゾ
トリアゾール誘導体とポリエステル系可塑剤との溶解混
合を容易にし、且つポリエステル系可塑剤のもつ粘つき
を調整するために用いられるが、かかる溶剤としては、
メチルアルコール、エチルアルコール、イソプロピルア
ルコールなどのアルコール系溶剤とトリクロルエタンが
好ましいが、特に限定されるものでない。
The solvent used is used to facilitate the dissolution and mixing of benzotriazole or/and benzotriazole derivative and the polyester plasticizer, and to adjust the stickiness of the polyester plasticizer.
Alcohol solvents such as methyl alcohol, ethyl alcohol, and isopropyl alcohol and trichloroethane are preferred, but are not particularly limited.

なお、本発明ではベンゾトリアゾールのほか、ベンゾト
リアゾールモノエタノールアミン塩、ベンゾトリアゾー
ルジエチルアミン塩、ベンゾトリアゾールシクロヘキシ
ルアミン塩、ベンゾトリアゾールモルホリン塩、ベンゾ
トリアソールジイソプロピルアミン塩、メチルベンゾト
リアゾールシクロヘキシルアミン塩などのベンゾトリア
ゾール誘導体も使用することができる。
In addition to benzotriazole, the present invention uses benzotriazoles such as benzotriazole monoethanolamine salt, benzotriazole diethylamine salt, benzotriazole cyclohexylamine salt, benzotriazole morpholine salt, benzotriazole diisopropylamine salt, and methylbenzotriazole cyclohexylamine salt. Derivatives can also be used.

〔作 用〕[For production]

屋外用wA縁電線が応力腐食割れによって断線するのは
、該絶縁電線が架線された後、引留部、端末部又は接続
部などの僅かなすき間から電線内部の硬銅撚線の撚り空
隙部に腐食性雨水が侵入し、長期に亘って溜溝する腐食
要因が第一義である。従って、屋外用絶縁電線として具
備すべき要件はすぐれた耐食性と、架線時に対応するき
びしい導体引抜試験、すなわちvA録体と接する銅素線
との良好な密着性を有することである。
The reason why outdoor WA edge wires break due to stress corrosion cracking is that after the insulated wires have been installed, the hard copper strands inside the wires are inserted into the stranded voids through small gaps such as at the anchorage, terminals, or connections. The primary cause of corrosion is the intrusion of corrosive rainwater and the accumulation of water in ditches over a long period of time. Therefore, the requirements for an outdoor insulated wire are excellent corrosion resistance and good adhesion to the copper wire in contact with the VA recording body, which can be used in severe conductor pull-out tests during overhead wiring.

本発明で使用する防錆溶液、すなわちベンゾトリアゾー
ル又は/およびベンゾトリアゾール誘導体0.1−10
重量%、ポリエステル系可塑剤0.2〜lO重量%、残
部が溶剤のアルコールなどからなる防錆溶液を硬銅撚線
表面上に塗布すると、アルコールの存在の下、銅表面に
防錆成分とのキレート結合による防錆皮膜が良好に形成
され、アルコールが揮発すれば、含有するポリエステル
系可塑剤が前記防錆皮膜上に保護皮膜として形成し、二
重の防錆効果が高められ、耐食性が向上する。
Rust preventive solution used in the present invention, i.e. benzotriazole or/and benzotriazole derivative 0.1-10
When a rust preventive solution consisting of 0.2 to 10 wt% polyester plasticizer and alcohol, the balance being a solvent, is applied to the surface of a hard copper stranded wire, in the presence of alcohol, the rust preventive component appears on the copper surface. When a rust-preventive film is well formed by the chelate bond of improves.

しかし、防錆溶液中のポリエステル系可塑剤添加量が多
く、塗布後、絶縁体と接する銅素線上に残留するポリエ
ステル系可塑剤の皮膜が厚い程、絶縁電線としたとき絶
縁体と硬銅撚線との密着性が低下し、架線時に絶縁体が
引抜かれ、好ましくない。
However, the amount of polyester plasticizer added in the anti-corrosion solution is large, and the thicker the film of polyester plasticizer that remains on the copper wire in contact with the insulator after application, the more likely it is that the insulator and hard copper strands will be separated when used as an insulated wire. The adhesion with the wire will deteriorate, and the insulator will be pulled out during overhead wire installation, which is not desirable.

