JPH1088375A - Corrosion inhibitor, electric wire using the inhibitor and production of the wire - Google Patents

Corrosion inhibitor, electric wire using the inhibitor and production of the wire

Info

Publication number
JPH1088375A
JPH1088375A JP26932496A JP26932496A JPH1088375A JP H1088375 A JPH1088375 A JP H1088375A JP 26932496 A JP26932496 A JP 26932496A JP 26932496 A JP26932496 A JP 26932496A JP H1088375 A JPH1088375 A JP H1088375A
Authority
JP
Japan
Prior art keywords
corrosion inhibitor
conductor
wire
antioxidant
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26932496A
Other languages
Japanese (ja)
Inventor
Masakazu Nakano
正教 中野
Kazuhiro Annou
和広 案納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Original Assignee
Daiden Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc filed Critical Daiden Co Inc
Priority to JP26932496A priority Critical patent/JPH1088375A/en
Publication of JPH1088375A publication Critical patent/JPH1088375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a corrosion inhibitor resistant to deterioration and having resistance to corrosive matter for a long period, to prevent the stress corrosion of a conductor with the inhibitor and to obtain an electric wire capable of securing the necessary adhesion between the insulator and conductor when aerially being wired by adding a phenolic antioxidant and a thioetheric antioxidant to the sublimable corrosion inhibitor. SOLUTION: A corrosion inhibitor obtained by adding either the phenolic antioxidant and the thioetheric antioxidant or the thioetheric antioxidant and dimethyl thiopropinate to benzotriazole or its derivative is dissolved in a solvent to prepare the soln. The soln. is applied immediately after the hard-drawn copper wire 2a of an insulatod wire 1 is drawn by a drawing machine to the thickness to be stranded, and the wire is wound on a stranding bobbin. Further, when the plural wires 2a are concentrically stranded, the soln. is again applied on the wires 2a to be drawn out of the bobbin respectively and stranded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は特に架空絶縁電線の
金属導体に対する腐食防止剤及び、当該腐食防止剤を使
用した電線、並びにこの電線の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion inhibitor for a metal conductor of an overhead insulated wire, an electric wire using the corrosion inhibitor, and a method of manufacturing the wire.

【0002】[0002]

【従来の技術】一般に、絶縁電線の導体は、伸線工程や
撚線工程で強い応力を受けるため残留応力を有している
ことが多い。こうした絶縁電線内(導体とその被覆絶縁
体の間)に水分が侵入すると、水分中の硫化物等の腐食
性物質による導体の腐食が前記の残留応力によって助長
される現象(応力腐食)が生じ、錆を起点に導体に集中
的に腐食が生じて断線に至るという応力腐食断線が起こ
ることが知られている。
2. Description of the Related Art In general, conductors of an insulated wire often have a residual stress because they are subjected to a strong stress in a wire drawing process or a stranded wire process. When moisture penetrates into such an insulated wire (between the conductor and its covering insulator), a phenomenon (stress corrosion) in which the corrosion of the conductor by corrosive substances such as sulfide in the moisture is promoted by the residual stress described above occurs. It is known that stress corrosion breakage occurs, in which rust causes corrosion of the conductor to occur intensively, leading to breakage.

【0003】この応力腐食断線を防止するため、従来、
次のような対策が施されている。 (1)撚り合わせた導体にロールをかけて圧縮し、引っ
張りによる残留応力と撚り時に生じる曲げによる残留応
力を圧縮応力に変え、応力を緩和して応力腐食を生じに
くくする。
Conventionally, in order to prevent this stress corrosion disconnection,
The following measures have been taken. (1) The twisted conductor is rolled and compressed, and the residual stress due to tension and the residual stress due to bending generated during twisting are converted into compressive stress, which alleviates the stress and makes it less likely to cause stress corrosion.

【0004】(2)導体と絶縁体の隙間に水密コンパウ
ンドを充填して、その隙間への水の侵入を阻止する。
(2) A gap between a conductor and an insulator is filled with a watertight compound to prevent water from entering the gap.

【0005】(3)導体表面に腐食防止剤として、ベン
ゾトリアゾール(以下、BTAと略称する。)またはそ
の誘導体等の昇華性腐食防止剤、あるいはこれにエポキ
シ系、フタル酸系、またはリン酸系の可塑剤を添加した
ものを溶媒に溶かした溶液を塗布する。
(3) A sublimation corrosion inhibitor such as benzotriazole (hereinafter abbreviated as BTA) or a derivative thereof as a corrosion inhibitor on the conductor surface, or an epoxy, phthalic acid, or phosphoric acid based agent A solution obtained by dissolving a solution to which a plasticizer is added in a solvent is applied.

【0006】(4)導体を被覆する絶縁体中に、ベンゾ
トリアゾールまたはその誘導体等の昇華性腐食防止剤を
添加する。
(4) A sublimation corrosion inhibitor such as benzotriazole or a derivative thereof is added to an insulator covering a conductor.

【0007】[0007]

【発明が解決しようとする課題】従来から以上のような
対策が行われているが、前記(1)は、腐食そのものを
防止するものではないため有効性が低く、伸線・撚線の
各工程の他に圧縮工程を追加しなければならず製造工程
が複雑化する。また、前記(2)は、導体への絶縁体の
被覆時における水密コンパウンドの充填作業が面倒で、
生産性が悪く高コストとなるという課題を有した。
Although the above-mentioned countermeasures have been taken, the above (1) is not effective in preventing corrosion itself, and therefore has low effectiveness. A compression process must be added in addition to the process, which complicates the manufacturing process. Also, in the above (2), the work of filling the watertight compound when the conductor is coated with the insulator is troublesome,
There was a problem that productivity was poor and cost was high.

【0008】これらに対し、前記(3)は、導体の腐食
を直接防止するため有効性は高いが、BTAまたはその
誘導体のみでは劣化が早く、また、劣化を保護する可塑
剤を添加した場合でも、導体を被覆する絶縁体が一般的
な塩化ビニル(PVC)組成物の場合、可塑剤の相溶性
が良い性質のために、このPVC組成物が腐食防止剤を
なす可塑剤を吸収して、可塑剤が絶縁体に移行してしま
い、昇華性腐食防止剤が劣化して導体の硫化物への耐性
が弱まって応力腐食を防げないという課題を有した。こ
の硫化物への耐性を確保する為に、昇華性腐食防止剤を
劣化から防ぐオイル等の添加剤を併用する方法もある
が、絶縁電線を架渉した状態において導体と絶縁体との
密着性能不足などを招くといった課題を有した。
[0008] On the other hand, the above (3) is highly effective because it directly prevents corrosion of the conductor, but BTA or its derivative alone deteriorates quickly, and even when a plasticizer for protecting the deterioration is added. When the insulator covering the conductor is a general vinyl chloride (PVC) composition, the PVC composition absorbs the plasticizer serving as a corrosion inhibitor due to the good compatibility of the plasticizer, The plasticizer is transferred to the insulator, the sublimation corrosion inhibitor is deteriorated, the resistance of the conductor to sulfide is reduced, and there is a problem that stress corrosion cannot be prevented. In order to ensure resistance to this sulfide, there is a method of using an additive such as an oil that prevents the sublimation corrosion inhibitor from deteriorating, but the adhesion performance between the conductor and the insulator when the insulated wire is laid There was a problem such as insufficiency.

