JPH0266433A - Defect detecting machine - Google Patents

Defect detecting machine

Info

Publication number
JPH0266433A
JPH0266433A JP21632688A JP21632688A JPH0266433A JP H0266433 A JPH0266433 A JP H0266433A JP 21632688 A JP21632688 A JP 21632688A JP 21632688 A JP21632688 A JP 21632688A JP H0266433 A JPH0266433 A JP H0266433A
Authority
JP
Japan
Prior art keywords
light
inspected
polarized
beam splitter
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21632688A
Other languages
Japanese (ja)
Inventor
Reiko Muto
武藤 玲子
Akira Tamamura
玉村 亮
Kazumasa Takahashi
和正 高橋
Hiroshi Hiratsuka
浩 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase and Co Ltd
Nagase Sangyo KK
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Nagase and Co Ltd
Nagase Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Nagase and Co Ltd, Nagase Sangyo KK filed Critical Asahi Glass Co Ltd
Priority to JP21632688A priority Critical patent/JPH0266433A/en
Publication of JPH0266433A publication Critical patent/JPH0266433A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Abstract

PURPOSE:To accurately detect a defective part by converting light from a light source into parallel beams, converting the parallel beams into polarized beams through a polarizer, irradiating an object to be inspected through a polarized beam splitter, and inputting reflected light into a solid image pickup element. CONSTITUTION:Light from a light source 10 is converted into parallel beams by a collimeter lens 13 through a flexible light guide 11 and a condensor lens 12 and converted into polarized beams by a polarizer 14. The polarized beams are reflected by a polarized beam splitter 16 and an object 19 to be inspected is irradiated with the reflected beams through a 1/4 wavelength plate 15. The polarized beams reflected by the object 9 are straight transmitted through the 1/4 wavelength plate 15 and the beam splitter 16 and then inputted to an analyzer 17. The analyzer 17 transmits only positive reflected light obtained from a normal part, interrupts irregular reflection light from a defective part and inputs the transmitted light to the solid image pickup element 2 through an acromat lens 18 to execute image processing. Consequently, a fine defect can be accurately detected, the movement of the light source can be omitted by a flexible light guide and the device can be simplified.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、透明基板、特に透明基板上に一面に形成され
た透明膜の欠点の検出に特に有効な欠点検出機に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a defect detector particularly effective for detecting defects in a transparent substrate, particularly in a transparent film formed over one surface of the transparent substrate.

[従来の技術] 従来、半導体ウェハやフォトマスク、ガラスディスク等
の表面の欠点検出機は広く知られている。例えば、代表
的な例として、第4図の様に、レーザー光41を被検脊
面42に照射して、被検脊面42からの正反射光43を
光電子増倍管44により受光し、欠点における散乱によ
る受光量の減少を測定し、欠点の有無を検出する光学系
(a)、又は、欠点によって散乱された散乱光45を受
光して欠点の存在を検出する光学系(b)を利用した装
置が知られている。又、第5図の様に、光源51からの
透過光(c)又は反射光(d)をCCDカメラ52で受
光し、欠点による透過光(c)又は反射光(d)の減少
量を検出することで欠点の有無を検出する装置が知られ
ている。
[Prior Art] Conventionally, defect detectors for the surfaces of semiconductor wafers, photomasks, glass disks, etc. are widely known. For example, as a typical example, as shown in FIG. 4, a laser beam 41 is irradiated onto a spinal surface 42 to be examined, and specularly reflected light 43 from the spinal surface 42 to be examined is received by a photomultiplier tube 44. An optical system (a) that measures a decrease in the amount of light received due to scattering at a defect and detects the presence or absence of a defect, or an optical system (b) that detects the presence of a defect by receiving scattered light 45 scattered by the defect. The equipment used is known. Further, as shown in FIG. 5, the transmitted light (c) or reflected light (d) from the light source 51 is received by the CCD camera 52, and the amount of decrease in the transmitted light (c) or reflected light (d) due to the defect is detected. There is a known device that detects the presence or absence of a defect by doing this.