本発明の製造方法では、使用する硬銅撚線の製造過程に
おいて、撚導体の中心から絶縁体と接する方向に向って
ポリエステル系可塑剤の添加量を順次少なくした防錆溶
液を銅素線上に塗布して防錆処理を施し、絶縁体を被覆
する前に、絶縁体と接する銅素線上にポリエステル系可
塑剤の添加量を0〜0.3重量%とする防錆溶液を塗布
し速乾して、該銅素線上に残留させるポリエステル系可
塑剤皮膜の粘つき調整と均一化を行ない、且つ該銅素線
上の防錆皮膜の補完を同時に施すようにするので、きび
しい耐食性と導体引抜試験に適合し、応力腐食断線を防
止できるものとなる。
In the manufacturing method of the present invention, during the manufacturing process of the hard copper stranded wire used, a rust-preventing solution containing a polyester plasticizer is applied to the copper wire in a manner that gradually reduces the amount of polyester plasticizer added from the center of the stranded conductor in the direction of contact with the insulator. Apply anti-corrosion treatment and before covering the insulator, apply a rust-preventive solution containing 0 to 0.3% by weight of polyester plasticizer on the copper wire in contact with the insulator and dry quickly. In this way, the stickiness of the polyester plasticizer film left on the copper wire is adjusted and made uniform, and the anti-corrosion film on the copper wire is simultaneously supplemented, making it possible to conduct rigorous corrosion resistance and conductor pull-out tests. This makes it possible to prevent stress corrosion and disconnection.

〔実施例〕〔Example〕

以下、本発明にかかる実施例と比較例を対比して説明す
る。
Hereinafter, examples according to the present invention and comparative examples will be explained in comparison.

外径2.0mmφの硬銅素線19本を同心撚りに撚り合
せ、その外周をポリエチレン絶縁体で被覆するに際し、
予め中心素線と六本の下撚り、12本の上撚り銅素線お
よび絶縁被覆する前に絶縁体と接する銅素線の表面に第
1表に示すそれぞれの配合の防錆溶液を塗布する。例え
ば、中心素線と6本の下撚り素線および12本の上撚り
素線の塗布は、防錆溶液をマイクロポンプで定量送量し
、エアーワイパーを設けた防錆槽を通過させて行ない、
絶縁体と接する銅素線表面の塗布は、撚線に重錘付フェ
ルトを巻付け、その上端に防錆溶液をマイクロポンプで
定量送流し、熱風乾燥機中を通過、速乾させて行なう。
When concentrically twisting 19 hard copper strands with an outer diameter of 2.0 mmφ and covering the outer periphery with polyethylene insulation,
In advance, apply anti-corrosion solutions of the respective compositions shown in Table 1 to the surface of the central strand, 6 pre-twisted copper strands, 12 pre-twisted copper strands, and the copper strands in contact with the insulator before insulation coating. . For example, the application of the central strand, 6 pre-twisted strands, and 12 pre-twisted strands is carried out by feeding a fixed amount of anti-rust solution with a micro pump and passing it through a rust-preventing tank equipped with an air wiper. ,
The coating on the surface of the copper wire in contact with the insulator is carried out by wrapping a weighted felt around the stranded wire, pumping a fixed amount of anti-corrosion solution onto the upper end of the wire using a micro pump, and passing it through a hot air dryer to quickly dry it.

引続きその外周にポリエチレン絶縁体を押出被覆して6
0o+m”屋外用ポリエチレン絶縁電線を製造した。得
られた各絶縁電線について、以下に説明する耐食性試験
(注1、注2、注3)および誘導引抜き試験(注4)を
行なった。その結果を第1表の下段に合わせて示す。
Subsequently, a polyethylene insulator is extruded and coated on the outer periphery.
0o+m" outdoor polyethylene insulated wires were manufactured. Each of the obtained insulated wires was subjected to corrosion resistance tests (Note 1, Note 2, Note 3) and induction pullout tests (Note 4) as described below. The results are as follows. It is shown in the lower row of Table 1.