【0009】一方、前記(4)では、絶縁体中を昇華性
腐食防止剤が導体側に徐々に移行して、導体表面に防錆
膜を形成する作用を有するものであるが、絶縁体の種類
によっては、添加した昇華性腐食防止剤が絶縁体の表層
へ移行して比較的短時間に効果が失われたり、絶縁体中
に発生する腐食性物質により防錆力が低下してしまうな
どの課題を有した。また、導体の防錆性能は導体表面の
均一性に依存するところがあり、特に腐食性物質を含む
水分中での腐食の場合、導体表面の電気化学的均一性が
重要となるため、導体表面が不均一に処理されていれ
ば、外力等で導体表面の防錆膜の状態が変化した場合
に、絶縁体から昇華性腐食防止剤が供給されても、必ず
しも表面状態(防錆膜)の改善につながらないという課
題を有した。
[0009] On the other hand, in the above (4), the sublimation corrosion inhibitor gradually moves to the conductor side in the insulator to form a rust-preventive film on the conductor surface. Depending on the type, the added sublimation corrosion inhibitor migrates to the surface of the insulator and loses its effect in a relatively short period of time, or the corrosive substances generated in the insulator reduce the rust prevention power. There was a problem of. In addition, the rust prevention performance of the conductor depends on the uniformity of the conductor surface.Especially in the case of corrosion in water containing corrosive substances, the electrochemical uniformity of the conductor surface is important. If the treatment is uneven, the surface condition (rust prevention film) is not necessarily improved even if the sublimation corrosion inhibitor is supplied from the insulator when the state of the rust prevention film on the conductor surface changes due to external force or the like. Had the problem of not connecting to

【0010】本発明は前記課題を解消するためになされ
たもので、劣化しにくく長期間腐食性物質に対する耐性
を有する腐食防止剤及びこれを用いることで導体の応力
腐食を防ぐと共に架空配設される場合に必要な絶縁体と
導体との密着性能を確保することができる電線、並びに
前記した性能を確実に得ることのできる電線の製造方法
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an anticorrosion agent which is hardly deteriorated and has a long-term resistance to corrosive substances. It is an object of the present invention to provide an electric wire capable of ensuring the necessary adhesion performance between an insulator and a conductor when necessary, and a method of manufacturing an electric wire capable of reliably obtaining the above-described performance.

【0011】[0011]

【課題を解決するための手段】本発明に係る腐食防止剤
は、昇華性腐食防止剤に、フェノール系抗酸化剤及びチ
オエーテル系抗酸化剤を添加したものである。このよう
に本発明においては、昇華性腐食防止剤に、フェノール
系抗酸化剤及びチオエーテル系抗酸化剤の二つの抗酸化
剤を添加することにより、併用により著しい抗酸化性を
発揮するこれらの抗酸化剤が昇華性腐食防止剤を有効に
保護し、昇華性腐食防止剤の劣化を著しく低減すること
ができ、防錆性能を長期に亘り確保させられる。
The corrosion inhibitor according to the present invention is obtained by adding a phenolic antioxidant and a thioether antioxidant to a sublimable corrosion inhibitor. As described above, in the present invention, by adding two antioxidants, a phenolic antioxidant and a thioether antioxidant, to a sublimable corrosion inhibitor, those antioxidants exhibiting remarkable antioxidant properties when used in combination. The oxidizing agent effectively protects the sublimation corrosion inhibitor, significantly reduces the deterioration of the sublimation corrosion inhibitor, and ensures the rust prevention performance for a long period of time.

【0012】また、本発明に係る腐食防止剤は必要に応
じて、ジラウリル・チオジプロピオネートを添加したも
のである。このように本発明においては、チオエーテル
系抗酸化剤との併用で著しい抗酸化性を発揮するジラウ
リル・チオジプロピオネートを添加することにより、複
数の抗酸化剤が互いに作用し合って昇華性腐食防止剤を
有効に保護し、昇華性腐食防止剤の劣化を著しく低減す
ることができ、防錆性能を長期に亘り確保させられる。
Further, the corrosion inhibitor according to the present invention contains dilauryl thiodipropionate as required. As described above, in the present invention, by adding dilauryl thiodipropionate, which exhibits remarkable antioxidant properties in combination with a thioether-based antioxidant, a plurality of antioxidants act on each other to cause sublimation corrosion. The inhibitor can be effectively protected, the deterioration of the sublimable corrosion inhibitor can be significantly reduced, and the rust prevention performance can be secured for a long period of time.

【0013】また、本発明に係る腐食防止剤は、昇華性
腐食防止剤に、チオエーテル系抗酸化剤及びジラウリル
・チオジプロピオネートを添加したものである。このよ
うに本発明においては、チオエーテル系抗酸化剤及びジ
ラウリル・チオジプロピオネートの二つの抗酸化剤を添
加することにより、併用により著しい抗酸化性を発揮す
るこれらの抗酸化剤が昇華性腐食防止剤を有効に保護
し、劣化を防いで防錆性能を長期に亘り確保させられ
る。
The corrosion inhibitor according to the present invention is obtained by adding a thioether antioxidant and dilauryl thiodipropionate to a sublimation corrosion inhibitor. As described above, in the present invention, by adding two antioxidants, a thioether-based antioxidant and dilauryl thiodipropionate, these antioxidants which exhibit remarkable antioxidant properties when used in combination can cause sublimation corrosion. This effectively protects the inhibitor and prevents deterioration, thereby ensuring rust prevention performance over a long period of time.

【0014】また、本発明に係る腐食防止剤は必要に応
じて、前記昇華性腐食防止剤が、ベンゾトリアゾールま
たはその誘導体であるものである。このように本発明に
おいては、特に銅及び銅合金に対し効果的な腐食防止性
能を有するベンゾトリアゾールまたはその誘導体を使用
することにより、導体に銅を使用する電線等に使用して
高い防錆効果を発揮できる。
The corrosion inhibitor according to the present invention, if necessary, is one wherein the sublimable corrosion inhibitor is benzotriazole or a derivative thereof. As described above, in the present invention, by using benzotriazole or a derivative thereof having an effective anticorrosion property particularly for copper and copper alloys, a high rust prevention effect can be obtained when used for electric wires using copper as a conductor. Can be demonstrated.

【0015】また、本発明に係る電線は、前記いずれか
に記載した腐食防止剤を溶媒に溶かしてなる溶液を導体
の表面に塗布したものである。このように本発明におい
ては、導体表面に昇華性腐食防止剤と、併用により著し
い抗酸化性を発揮する性質を有する二つの抗酸化剤を含
む溶液が塗布されていることにより、二つの抗酸化剤の
優れた抗酸化機能で劣化から保護される昇華性腐食防止
剤が導体の防錆性能を長期に亘り確保し、応力腐食が発
生せず断線が起こりにくい。
Further, the electric wire according to the present invention is obtained by applying a solution obtained by dissolving any of the above-mentioned corrosion inhibitors in a solvent to the surface of a conductor. As described above, in the present invention, by applying a solution containing a sublimable corrosion inhibitor and two antioxidants having a property of exhibiting remarkable antioxidant property in combination with the conductor surface, two antioxidant substances are applied. The sublimation corrosion inhibitor, which is protected from deterioration by the excellent antioxidant function of the agent, ensures the rust prevention performance of the conductor for a long period of time, does not generate stress corrosion, and hardly causes disconnection.