[発明の解決しようとする課題] しかしながら、検出しようとする欠点が、反射光の方向
が一義的に決まらない欠点であったり正常部とあまり大
差ない反射率を有している場合、例えば、透明基板」二
に形成された透明膜の欠点であるような場合には、上述
した様な、単に、反射光又は透過光の光用差を検出する
方式の欠点検出機によっては、精度の良い検査が不可能
であった。
[Problem to be solved by the invention] However, if the defect to be detected is one in which the direction of reflected light cannot be determined uniquely or has a reflectance that is not very different from that of a normal part, If the defect is in a transparent film formed on a substrate, it is possible to perform accurate inspection using a defect detector that simply detects the difference in reflected or transmitted light as described above. was not possible.

[課題を解決するための手段] 本発明は上述の問題点を解決すべくなされたものであり
、光源と、光源からの出射光を導くライトガイドと、該
ライトガイドから出射した光をコリメタ−レンズの焦点
に集光するコンデンサーレンズと、該コンデンサーレン
ズを通って来た光を1ト行先に変えるコリメタ−レンズ
と、該平行光を偏光に変えるポラライザーと、該偏光を
174波長板へ反射し、かつ174波長板を透過してき
た光を透過する偏光ビームスプリッタ−と、該偏光ビー
ムスプリッタ−によって反射された偏光を被検査体表面
へ、また、被検査体表面からの正反射光を偏光ビームス
プリッタ−へ、174波長相当の位相変化を与えて透過
する174波長板と、偏光ビームスプリッタ−を透過し
て来た光のうち所定の偏光のみを透過するアナライザと
、該アナライザを通った偏光を固体撮像素子の受光面に
集光させるアクロマートレンズとからなる光学系と、該
光学系から入射した光を取り込み光電変換する固体撮像
素子と、該固体撮像素子からの出力を色階調変換し、そ
の後2値化する画像処理装置とを有することを特徴とす
る欠点検出機を提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes a light source, a light guide that guides the light emitted from the light source, and a collimator that directs the light emitted from the light guide. A condenser lens that focuses light on the focal point of the lens, a collimator lens that converts the light that has passed through the condenser lens into one destination, a polarizer that converts the parallel light into polarized light, and a polarizer that reflects the polarized light to a 174-wave plate. , and a polarizing beam splitter that transmits the light that has passed through the 174-wave plate; the polarized light reflected by the polarizing beam splitter is directed to the surface of the object to be inspected; and the specularly reflected light from the surface of the object to be inspected is converted into a polarized beam. A 174 wavelength plate that transmits a phase change equivalent to 174 wavelengths to the splitter, an analyzer that transmits only a predetermined polarized light of the light that has passed through the polarizing beam splitter, and a polarized light that has passed through the analyzer. An optical system consisting of an achromatic lens that focuses light on a light receiving surface of a solid-state image sensor, a solid-state image sensor that captures light incident from the optical system and photoelectrically converts it, and converts the output from the solid-state image sensor into color gradation, The present invention provides a defect detector characterized by having an image processing device that then performs binarization.

以ド、第1図を用いて本発明の欠点検出機における光学
系を光源からの出射光の光路を追って説明する。
Hereinafter, the optical system in the defect detector of the present invention will be explained using FIG. 1, following the optical path of the light emitted from the light source.

本発明の光源10としては、特に限定されるものではな
く、水銀灯、蛍光灯、白色光、レーザー等が使用可能で
あるが、安全性、設備安価、取り扱いが容易等の理由で
、ハロゲンランプが好ましい。
The light source 10 of the present invention is not particularly limited, and mercury lamps, fluorescent lamps, white light, lasers, etc. can be used, but halogen lamps are preferred for reasons of safety, equipment cost, ease of handling, etc. preferable.