(注1)絶縁電線からloc+n長の試料を金ノコで切
断し、絶縁体を剥いだ導体素線を濃度1100ppの硫
化ナトリウム水溶液に室温で30秒間浸漬した後取り出
して、導体素線表面の変色状態を目視し、耐食性良否の
判定をした。
(Note 1) Cut a sample of loc+n length from the insulated wire with a hacksaw, and remove the conductor wire from which the insulator has been stripped off by immersing it in a sodium sulfide aqueous solution with a concentration of 1100 pp for 30 seconds at room temperature. The condition was visually observed to determine whether the corrosion resistance was good or bad.

(注2)絶縁電線から10cs長の試料を金ノコで切断
し、絶縁体を剥離して硬銅撚線を取り出し、導体素線の
表面に付着する防錆溶液を溶剤で洗い落した後、濃度1
100ppの硫化ナトリウム水溶液に室温で30秒間浸
漬した後取り出して、導体素線表面の変色状態を目視し
、耐食性良否の判定をした。
(Note 2) After cutting a 10 cs length sample from the insulated wire with a hacksaw, peeling off the insulator and taking out the hard copper strands, and washing off the anti-rust solution adhering to the surface of the conductor wire with a solvent, Concentration 1
After being immersed in a 100 pp sodium sulfide aqueous solution at room temperature for 30 seconds, it was taken out, and the discoloration state of the surface of the conductor wire was visually observed to determine whether the corrosion resistance was good or bad.

(注1)、(注2)の判定基準は、○印を変色のないも
の、Δ印を僅かに変色のあるもの、X印を明瞭に変色の
あるものとして評価した。
The evaluation criteria for (Note 1) and (Note 2) were as follows: ○ indicates no discoloration, Δ indicates slight discoloration, and X indicates clear discoloration.

(注3)絶縁電線から30c■長の試料を金ノコで切断
し、これを濃度1100ppのアンモニヤ水溶液に17
2浸漬し、60℃で8時間、室温で16時間のヒートサ
イクルを1週間続けては新しいアンモニヤ水溶液と取り
替える腐食環境に、8週間浸漬させた後、試料を取り出
して絶縁体を剥離し、導体上に生成する酸化銅の平均及
膜厚を求め、その値から耐食性の良否の判断をした。
(Note 3) Cut a 30 cm long sample from an insulated wire with a hacksaw, and add it to an ammonia aqueous solution with a concentration of 1100 pp.
After being immersed in a corrosive environment for 8 weeks, the sample was removed, the insulator was stripped off, and the conductor was removed. The average and film thickness of the copper oxide formed on the surface were determined, and the quality of the corrosion resistance was determined based on the values.

判定基準は、O印を皮膜厚0.2μm未満のもの、Δ印
を皮膜厚0.2〜0.3μmの範囲にあるもの、x印を
皮膜厚0.3μmを超えるものとして評価した。
The evaluation criteria were as follows: O mark indicates that the film thickness is less than 0.2 μm, Δ mark indicates that the film thickness is in the range of 0.2 to 0.3 μm, and x mark indicates that the film thickness exceeds 0.3 μm.

(注4)絶縁電線から3m長の試料を金ノコで切断し、
片端0.3m端の絶縁体を10cm剥離し、他端を固定
し、片端の絶縁体に荷重1ton (引抜き荷重)を加
えたときの、絶縁体の引抜き具合を観察し、導体と絶縁
体との密着性良否の判断をした。
(Note 4) Cut a 3m long sample from an insulated wire with a hacksaw.
Peel off 10 cm of the insulator at one end of the 0.3 m end, fix the other end, and apply a load of 1 ton (pulling load) to the insulator at one end. Observe how the insulator is pulled out and compare the conductor and insulator. The adhesion was judged to be good or bad.

判定基準は、○印を引抜きにくいもの、Δ印を僅かなか
、ら引抜けるもの、X印を大きく引抜けるものとして評
価した。
The evaluation criteria were as follows: ◯ mark indicates that it is difficult to pull out, Δ mark indicates that it can be pulled out slightly, and X mark indicates that it pulls out significantly.