【0016】また、本発明に係る電線は必要に応じて、
前記腐食防止剤の溶液を塗布した導体に前記腐食防止剤
を所定量添加した絶縁体を被覆したものである。このよ
うに本発明においては、外力で導体表面の腐食防止剤膜
の状態が変化しても、絶縁体中の昇華性腐食防止剤が導
体表面に結合して耐腐食性能を維持し、応力腐食を長期
に亘り防止する。また、昇華性腐食防止剤と抗酸化剤は
導体と絶縁体の密着性能を劣化させず架空状態において
も電線強度を保つ。
Further, the electric wire according to the present invention may be
The conductor to which the solution of the corrosion inhibitor is applied is coated with an insulator to which a predetermined amount of the corrosion inhibitor is added. As described above, in the present invention, even when the state of the corrosion inhibitor film on the conductor surface changes due to external force, the sublimation corrosion inhibitor in the insulator is bonded to the conductor surface to maintain the corrosion resistance, and to prevent the stress corrosion. For a long time. Further, the sublimation corrosion inhibitor and the antioxidant do not deteriorate the adhesion performance between the conductor and the insulator, and maintain the strength of the electric wire even in an aerial state.

【0017】また、本発明に係る電線の製造方法は、前
記いずれかに記載した腐食防止剤を溶媒に溶かしてなる
溶液を、電線の製造工程において複数の銅線を撚り合わ
せる撚り工程の直前の各銅線表面及び、当該撚り工程の
直後の撚り線の表面にそれぞれ塗布するものである。こ
のように本発明においては、撚線の前後で導体表面に均
一に塗布処理を行い、一様な防錆膜を形成させることに
より、導体表面状態の均質性が維持でき、導体の防錆性
能を助長させられると共に、二つの抗酸化剤の優れた抗
酸化機能で劣化から保護される昇華性腐食防止剤が導体
の防錆性能を長期に亘り確保し、応力腐食が発生せず断
線の起こりにくい電線とすることができる。
Further, in the method for manufacturing an electric wire according to the present invention, the solution prepared by dissolving the corrosion inhibitor described in any of the above in a solvent is used immediately before the twisting step of twisting a plurality of copper wires in the wire manufacturing process. It is applied to the surface of each copper wire and the surface of the stranded wire immediately after the twisting step. As described above, in the present invention, the conductor surface is uniformly applied to the conductor before and after the stranded wire to form a uniform rust preventive film. The sublimation corrosion inhibitor, which is protected from deterioration by the excellent antioxidant function of the two antioxidants, ensures the conductor's rust prevention performance over a long period of time. It can be a difficult electric wire.

【0018】また、本発明に係る電線の製造方法は必要
に応じて、前記腐食防止剤を溶媒に溶かしてなる溶液
を、電線の製造工程における銅線の伸線工程の直後に銅
線表面に塗布するものである。このように本発明におい
ては、伸線の直後においても銅線表面に塗布処理を行
い、一様な防錆膜を形成させることにより、伸線工程か
ら撚線工程直前までの銅線表面のわずかな劣化をも防
ぎ、導体の腐食防止をより確実なものとして応力腐食に
よる断線が起こりにくい電線とすることができる。
In the method for producing an electric wire according to the present invention, if necessary, a solution prepared by dissolving the corrosion inhibitor in a solvent may be applied to the surface of the copper wire immediately after the copper wire drawing step in the electric wire manufacturing process. It is to be applied. As described above, in the present invention, the coating process is performed on the copper wire surface immediately after the wire drawing to form a uniform rust-proof film, so that the copper wire surface from the wire drawing process to immediately before the twisting process is slightly reduced. In addition, it is possible to prevent the conductor from deteriorating and prevent the conductor from being corroded more reliably, so that the electric wire is less likely to be disconnected due to stress corrosion.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(本発明の一実施の形態)以下、本発明の一実施の形態
を図1及び図2に基づいて説明する。この図1は本実施
の形態に係る絶縁電線の概略構成図、図2は本実施の形
態に係る絶縁電線の腐食防止剤塗布工程説明図である。
(One Embodiment of the Present Invention) One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic configuration diagram of an insulated wire according to the present embodiment, and FIG. 2 is an explanatory diagram of a process of applying a corrosion inhibitor to the insulated wire according to the present embodiment.

【0020】前記各図において本実施の形態に係る絶縁
電線1は、複数本の硬銅線2aを撚り合わせた撚り導体
2と、公知の押出成形により前記撚り導体に被覆される
PVC組成物からなる絶縁外被3とを備える構成であ
る。
In each of the above figures, an insulated wire 1 according to the present embodiment comprises a twisted conductor 2 in which a plurality of hard copper wires 2a are twisted and a PVC composition coated on the twisted conductor by a known extrusion molding. And an insulating jacket 3.

【0021】前記撚り導体2の表面には、ベンゾトリア
ゾール(BTA)あるいはその誘導体に、フェノール系
抗酸化剤及びチオエーテル系抗酸化剤または、チオエー
テル系抗酸化剤及びジラウリル・チオジプロピオネート
の、二つの組合せのいずれかを添加した腐食防止剤を、
トリクロルエタン、イソプロピルアルコール及び1−ブ
ロモプロパン等の溶媒に溶かしてなる溶液が塗布され、
錆の発生を防いで応力腐食が起こらないようにしてい
る。
On the surface of the twisted conductor 2, benzotriazole (BTA) or a derivative thereof, a phenolic antioxidant and a thioether antioxidant, or a thioether antioxidant and dilauryl thiodipropionate are used. Corrosion inhibitor to which one of the two combinations was added,
A solution formed by dissolving in a solvent such as trichloroethane, isopropyl alcohol and 1-bromopropane is applied,
Rust is prevented to prevent stress corrosion.