光源10から出射された光は、フレキシブルなライトガ
イド11によって導光され、ライトガイド11から出た
光はコンデンサーレンズ12によって、コリメタ−レン
ズ13の焦点に集光した後コリメタ−レンズ13に入り
、コリメタ−レンズ13によって、平行光となる。該平
行光はポラライザー(偏光子)14によって偏光となり
、偏光ビームスプリッタ−16によって反射角45″で
反射され、174波長板15を透過して被検査体9の表
面に垂直に照射される。
The light emitted from the light source 10 is guided by a flexible light guide 11, and the light emitted from the light guide 11 is condensed by a condenser lens 12 to the focal point of a collimator lens 13, and then enters the collimator lens 13. The collimator lens 13 converts the light into parallel light. The parallel light is polarized by a polarizer 14, reflected by a polarizing beam splitter 16 at a reflection angle of 45'', transmitted through a 174-wave plate 15, and irradiated perpendicularly onto the surface of the object 9 to be inspected.

被検査体9による正反射光はl/4波長板!5、偏光ビ
ームスプリッタ−16を透過してアナライザ17に入る
。アナライザ17に入9・rシた光のうち所定の偏光の
みがアナライザ17を透過し、その他の光は遮断される
。アナライザ17を透過した偏光は、アクロマートレン
ズ18によって、波長に依らず固体撮像素子2の受光面
に集光される。
The specularly reflected light from the inspected object 9 is a 1/4 wavelength plate! 5. The light passes through the polarizing beam splitter 16 and enters the analyzer 17. Of the light entering the analyzer 17, only predetermined polarized light is transmitted through the analyzer 17, and other light is blocked. The polarized light that has passed through the analyzer 17 is focused by the achromatic lens 18 on the light receiving surface of the solid-state image sensor 2 regardless of the wavelength.

以上のような光学系により固体撮像素子2にとり込まれ
た被検査体による正反射光は、固体撮像素子2によって
光電変換され、電気信号となって画像処理装置3に送ら
れる。
The specularly reflected light from the object to be inspected, which is taken into the solid-state image sensor 2 by the optical system as described above, is photoelectrically converted by the solid-state image sensor 2 and sent to the image processing device 3 as an electrical signal.

画像処理装置3では、固体撮像素子2の各画素ごとの電
気信号が淡から濃までの色階調変換され、あらかじめ定
められた適当なしきいイI11を境として2値化され、
被検査体表面の欠点の有無が出力される。
In the image processing device 3, the electric signal for each pixel of the solid-state image sensor 2 is converted into a color gradation from light to dark, and is binarized with a predetermined appropriate threshold I11 as the boundary.
The presence or absence of defects on the surface of the object to be inspected is output.

次に、本発明の欠点検出機に被検査体が搬入されてから
欠点の有無が検査され、搬出されるまでを順を追って説
明する。(第2図参照)まず、被検査体9が、搬入され
、Xコントローラー6によって、被検査体9の移動方向
を含む一直線上の所定の点に位置決めされる。
Next, a step-by-step explanation will be given of the process from when the object to be inspected is carried into the defect detector of the present invention until it is inspected for the presence or absence of defects and is carried out. (See FIG. 2) First, the object 9 to be inspected is carried in and positioned by the X controller 6 at a predetermined point on a straight line including the moving direction of the object 9 to be inspected.

次に、XYコントローラー5によって、ライトガイドか
ら固体撮像素子までを含む光学系1が被検査体9の一区
画の上面の所定のX、Y座標点に位置決めされる。そこ
で、固体撮像素子内に被検査体9による正反射光が取り
込まれ、電気信号となって画像処理装置3に送られ、固
体撮像素子の各画素に対応する被検査体の各微小区画ご
との欠点の有無がモニター4に出力される。
Next, the optical system 1 including everything from the light guide to the solid-state image sensor is positioned by the XY controller 5 at a predetermined X and Y coordinate point on the upper surface of a section of the object to be inspected 9 . Therefore, the specularly reflected light from the object to be inspected 9 is taken into the solid-state image sensor, and is sent as an electrical signal to the image processing device 3, and is sent to the image processing device 3 for each microsection of the object to be inspected corresponding to each pixel of the solid-state image sensor. The presence or absence of defects is output to the monitor 4.