結果かられかるように、実施例1〜5はいずれの試験に
おいても良好な結果を示すが、比較例1は絶縁体と接す
る上撚りの銅素線上に防錆溶液を絶縁前に塗布していな
いため、耐食性を有するものの導体と絶縁体との密着性
が低下し、導体引抜試験が好ましくない。比較例2は上
撚り銅素線上に残留するポリエステル系可塑剤皮膜が厚
いのに、絶縁前に塗布する防錆溶液中のポリエステル系
可塑剤の添加量が適切でないため、導体と絶縁体との密
着性が低下し、導体引抜試験が好ましくなくなる。比較
例3はベンゾトリアゾールの添加量が少ないため、銅表
面に十分な耐食性皮膜が形成されず、好ましくない。
As can be seen from the results, Examples 1 to 5 showed good results in all tests, but in Comparative Example 1, an anti-rust solution was applied to the ply-twisted copper wire in contact with the insulator before insulation. Therefore, although the conductor has corrosion resistance, the adhesion between the conductor and the insulator deteriorates, making the conductor pullout test undesirable. In Comparative Example 2, the polyester plasticizer film remaining on the ply-stranded copper wire was thick, but the amount of polyester plasticizer added in the anti-corrosion solution applied before insulation was not appropriate, so the contact between the conductor and the insulator was Adhesion deteriorates, making conductor pullout tests unfavorable. In Comparative Example 3, since the amount of benzotriazole added was small, a sufficient corrosion-resistant film was not formed on the copper surface, which is not preferable.

比較例4は上撚り銅素線上に残留するポリエステル系可
塑剤皮膜が掻端に厚いため、絶縁前に塗布するポリエス
テル系可塑剤を添加しない防錆溶液を塗布しても、上撚
り銅素線上に適切に残留させるポリエステル系可塑剤皮
膜の粘つき調整と均一化が不十分となり、導体引抜試験
が好ましくなくなる。比較例5は中心線、下撚りおよび
上撚り銅素線上に塗付する防錆溶液中のポリエステル系
可塑剤添加量が適切でないため、耐食性試験が好ましく
ない。
In Comparative Example 4, the polyester plasticizer film remaining on the ply-twisted copper wire was thick at the edges, so even if a rust preventive solution containing no polyester plasticizer was applied before insulation, the film remained on the ply-twisted copper wire. The stickiness adjustment and uniformity of the polyester plasticizer film that is left in the film becomes insufficient, making the conductor pullout test unfavorable. In Comparative Example 5, the corrosion resistance test was not preferable because the amount of polyester plasticizer added in the antirust solution applied to the center line, first-twisted, and first-twisted copper wires was not appropriate.

[発明の効果〕 以上説明したように、本発明に係る製造方法によれば、
絶縁体と接する上撚り銅素線との密着性がよく、且つ撚
線導体上にすぐれた耐食性皮膜と保護皮膜とをもつ絶縁
電線が得られるので、従来、絶縁電線又は電カケープル
の製造工程中および電線保管中に燃線導体が変色する問
題も十分防止することができると共に、屋外用絶縁電線
として架線した後、その端末部などから腐食性雨水の侵
入があっても、応力腐食割れを起す憂もないので、その
効果が大である。
[Effect of the invention] As explained above, according to the manufacturing method according to the present invention,
Since it is possible to obtain an insulated wire that has good adhesion to the ply-stranded copper wire in contact with the insulator and has an excellent corrosion-resistant film and protective film on the stranded wire conductor, it has been conventionally used during the manufacturing process of insulated wires or power cables. Moreover, it is possible to sufficiently prevent the problem of discoloration of the hot wire conductor during storage of electric wires, and even if corrosive rainwater enters from the terminals after being installed as outdoor insulated electric wires, stress corrosion cracking will not occur. There is no need to worry, so the effect is great.