【0022】この絶縁電線1の製造方法は、公知の前工
程を経た後、硬銅線2aを伸線機10による引抜き加工
で撚線される太さ(φ2.0mm)まで伸線した直後に
前記溶液を塗布し、撚線用ボビン21に巻き取る。最初
の塗布で撚線前における硬銅線2aの酸化等を防ぐ。次
にこの硬銅線2aを撚線機20で複数本同心撚りする際
に、それぞれ各撚線用ボビン21から引き出されて撚り
合わされる前の硬銅線2aに再度前記溶液を塗布し、こ
の塗布された各硬銅線2aを撚り合わせて撚り導体2と
していく。撚り導体2になった状態で更に前記溶液を外
周に塗布する。この溶液の塗布を、撚り合わせる前の単
芯の硬銅線2aの状態と、撚り合わせた後の撚り導体2
の状態とでそれぞれ行うことで、撚り合わせた線の一本
一本の表面が確実に塗膜で覆われるようにしている。こ
の撚り導体2に対し、BTAを混練して調製した絶縁体
用コンパウンドを公知の押出成形により200℃で撚り
導体2上に厚さ2.5mmで押し出して撚り導体2を被
覆し、絶縁外被3とする。
In the method of manufacturing the insulated wire 1, the hard copper wire 2a is drawn to a thickness (φ2.0 mm) to be stranded by drawing by a wire drawing machine 10 after passing through a known pre-process. The solution is applied and wound around a bobbin 21 for stranded wire. The first application prevents the hard copper wire 2a from being oxidized before twisting. Next, when a plurality of the hard copper wires 2a are concentrically twisted by the twisting machine 20, the solution is applied again to the hard copper wire 2a before being pulled out from each of the twisting bobbins 21 and twisted. Each of the applied hard copper wires 2a is twisted into a twisted conductor 2. The solution is further applied to the outer periphery of the twisted conductor 2. The application of this solution is performed by changing the state of the single-core hard copper wire 2a before twisting and the twisting conductor 2 after twisting.
By doing so in each state, the surface of each twisted wire is surely covered with the coating film. An insulating compound prepared by kneading BTA with the twisted conductor 2 is extruded at a temperature of 200 ° C. onto the twisted conductor 2 at a thickness of 2.5 mm at 200 ° C. to coat the twisted conductor 2 with an insulating jacket. 3 is assumed.

【0023】このように、本実施の形態に係る絶縁電線
は、導体表面に、特に銅及び銅合金に対し効果的な腐食
防止性能を有するベンゾトリアゾールまたはその誘導体
に、フェノール系抗酸化剤及びチオエーテル系抗酸化剤
の二つの抗酸化剤、あるいはチオエーテル系抗酸化剤及
びジラウリル・チオジプロピオネートの二つの抗酸化剤
を添加した腐食防止剤を塗布することにより、併用によ
り著しい抗酸化性を発揮するこれらの抗酸化剤が昇華性
腐食防止剤を有効に保護し、昇華性腐食防止剤の劣化を
低減し、銅導体に対し高い防錆性能を長期に亘り確保し
て応力腐食を発生させない。また、昇華性腐食防止剤と
各抗酸化剤は導体と絶縁体の密着性能を劣化させず架空
状態においても電線強度を確保する。さらに、絶縁外被
にもBTAを添加することにより、外力等で導体表面状
態が変化しても絶縁体中の昇華性腐食防止剤が導体表面
に結合して耐腐食性能を維持し、応力腐食を長期に亘り
防止する。加えて、チオエーテル系抗酸化剤の添加によ
り熱酸化劣化防止性能が向上し、熱の加わる状況におい
ても防錆膜(腐食防止剤)の劣化を低減し、様々な環境
下で防錆性能を助長させることとなる。
As described above, the insulated wire according to the present embodiment is provided with a phenolic antioxidant and a thioether on a conductor surface, in particular, benzotriazole or its derivative having an effective corrosion inhibitory effect on copper and copper alloy. By applying a corrosion inhibitor containing two antioxidants based on thioether, or two antioxidants based on thioether and dilauryl thiodipropionate, a significant antioxidant effect is obtained when used in combination. These antioxidants effectively protect the sublimation corrosion inhibitor, reduce the deterioration of the sublimation corrosion inhibitor, and secure high rust prevention performance for the copper conductor for a long period of time to prevent stress corrosion. Further, the sublimation corrosion inhibitor and each antioxidant do not deteriorate the adhesion performance between the conductor and the insulator, and secure the strength of the electric wire even in an aerial state. In addition, by adding BTA to the insulation jacket, even if the conductor surface condition changes due to external force, etc., the sublimation corrosion inhibitor in the insulator is bonded to the conductor surface to maintain corrosion resistance, and to maintain stress corrosion resistance. For a long time. In addition, the addition of a thioether-based antioxidant improves thermal oxidation deterioration prevention performance, reduces the deterioration of the rust prevention film (corrosion inhibitor) even under heat, and promotes rust prevention performance in various environments. Will be done.

【0024】なお、前記実施の形態に係る腐食防止剤を
溶かす溶媒としては、昇華性腐食防止剤及び抗酸化剤が
溶けるもので有ればどれでもよいが、生産コストや導体
表面処理時(塗布時)の乾燥性等を考慮し、沸点が85
℃以下の溶剤を適宜使用する。また、前記実施の形態に
係る腐食防止剤は、絶縁電線に限らず、銅板、銅ワイヤ
など、一般的な銅あるいは銅合金製品の防錆剤として利
用することができる。
The solvent for dissolving the corrosion inhibitor according to the above embodiment may be any solvent that can dissolve the sublimation corrosion inhibitor and the antioxidant. Time), the boiling point is 85
Use a solvent having a temperature of not more than ℃. Further, the corrosion inhibitor according to the embodiment can be used as a rust inhibitor for general copper or copper alloy products such as copper plates and copper wires, not limited to insulated wires.

【0025】また、前記実施の形態に係る腐食防止剤に
おいては、フェノール系抗酸化剤及びチオエーテル系抗
酸化剤の二つの抗酸化剤、あるいはチオエーテル系抗酸
化剤及びジラウリル・チオジプロピオネートの二つの抗
酸化剤を添加する構成としているが、添加の割合を調整
すれば、前者の場合にさらにジラウリル・チオプロピオ
ネートを添加したり、後者の場合にさらにフェノール系
抗酸化剤を添加したりする構成とすることもでき、複数
の抗酸化剤の相乗効果で抗酸化性能を高めて昇華性腐食
防止剤の劣化を抑えて防錆性能が向上することとなる。
In the corrosion inhibitor according to the above embodiment, two antioxidants of a phenolic antioxidant and a thioether antioxidant, or two antioxidants of a thioether antioxidant and dilauryl thiodipropionate are used. Two antioxidants are added, but if the ratio of addition is adjusted, dilauryl thiopropionate may be added in the former case, or a phenolic antioxidant may be added in the latter case. The antioxidant performance is enhanced by the synergistic effect of a plurality of antioxidants, and the deterioration of the sublimable corrosion inhibitor is suppressed, whereby the rust prevention performance is improved.