XYコントローラー5によってライトガイドから固体撮
像素子までを含む光学系lをX−Y方向に走査させ、被
検査体9の全面を検査する。
An optical system 1 including a light guide to a solid-state image sensor is caused to scan in the XY direction by an XY controller 5, and the entire surface of the object 9 to be inspected is inspected.

検査結果は全てモニター4に表示される。All test results are displayed on monitor 4.

被検査体9全面検査終了後、被検査体は搬出される。After the inspection of the entire surface of the object to be inspected 9 is completed, the object to be inspected is carried out.

以上の操作手順はCRT8に表示され、初心者でも簡単
に命令をホストコンピューター7に入力し、操作できる
。ホストコンピューター7は上述の検査手順を統括する
The above operating procedure is displayed on the CRT 8, and even beginners can easily input commands into the host computer 7 and operate it. The host computer 7 supervises the above-mentioned testing procedure.

ホストコンピューターにおいて、被検査体9の欠点有り
の判定のあった微小区画の隣接している部分を合わせて
欠点の大きさを杷握して、被検査体ごとに、欠点の大き
さによるNG判定や、欠点の個数によるNG判定をする
ことも可能である。この場合、NG判定された時点で検
査は終了となる。
In the host computer, the size of the defect is determined by combining the adjacent parts of the micro-sections of the object to be inspected 9 that have been determined to have defects, and an NG judgment is made based on the size of the defect for each object to be inspected. It is also possible to make an NG judgment based on the number of defects. In this case, the inspection ends when an NG determination is made.

本発明における光源の種類や固体撮像素子の種類は、被
検査体の吸収波長特性を考慮して選定される。
The type of light source and the type of solid-state image sensor in the present invention are selected in consideration of the absorption wavelength characteristics of the object to be inspected.

[作用] 本発明は偏光を用いて欠点検出をすることを特徴として
いる。
[Operation] The present invention is characterized in that defects are detected using polarized light.

本発明の光学系は、偏光を被検査体9の表面に照射し、
反射光の偏光状態の変化を利用するように設計されてい
る。即ち、欠点部分に照射された光のうち、ある部分は
散乱されるが、正反射光として正常部の反射光と同様に
固体撮像素子等の受光部にもどってくるものがある。本
発明においては、このような光を正常部の反射光と誤認
するのを避けるために、正常部の反射光と欠点の反射光
の偏光状態の違いにより区別している。具体的には、ア
ナライザ17で、正常部からの偏光と異なる偏光状態の
光を遮断することで、欠点からの正反射光と正常部から
の正反射光との混同を避けている。このようにすること
によって、従来のように、単に被検査体の反射光の光量
を検査するのと違い、大変正確な検査が可能となってい
る。
The optical system of the present invention irradiates the surface of the object to be inspected 9 with polarized light,
It is designed to take advantage of changes in the polarization state of reflected light. That is, some of the light irradiated onto the defective area is scattered, but some of it returns to the light receiving section of the solid-state image sensor or the like as specularly reflected light, similar to the light reflected from the normal area. In the present invention, in order to avoid misidentifying such light as reflected light from a normal area, the reflected light from a normal area is distinguished from the reflected light from a defect based on the difference in polarization state. Specifically, the analyzer 17 blocks light with a polarization state different from that from the normal area, thereby avoiding confusion between the specularly reflected light from the defect and the specularly reflected light from the normal area. By doing this, a very accurate inspection is possible, unlike the conventional method of simply inspecting the amount of light reflected from the object to be inspected.

従って、本発明においては、反射光の方向が一義的に決
まらない欠点、正常部の反射率とあまり大差ない反射率
を有する欠点を大変精密に検出できる。特に、透明基板
上に形成された透明膜、例えばガラス基板上に形成され
た錫がドープされた酸化インジウム(ITOI膜、フッ
素又はアンチモンがドープされた酸化錫膜等の欠点を検
出する場合には最適である。
Therefore, in the present invention, defects in which the direction of reflected light cannot be determined uniquely and defects in which the reflectance is not significantly different from the reflectance of a normal region can be detected with great precision. In particular, when detecting defects in a transparent film formed on a transparent substrate, such as a tin-doped indium oxide (ITOI film) formed on a glass substrate, a fluorine- or antimony-doped tin oxide film, etc. Optimal.