Claims (1)

【特許請求の範囲】[Claims] 硬銅撚線の表面にベンゾトリアゾール又は/およびベン
ゾトリアゾール誘導体0.1〜10重量%、ポリエステ
ル系可塑剤0.2〜10重量%、残部が溶剤から成る防
錆溶液を塗布した後、前記硬銅撚線の外周に絶縁被覆層
を形成させる方法において、撚導体の中心から絶縁体と
接する方向に向かってポリエステル系可塑剤の添加量を
順次少なくし、絶縁体を被覆する前に絶縁体と接する銅
素線に塗布する防錆溶液中のポリエステル系可塑剤添加
量を0〜0.3重量%とすることを特徴とする絶縁電線
の製造方法。
After applying a rust preventive solution consisting of 0.1 to 10% by weight of benzotriazole or/and benzotriazole derivative, 0.2 to 10% by weight of polyester plasticizer, and the balance being a solvent to the surface of the hard copper stranded wire, In the method of forming an insulating coating layer around the outer circumference of stranded copper wire, the amount of polyester plasticizer added is gradually decreased from the center of the stranded conductor in the direction of contact with the insulator, and the amount of polyester plasticizer added is gradually reduced from the center of the stranded conductor in the direction of contact with the insulator. A method for manufacturing an insulated wire, characterized in that the amount of polyester plasticizer added in the antirust solution applied to the copper wire in contact with the copper wire is 0 to 0.3% by weight.
JP63304579A 1988-11-30 1988-11-30 Insulated wire manufacturing method Expired - Lifetime JPH06101260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304579A JPH06101260B2 (en) 1988-11-30 1988-11-30 Insulated wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304579A JPH06101260B2 (en) 1988-11-30 1988-11-30 Insulated wire manufacturing method

Publications (2)

Publication Number Publication Date
JPH02148622A true JPH02148622A (en) 1990-06-07
JPH06101260B2 JPH06101260B2 (en) 1994-12-12

Family

ID=17934689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304579A Expired - Lifetime JPH06101260B2 (en) 1988-11-30 1988-11-30 Insulated wire manufacturing method

Country Status (1)

Country Link
JP (1) JPH06101260B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757416A (en) * 1980-09-25 1982-04-06 Dainichi Nippon Cables Ltd Method of preventing corrosion of twisted metallic wire
JPS62200604A (en) * 1986-02-27 1987-09-04 昭和電線電纜株式会社 Stranded conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757416A (en) * 1980-09-25 1982-04-06 Dainichi Nippon Cables Ltd Method of preventing corrosion of twisted metallic wire
JPS62200604A (en) * 1986-02-27 1987-09-04 昭和電線電纜株式会社 Stranded conductor

Also Published As

Publication number Publication date
JPH06101260B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
JPH02148622A (en) Manufacture of insulating cable
JPH02148624A (en) Manufacture of insulating cable
JPH0687379B2 (en) Insulated wire manufacturing method
JPH02148621A (en) Manufacture of insulating cable
JPH02181317A (en) Manufacture of insulated electric cable
JPH0687381B2 (en) Insulated wire manufacturing method
JPH11232931A (en) Insulated electric wire
JPH0687382B2 (en) Insulated wire manufacturing method
JPH02148623A (en) Manufacture of insulating cable
JPH1088375A (en) Corrosion inhibitor, electric wire using the inhibitor and production of the wire
JPH07105170B2 (en) Insulated wire and manufacturing method thereof
JPH01281608A (en) Insulated wire and manufacture thereof
JPH0730470B2 (en) Insulated wire and manufacturing method thereof
JPH07105169B2 (en) Insulated wire and manufacturing method thereof
JPH01253118A (en) Corrosion preventive insulated electric wire
JP2610172B2 (en) Outdoor insulated wires
JP2926730B2 (en) Insulated wire conductor
JPH0266808A (en) Insulation cable for outdoor use
JPH0799648B2 (en) Insulated wire
JPH0266807A (en) Insulation cable for outdoor use
JPH0371515B2 (en)
JPH0664948B2 (en) Method for manufacturing conductor for coated electric wire
JPS62200609A (en) Manufacture of stranded conductor
JPH07105171B2 (en) Insulated wire and its anticorrosion agent
JPS5923067B2 (en) Ring sleeve for aluminum wire connection