【0026】[0026]

【実施例】本発明に係る腐食防止剤を使用した絶縁電線
と、従来と同様に昇華性腐食防止剤のみ用いた絶縁電線
とを導体の腐食性について比較した評価結果を説明す
る。本発明に係る腐食防止剤を、使用する昇華性腐食防
止剤及び抗酸化剤の組合せをそれぞれ変えて比較を行っ
た。第1の実施例として、昇華性腐食防止剤にベンゾト
リアゾール誘導体である1−[N,N−ビス(2−エチ
ルヘキシル)アミノメチル]ベンゾトリアゾール(以
下、試料1とする。)を使用すると共に、フェノール系
抗酸化剤として3,9−ビス[2−{3−(3−第三ブ
チル−4−ヒドロキシ−5−メチルフェニル)プロピオ
ニルオキシ}−1,1−ジメチルエチル]−2,4−
8,10−テトラオキサスピロ〔5,5〕ウンデカン
(以下、試料2とする。)を、チオエーテル系抗酸化剤
としてビス[2−メチル−4−{3−n−アルキル(C
12またはC14)チオプロピオニルオキシ}−5−第三ブ
チルフェニル]スルフィド(以下、試料3とする。)を
それぞれ添加し、溶媒としてトリクロルエタンを用いて
溶液を得た。混合比はそれぞれ重量比で試料1が1.0
%、試料2が0.4%、試料3が0.4%、トリクロル
エタンが98.2%である。
The evaluation results of the insulated wire using the corrosion inhibitor according to the present invention and the insulated wire using only the sublimable corrosion inhibitor in the same manner as in the prior art in comparison with the conductor corrosion will be described. The corrosion inhibitors according to the present invention were compared with each other by using different combinations of sublimation corrosion inhibitors and antioxidants. As a first example, 1- [N, N-bis (2-ethylhexyl) aminomethyl] benzotriazole (hereinafter referred to as sample 1), which is a benzotriazole derivative, is used as a sublimable corrosion inhibitor. 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4-as a phenolic antioxidant
8,10-Tetraoxaspiro [5,5] undecane (hereinafter referred to as sample 2) was converted to bis [2-methyl-4- {3-n-alkyl (C) as a thioether antioxidant.
12 or C14) thiopropionyloxy {-5-tert-butylphenyl] sulfide (hereinafter referred to as sample 3) was added, and a solution was obtained using trichloroethane as a solvent. The mixing ratio of each sample was 1.0 by weight.
%, 0.4% for sample 2, 0.4% for sample 3, and 98.2% for trichloroethane.

【0027】次に、第2の実施例として、第1の実施例
においてフェノール系酸化剤である試料2の代わりにジ
ラウリル・チオジプロピオネート(以下、DLTPと略
称する。)を用いて溶液を得た。混合比はそれぞれ重量
比で試料1が1.0%、試料3が0.4%、DLTPが
0.4%、トリクロルエタンが98.2%である。
Next, as a second embodiment, a solution is prepared by using dilauryl thiodipropionate (hereinafter abbreviated as DLTP) instead of sample 2 which is a phenolic oxidizing agent in the first embodiment. Obtained. The mixing ratio is 1.0% for sample 1, 0.4% for sample 3, 0.4% for DLTP, and 98.2% for trichloroethane in weight ratio.

【0028】次に、第3の実施例として、第1の実施例
において溶媒のみ1−ブロモプロパンに替えて溶液を得
た。混合比はそれぞれ重量比で試料1が1.0%、試料
2が0.4%、試料3が0.4%、1−ブロモプロパン
が98.2%である。次に、第4の実施例として、第2
の実施例において溶媒のみ1−ブロモプロパンに替えて
溶液を得た。混合比はそれぞれ重量比で試料1が1.0
%、試料3が0.4%、DLTPが0.4%、1−ブロ
モプロパンが98.2%である。
Next, as a third embodiment, a solution was obtained by replacing only the solvent in the first embodiment with 1-bromopropane. The mixing ratio is 1.0% for sample 1, 0.4% for sample 2, 0.4% for sample 3, and 98.2% for 1-bromopropane by weight ratio, respectively. Next, as a fourth embodiment, the second
A solution was obtained by substituting only 1-bromopropane for the solvent in the example of (1). The mixing ratio of each sample was 1.0 by weight.
%, 0.4% for sample 3, 0.4% for DLTP, and 98.2% for 1-bromopropane.

【0029】次に、第5の実施例として、第1の実施例
において溶媒をイソプロピルアルコールに替え、各溶質
及び溶媒の混合比を変えて溶液を得た。混合比はそれぞ
れ重量比で試料1が1.5%、試料2が0.6%、試料
3が0.6%、イソプロピルアルコールが97.3%で
ある。
Next, as a fifth embodiment, a solution was obtained by changing the solvent in the first embodiment to isopropyl alcohol and changing the mixing ratio of each solute and solvent. The mixing ratio is 1.5% for sample 1, 0.6% for sample 2, 0.6% for sample 3, and 97.3% for isopropyl alcohol in weight ratio.

【0030】次に、第6の実施例として、第1の実施例
において試料1の代わりに1,2,3−ベンゾトリアゾ
ール(以下、BTAと略称する。)を用いて溶液を得
た。混合比はそれぞれ重量比でBTAが1.0%、試料
2が0.4%、試料3が0.4%、トリクロルエタンが
98.2%である。
Next, as a sixth embodiment, a solution was obtained by using 1,2,3-benzotriazole (hereinafter abbreviated as BTA) instead of sample 1 in the first embodiment. The mixing ratio of BTA was 1.0%, that of Sample 2 was 0.4%, that of Sample 3 was 0.4%, and that of trichloroethane was 98.2% by weight.

【0031】次に、第7の実施例として、第1の実施例
において試料2の割合を半分にし、減らした分だけDL
TPを追加して溶液を得た。混合比はそれぞれ重量比で
試料1が1.0%、試料2が0.2%、試料3が0.4
%、DLTPが0.2%、トリクロルエタンが98.2
%である。また、第1の比較例として従来と同様に昇華
性腐食防止剤であるBTAのみを溶媒のトリクロルエタ
ンに溶かして溶液を得た。混合比はそれぞれ重量比でB
TAが0.5%、トリクロルエタンが99.5%であ
る。
Next, as a seventh embodiment, the ratio of the sample 2 in the first embodiment was halved and the DL was reduced by the reduced amount.
TP was added to obtain a solution. The mixing ratio was 1.0% for sample 1, 0.2% for sample 2, and 0.4% for sample 3 by weight.
%, DLTP 0.2%, trichloroethane 98.2
%. As a first comparative example, a solution was obtained by dissolving only BTA, which is a sublimable corrosion inhibitor, in a solvent, trichloroethane, as in the conventional case. The mixing ratio is B by weight.
TA is 0.5% and trichloroethane is 99.5%.

【0032】また、第2の比較例として、第1の比較例
においてBTAの割合を増やして溶液を得た。混合比は
それぞれ重量比でBTAが1.0%、トリクロルエタン
が99.0%である。次に、第3の比較例として、第1
の比較例において溶媒をイソプロピルアルコールに替
え、溶質及び溶媒の混合比を変えて溶液を得た。混合比
はそれぞれ重量比でBTAが5.0%、イソプロピルア
ルコールが95.0%である。
As a second comparative example, a solution was obtained by increasing the proportion of BTA in the first comparative example. The mixing ratio of BTA is 1.0% and trichloroethane is 99.0% by weight, respectively. Next, as a third comparative example, the first comparative example
In Comparative Example 2, the solvent was changed to isopropyl alcohol, and the mixture ratio of the solute and the solvent was changed to obtain a solution. The mixing ratio is BTA of 5.0% and isopropyl alcohol of 95.0% by weight, respectively.