又、本発明においては、上述の光学系から入って来た光
を固体撮像素子によって光電変換換するので、非常に微
細な欠点も検出可能である。例えば、第3図の様に基板
31上に第1層32、第2層33が形成された2層系の
被膜に第3図(a) 、 (b) 、 (c)に示した
様な各種微細な欠点X、Y、Zが存在している場合であ
っても、検出可能である。
Furthermore, in the present invention, since the light entering from the above-mentioned optical system is photoelectrically converted by the solid-state image sensor, even very minute defects can be detected. For example, as shown in FIG. 3, a two-layer coating in which a first layer 32 and a second layer 33 are formed on a substrate 31 is coated with a coating as shown in FIGS. 3(a), (b), and (c). Even if various minute defects X, Y, and Z exist, they can be detected.

又、洗浄により除去可能なゴミが透明な被検査体に付着
している場合、本来ならば透過するけずの光がゴミによ
って反射され、正常部より反射量が多くなり、従って、
その中でアナライザを透過する光も多くなるので正常部
に比べて固体撮像素子により多くの反射光が入射し、色
階調変換の結果、正常部より濃く出ることがあるが、し
きい値を適当に設定して、2値化することにより、かか
る洗浄により除去可能なゴミの有無を検出して表示する
こと、欠点との判別をつけることも可能である。
In addition, if dust that can be removed by cleaning is attached to a transparent object to be inspected, the light from the dust that would normally pass through will be reflected by the dust, and the amount of reflection will be greater than that of a normal part.
As more light passes through the analyzer, more reflected light enters the solid-state image sensor than in the normal area, and as a result of color gradation conversion, the image may appear darker than in the normal area. By appropriately setting and binarizing, it is possible to detect and display the presence or absence of dust that can be removed by such cleaning, and to distinguish it from defects.

[実施例] 錫がドープされた酸化インジウムからなる透明導電膜が
2層−面に形成されたガラス基板を被検査体として本発
明の欠点検出機の性能を調へた。同一の被検査体を光学
顕微鏡で検査した結果と比較すると、本発明の欠点検出
機は、長径100μm以上の欠点は100%、長径70
μm〜00μmの欠点については70%の検出性能であ
ることがわかった。又、洗浄により除去可能なゴミを、
クラスl000のクリーンルーム内で80%以上検出可
能であった。
[Example] The performance of the defect detector of the present invention was investigated using a glass substrate on which two transparent conductive films made of tin-doped indium oxide were formed as an object to be inspected. Comparing the results of inspecting the same object with an optical microscope, the defect detector of the present invention detects 100% of defects with a major axis of 100 μm or more, and detects defects with a major axis of 70 μm or more.
It was found that the detection performance was 70% for defects of μm to 00 μm. In addition, dust that can be removed by washing,
80% or more was detectable in a class 1000 clean room.

1比較例1] 上記実施例と同一の被検査体を第4図aの方式の欠点検
出装置で検査したところ、長径が120μm以上の欠点
については、検出は可能であったが、その検出された信
号が欠点によるものかノイズによるものか判別不可能で
あった。
1 Comparative Example 1] When the same object to be inspected as in the above example was inspected using the defect detection device of the method shown in FIG. It was impossible to determine whether the detected signal was due to defects or noise.

[比f咬例2] 上記実施例と同一の被検査体を第5図の反射方式の欠点
検出装置で検査したところ、長径 100μm以上の欠
点は70%、長径70μm〜100μmの欠点について
は50%しか検出できていなかった。又、洗浄によって
除去可能なゴミも欠点と同様に検出してしまうので実際
には膜が正常な部分も欠点として誤判定してしまうこと
がわかった。
[Ratio f bite example 2] When the same object as in the above example was inspected using the reflection type defect detection device shown in Fig. 5, 70% of the defects had a major diameter of 100 μm or more, and 50% had a major diameter of 70 μm to 100 μm. Only % could be detected. In addition, it has been found that since dust that can be removed by cleaning is detected in the same way as defects, areas where the membrane is actually normal are incorrectly determined as defects.