【0033】次に、第4の比較例として、第2の比較例
においてBTAの代わりに試料1を用いて溶液を得た。
混合比はそれぞれ重量比で試料1が1.0%、トリクロ
ルエタンが99.0%である。以上の各実施例及び比較
例における塗布溶液の配合内容及び混合比を表1にまと
めて示す。
Next, as a fourth comparative example, a solution was obtained using Sample 1 instead of BTA in the second comparative example.
The mixing ratio was 1.0% for sample 1 and 99.0% for trichloroethane in weight ratio. Table 1 summarizes the contents of the coating solutions and the mixing ratios in the above Examples and Comparative Examples.

【0034】[0034]

【表1】 [Table 1]

【0035】各実施例及び比較例を使用して行う電線の
製造方法は、表1で示される配合で昇華性腐食防止剤及
び各抗酸化剤を各溶媒に溶かした溶液を、まず、φ2.
0mmの硬銅線に点滴塗布し、さらにこの硬銅線19本
を同心撚りする際に、中心7本撚りの時点と外層12本
撚りの時点で、それぞれ前記溶液を点滴塗布する。φ
2.0mmの硬銅素線に塗布する溶液とこの素線19本
を同心撚りする際に塗布する溶液との組合せを、表2に
示す。
A method of manufacturing an electric wire using each of the examples and comparative examples is as follows. First, a solution prepared by dissolving a sublimation corrosion inhibitor and each antioxidant in each solvent in the composition shown in Table 1 is first used as φ2.
A 0 mm hard copper wire is drip-coated, and when the 19 hard copper wires are further concentrically twisted, the solution is drip-coated at the time of the center 7-twist and the time of the outer layer 12-twist. φ
Table 2 shows a combination of a solution to be applied to the 2.0 mm hard copper wire and a solution to be applied when the 19 wires are concentrically twisted.

【0036】[0036]

【表2】 [Table 2]

【0037】溶液が塗布された撚り導体(60mm2
銅撚線)上に、公知の押出成形により、絶縁体を被覆
し、絶縁電線を得た。絶縁体としては、PVC組成物及
びPE組成物それぞれを被覆して、OW電線及びOE電
線の二種類を製造している。
The insulator was coated on the stranded conductor (60 mm 2 hard copper stranded wire) coated with the solution by a known extrusion molding to obtain an insulated wire. As the insulator, two types of OW electric wires and OE electric wires are manufactured by coating each of the PVC composition and the PE composition.

【0038】上記の如くして得た各絶縁電線について、
以下に示す耐食性試験A、B及び絶縁体引き抜き試験C
を実施した。耐食性試験Aは、絶縁電線からそれぞれ1
00mm長さの試料を切断して採取し、絶縁体を剥ぎ取
った後の撚り導体を100ppmの硫化ナトリウム水溶
液中に30秒、1分、3分、5分間浸せきし、取り出し
た撚り導体表面の変色状態を目視により観察した。評価
は、○印を変色の無いもの、△印をわずかに変色のある
もの、×印を明瞭に変色のあるものとして行った。
With respect to each of the insulated wires obtained as described above,
Corrosion resistance tests A and B and insulator pull-out test C shown below
Was carried out. In the corrosion resistance test A, 1
A sample having a length of 00 mm was cut and collected, and the stranded conductor after stripping the insulator was immersed in a 100 ppm aqueous solution of sodium sulfide for 30 seconds, 1 minute, 3 minutes, and 5 minutes. The discolored state was visually observed. The evaluation was performed with a mark ○ without discoloration, a mark Δ with slight discoloration, and a mark X with clear discoloration.

【0039】耐食性試験Bは、絶縁電線からそれぞれ3
00mm長さの試料を切断して採取し、この試料を10
0ppmのアンモニア水溶液中に浸せき深さ200mm
(a)1口、浸漬深さ100mm(b)6日を1サイク
ルとした乾湿を行い、60℃で8時間、室温で16時間
のヒートサイクルを1週間続けては新しいアンモニア水
溶液と交換して計8週間行い、試料の中間100mm
(a−b)の撚り導体上に生成する酸化銅の平均皮膜厚
を観察した。評価は、○印を皮膜厚0.1μm未満のも
の、△印を0.1〜0.2μmの範囲のもの、×印を
0.2μmを超えるものとして行った。
In the corrosion resistance test B, 3
A sample having a length of 00 mm was cut and collected.
200mm immersion depth in 0ppm ammonia solution
(A) One port, immersion depth 100 mm (b) Dry and wet with 1 cycle of 6 days, heat cycle of 8 hours at 60 ° C and 16 hours at room temperature for 1 week, replace with new ammonia aqueous solution Performed for a total of 8 weeks, and the middle of the sample was 100 mm
The average film thickness of copper oxide formed on the stranded conductor of (ab) was observed. The evaluation was performed with a circle having a thickness of less than 0.1 μm, a triangle having a thickness of 0.1 to 0.2 μm, and a cross having a thickness exceeding 0.2 μm.

【0040】絶縁体引抜き試験Cは、絶縁電線からそれ
ぞれ3m長さの試料を切断して採取し、一端300mm
のところで100mmだけ絶縁体を剥取り、他端の絶縁
体に荷重1000kgfを加えたときの絶縁体引抜き具
合を観察し、導体と絶縁体の密着性を評価した。評価
は、○印を引抜きにくいもの、△印をわずかに引抜ける
もの、×印を大きく引抜けるものとして行った。それぞ
れの試験におけるOW電線についての評価結果を表3
に、OE電線についての評価結果を表4に示す。
The insulator pull-out test C was performed by cutting a sample having a length of 3 m from an insulated wire and collecting the cut sample.
At this point, the insulator was peeled off by 100 mm, the degree of withdrawal of the insulator when a load of 1000 kgf was applied to the insulator at the other end was observed, and the adhesion between the conductor and the insulator was evaluated. The evaluation was made on the assumption that the mark “○” was difficult to pull out, the mark “△” was slightly pulled out, and the mark “X” was largely drawn out. Table 3 shows the evaluation results for the OW wires in each test.
Table 4 shows the evaluation results of the OE wires.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】耐食性試験Aでは、比較例において変色が
識別できたが、各実施例においてはいずれも導体の変色
等の異常は認められなかった。各実施例が比較例に比べ
て防錆性能が大きく向上しているのが判る。また、耐食
性試験Bでは、BTAの配合量の少ない比較例1におい
ては、酸化銅の生成が判別できたが、残りの各実施例及
び比較例では酸化銅の生成が皮膜厚さとして確認するこ
とはできなかった。
In the corrosion resistance test A, discoloration was identified in the comparative example, but in each of the examples, no abnormality such as discoloration of the conductor was observed. It can be seen that the rust prevention performance of each example is significantly improved as compared with the comparative example. Further, in the corrosion resistance test B, in Comparative Example 1 in which the amount of BTA was small, the formation of copper oxide could be determined, but in each of the remaining Examples and Comparative Examples, the formation of copper oxide was confirmed as the film thickness. Could not.

【0044】さらに、絶縁体引抜き試験Cでは、他に比
べてBTAの割合が多い比較例3のみが、OW電線の場
合でわずかに引抜けが認められ、OE電線の場合で大き
く引き抜ける結果となり、残りは引抜きにくい性質が確
認できた。これらにより、絶縁体の組成物及び溶媒が異
なっても、昇華性腐食防止剤に複数の抗酸化剤を添加し
た腐食防止剤により、導体の腐食性物質に対する耐性が
確保されて腐食が防止されることと共に、導体と絶縁体
の密着性能が損なわれないことが確認できた。
Further, in the insulator pull-out test C, only the comparative example 3 in which the proportion of BTA was higher than the others showed a slight pull-out in the case of the OW wire, and resulted in a large pull-out in the case of the OE wire. The rest were confirmed to be difficult to pull out. Thus, even if the composition and solvent of the insulator are different, the corrosion inhibitor obtained by adding a plurality of antioxidants to the sublimable corrosion inhibitor ensures the resistance of the conductor to corrosive substances and prevents corrosion. In addition, it was confirmed that the adhesion performance between the conductor and the insulator was not impaired.

【0045】[0045]

【発明の効果】以上のように本発明においては、昇華性
腐食防止剤に、フェノール系抗酸化剤及びチオエーテル
系抗酸化剤の二つの抗酸化剤を添加することにより、併
用により著しい抗酸化性を発揮するこれらの抗酸化剤が
昇華性腐食防止剤を有効に保護し、昇華性腐食防止剤の
劣化を著しく低減することができ、防錆性能を長期に亘
り確保させられるという効果を奏する。また、本発明に
おいては、チオエーテル系抗酸化剤との併用で著しい抗
酸化性を発揮するジラウリル・チオジプロピオネートを
添加することにより、複数の抗酸化剤が互いに作用し合
って昇華性腐食防止剤を有効に保護し、昇華性腐食防止
剤の劣化を著しく低減することができ、防錆性能を長期
に亘り確保させられるという効果を有する。また、本発
明においては、チオエーテル系抗酸化剤及びジラウリル
・チオジプロピオネートの二つの抗酸化剤を添加するこ
とにより、併用により著しい抗酸化性を発揮するこれら
の抗酸化剤が昇華性腐食防止剤を有効に保護し、劣化を
防いで防錆性能を長期に亘り確保させられるという効果
を有する。また、本発明においては、特に銅及び銅合金
に対し効果的な腐食防止性能を有するベンゾトリアゾー
ルまたはその誘導体を使用することにより、導体に銅を
使用する電線等に使用して高い防錆効果を発揮できると
いう効果を有する。また、本発明においては、導体表面
に昇華性腐食防止剤と、併用により著しい抗酸化性を発
揮する性質を有する二つの抗酸化剤を含む溶液が塗布さ
れていることにより、二つの抗酸化剤の優れた抗酸化機
能で劣化から保護される昇華性腐食防止剤が導体の防錆
性能を長期に亘り確保し、応力腐食が発生せず断線が起
こりにくいという効果を有する。また、本発明において
は、外力で導体表面の腐食防止剤膜の状態が変化して
も、絶縁体中の昇華性腐食防止剤が導体表面に結合して
耐腐食性能を維持し、応力腐食を長期に亘り防止すると
いう効果を有する。また、昇華性腐食防止剤と抗酸化剤
は導体と絶縁体の密着性能を劣化させず架空状態におい
ても電線強度を保つという効果を有する。また、本発明
においては、撚線の前後で導体表面に均一に塗布処理を
行い、一様な防錆膜を形成させることにより、導体表面
状態の均質性が維持でき、導体の防錆性能を助長させら
れると共に、二つの抗酸化剤の優れた抗酸化機能で劣化
から保護される昇華性腐食防止剤が導体の防錆性能を長
期に亘り確保し、応力腐食が発生せず断線の起こりにく
い電線とすることができるという効果を有する。また、
本発明においては、伸線の直後においても銅線表面に塗
布処理を行い、一様な防錆膜を形成させることにより、
伸線工程から撚線工程直前までの銅線表面のわずかな劣
化をも防ぎ、導体の腐食防止を確実なものとして応力腐
食による断線が起こりにくい電線とすることができると
いう効果を有する。
As described above, according to the present invention, by adding two antioxidants, a phenolic antioxidant and a thioether antioxidant, to a sublimable corrosion inhibitor, a remarkable antioxidant effect is obtained when used in combination. These antioxidants exhibit the effect of effectively protecting the sublimation corrosion inhibitor, significantly reducing the deterioration of the sublimation corrosion inhibitor, and ensuring the rust prevention performance for a long period of time. Further, in the present invention, by adding dilauryl thiodipropionate, which exhibits remarkable antioxidant properties in combination with a thioether-based antioxidant, a plurality of antioxidants act on each other to prevent sublimation corrosion. This has the effect of effectively protecting the agent, significantly reducing the deterioration of the sublimable corrosion inhibitor, and ensuring the rust prevention performance over a long period of time. Also, in the present invention, by adding two antioxidants, a thioether-based antioxidant and dilauryl thiodipropionate, these antioxidants, which exhibit remarkable antioxidant properties in combination, can be used to prevent sublimation corrosion. This has the effect of effectively protecting the agent, preventing deterioration and ensuring rust prevention performance over a long period of time. In addition, in the present invention, by using benzotriazole or a derivative thereof having an effective corrosion inhibitory effect particularly on copper and copper alloys, a high rust prevention effect can be obtained when used for electric wires using copper as a conductor. It has the effect that it can be demonstrated. Further, in the present invention, the conductor surface is coated with a solution containing two antioxidants having the property of exhibiting remarkable antioxidant properties in combination with a sublimable corrosion inhibitor, thereby providing two antioxidants. The sublimation corrosion inhibitor, which is protected from deterioration by its excellent antioxidant function, has the effect of ensuring the rust prevention performance of the conductor for a long period of time, preventing stress corrosion from occurring and preventing disconnection. Further, in the present invention, even if the state of the corrosion inhibitor film on the conductor surface changes due to external force, the sublimation corrosion inhibitor in the insulator is bonded to the conductor surface to maintain the corrosion resistance performance and reduce stress corrosion. It has the effect of preventing over a long period of time. Further, the sublimation corrosion inhibitor and the antioxidant have the effect of maintaining the strength of the electric wire even in an aerial state without deteriorating the adhesion performance between the conductor and the insulator. Also, in the present invention, by performing a uniform coating treatment on the conductor surface before and after the stranded wire, and forming a uniform rust prevention film, the uniformity of the conductor surface state can be maintained, the rust prevention performance of the conductor The sublimation corrosion inhibitor, which is promoted and protected from deterioration by the excellent antioxidant function of the two antioxidants, secures the rust prevention performance of the conductor for a long time, does not cause stress corrosion and does not easily break. It has the effect that it can be an electric wire. Also,
In the present invention, the coating treatment is performed on the surface of the copper wire even immediately after drawing to form a uniform rust-proof film.
This also has the effect of preventing a slight deterioration of the surface of the copper wire from the wire drawing process to immediately before the stranded wire process, ensuring the prevention of corrosion of the conductor, and making the wire less likely to be broken by stress corrosion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る絶縁電線の概略構
成図である。
FIG. 1 is a schematic configuration diagram of an insulated wire according to an embodiment of the present invention.

【図2】本発明の一実施の形態に係る絶縁電線の製造工
程説明図である。
FIG. 2 is an explanatory diagram of a manufacturing process of the insulated wire according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁電線 2 撚り導体 2a 硬銅線 3 絶縁外被 10 伸線機 20 撚線機 21 撚線用ボビン 30 塗布機構 DESCRIPTION OF SYMBOLS 1 Insulated electric wire 2 Twisted conductor 2a Hard copper wire 3 Insulated jacket 10 Drawing machine 20 Twisting machine 21 Twisting bobbin 30 Coating mechanism

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 昇華性腐食防止剤に、フェノール系抗酸
化剤及びチオエーテル系抗酸化剤を添加したことを特徴
とする腐食防止剤。
1. A corrosion inhibitor characterized by adding a phenolic antioxidant and a thioether antioxidant to a sublimable corrosion inhibitor.
【請求項2】 前記請求項1に記載の腐食防止剤におい
て、 ジラウリル・チオジプロピオネートを添加したことを特
徴とする腐食防止剤。
2. The corrosion inhibitor according to claim 1, wherein dilauryl thiodipropionate is added.
【請求項3】 昇華性腐食防止剤に、チオエーテル系抗
酸化剤及びジラウリル・チオジプロピオネートを添加し
たことを特徴とする腐食防止剤。
3. A corrosion inhibitor characterized by adding a thioether antioxidant and dilauryl thiodipropionate to a sublimable corrosion inhibitor.
【請求項4】 前記請求項1ないし3のいずれかに記載
の腐食防止剤において、 前記昇華性腐食防止剤が、ベンゾトリアゾールまたはそ
の誘導体であることを特徴とする腐食防止剤。
4. The corrosion inhibitor according to claim 1, wherein the sublimable corrosion inhibitor is benzotriazole or a derivative thereof.
【請求項5】 前記請求項1ないし4のいずれかに記載
した腐食防止剤を溶媒に溶かしてなる溶液を導体の表面
に塗布したことを、 特徴とする電線。
5. An electric wire, wherein a solution obtained by dissolving the corrosion inhibitor according to any one of claims 1 to 4 in a solvent is applied to the surface of a conductor.
【請求項6】 前記請求項5に記載の電線において、 前記腐食防止剤の溶液を塗布した導体に前記腐食防止剤
を所定量添加した絶縁体を被覆したことを、 特徴とする電線。
6. The electric wire according to claim 5, wherein the conductor to which the solution of the corrosion inhibitor is applied is coated with an insulator to which a predetermined amount of the corrosion inhibitor is added.
【請求項7】 前記請求項1ないし4のいずれかに記載
した腐食防止剤を溶媒に溶かしてなる溶液を、電線の製
造工程において複数の銅線を撚り合わせる撚り工程の直
前の各銅線表面及び、当該撚り工程の直後の撚り線の表
面にそれぞれ塗布することを特徴とする電線の製造方
法。
7. A surface of each copper wire immediately before a twisting step of twisting a plurality of copper wires in a wire manufacturing process, using a solution obtained by dissolving the corrosion inhibitor according to any one of claims 1 to 4 in a solvent. And a method for producing an electric wire, wherein the method is applied to the surface of a stranded wire immediately after the twisting step.
【請求項8】 前記請求項7に記載の電線の製造方法に
おいて、 前記腐食防止剤を溶媒に溶かしてなる溶液を、電線の製
造工程における銅線の伸線工程の直後に銅線表面に塗布
することを特徴とする電線の製造方法。
8. The method of manufacturing an electric wire according to claim 7, wherein a solution obtained by dissolving the corrosion inhibitor in a solvent is applied to the surface of the copper wire immediately after the copper wire drawing step in the electric wire manufacturing process. A method of manufacturing an electric wire.
JP26932496A 1996-09-18 1996-09-18 Corrosion inhibitor, electric wire using the inhibitor and production of the wire Pending JPH1088375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26932496A JPH1088375A (en) 1996-09-18 1996-09-18 Corrosion inhibitor, electric wire using the inhibitor and production of the wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26932496A JPH1088375A (en) 1996-09-18 1996-09-18 Corrosion inhibitor, electric wire using the inhibitor and production of the wire

Publications (1)

Publication Number Publication Date
JPH1088375A true JPH1088375A (en) 1998-04-07

Family

ID=17470775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26932496A Pending JPH1088375A (en) 1996-09-18 1996-09-18 Corrosion inhibitor, electric wire using the inhibitor and production of the wire

Country Status (1)

Country Link
JP (1) JPH1088375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1012662C2 (en) * 1999-07-21 2001-01-23 Vepetex B V Fiber, yarn and cable, and method for the manufacture thereof.
CN114908354A (en) * 2022-04-19 2022-08-16 宁波金田铜业(集团)股份有限公司 Surface treatment method of soft brass wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1012662C2 (en) * 1999-07-21 2001-01-23 Vepetex B V Fiber, yarn and cable, and method for the manufacture thereof.
EP1072698A1 (en) * 1999-07-21 2001-01-31 Vepetex B.V. Fibre, yarn and cable and method for manufacturing the same
CN114908354A (en) * 2022-04-19 2022-08-16 宁波金田铜业(集团)股份有限公司 Surface treatment method of soft brass wire
CN114908354B (en) * 2022-04-19 2024-02-09 宁波金田铜业(集团)股份有限公司 Surface treatment method for soft brass wire

Similar Documents

Publication Publication Date Title
TW200933657A (en) Multi-core flat insulated wire and producing process thereof
JPH1088375A (en) Corrosion inhibitor, electric wire using the inhibitor and production of the wire
JPH11232931A (en) Insulated electric wire
JPH02148622A (en) Manufacture of insulating cable
JPH02181318A (en) Manufacture of insulated electric cable
JPH02148624A (en) Manufacture of insulating cable
JPH02181317A (en) Manufacture of insulated electric cable
JPH02181316A (en) Manufacture of insulated electric cable
JP7339810B2 (en) Watertight aluminum distribution line and its manufacturing method
JPH02148621A (en) Manufacture of insulating cable
JPH01281608A (en) Insulated wire and manufacture thereof
JPS6034205B2 (en) watertight wire or cable
JPH02181319A (en) Manufacture of insulated electric cable
JPH07105170B2 (en) Insulated wire and manufacturing method thereof
JPH02148623A (en) Manufacture of insulating cable
JP2023058779A (en) Branch connection structure for cable and method for manufacturing branch connection part of cable
JP2655652B2 (en) Insulated wire
JPH0730470B2 (en) Insulated wire and manufacturing method thereof
JPH0799648B2 (en) Insulated wire
JP2926730B2 (en) Insulated wire conductor
JPH07101567B2 (en) Insulated wire / cable
JPH01281609A (en) Insulated wire and manufacture thereof
JPH0664948B2 (en) Method for manufacturing conductor for coated electric wire
JPS6136005Y2 (en)
JPH0927217A (en) Rust-proof insulated wire