[効果] 本発明においては、偏光を利用した光学系を採用し1画
像処理しているので、欠点部と正常部を大変正確に判別
することができ、又、固体撮像素子を用いているので、
被検査体表面を微細面積ごとに区分して検査でき、欠陥
の位置を正確に把握することができる。
[Effects] The present invention employs an optical system that uses polarized light to process a single image, making it possible to very accurately distinguish between defective areas and normal areas.Also, since a solid-state imaging device is used, ,
The surface of the object to be inspected can be inspected by dividing it into minute areas, and the position of defects can be accurately determined.

この為、正常部と欠点との反射率の差が小さく、又、反
射光の方向が一義的に決まらない欠点を検出する場合、
例えば、透明基板上に形成された透明膜の欠点、特にガ
ラス基板上に形成された透明導電膜の欠点等を検出する
場合には、従来の偏光を用いない欠点検出機と比べて、
大変正確な欠点検出性能を得ることが可能となるという
優れた効果を有している。
Therefore, when detecting a defect where the difference in reflectance between the normal part and the defect is small and the direction of the reflected light cannot be determined uniquely,
For example, when detecting defects in transparent films formed on transparent substrates, especially defects in transparent conductive films formed on glass substrates, compared to conventional defect detectors that do not use polarized light,
This has the excellent effect of making it possible to obtain very accurate defect detection performance.

又、本発明においては、光源の光をフレキシブルなライ
トガイドによって導光しているので、非検査体9を全面
検査するにあたり、光源自体を動かす必要がないので2
、装置が簡単になり、又、発塵を可及的に防止できる。
In addition, in the present invention, since the light from the light source is guided by a flexible light guide, there is no need to move the light source itself when inspecting the entire surface of the non-inspection object 9.
, the equipment becomes simple, and dust generation can be prevented as much as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の欠点検出機における光学系(第2図の
1)の構成図、第2図は本発明の欠点検出機の各装置相
互の接続を示す説明図、第3図は基板上に膜を2層形成
した場合に存在し得る欠点の種類を示す断面図、第4図
、第5図は従来の欠点検出機の概略説明図である。 1・・・光学系 2・・・固体撮像素子 3・・・画像処理装置 4・・・干二ター 5・・・XYコントローラー 6・−Xコントローラー 7・・・ホストコンピューター 8・・・CRT 9・・・被検査体 10・・・光源 ++・・・ライトガイド 12・・・コンデンサーレンズ 13・・・コリメタ−レンズ 14・・・ポラライザー 15・・・174波長板 i6・・・偏光ビームスプリッタ− 17・・・アナライザ 18・・・アクロマートレンズ 31・・・基板 32・・・第1層 33・・・第2層 X、Y、Z・・・欠点 41・・・レーザー光 42・・・被検査面 43・・・正反射光 44・・・光電子増倍管 45・・・散乱光 第 図 第 ? 図 −り′ルト=m乙逢ソ 晧4図
Fig. 1 is a configuration diagram of the optical system (1 in Fig. 2) in the defect detector of the present invention, Fig. 2 is an explanatory diagram showing the interconnection of each device of the defect detector of the present invention, and Fig. 3 is a board FIGS. 4 and 5 are cross-sectional views showing the types of defects that may exist when two layers of films are formed on top, and are schematic illustrations of a conventional defect detector. 1...Optical system 2...Solid-state image sensor 3...Image processing device 4...Hydrogen 5...XY controller 6...-X controller 7...Host computer 8...CRT 9 ...Object to be inspected 10...Light source ++...Light guide 12...Condenser lens 13...Collimator lens 14...Polarizer 15...174 Wave plate i6...Polarizing beam splitter 17... Analyzer 18... Achromatic lens 31... Substrate 32... First layer 33... Second layer X, Y, Z... Defect 41... Laser beam 42... Covered Inspection surface 43... Specularly reflected light 44... Photomultiplier tube 45... Scattered light Fig. 4? Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)光源と、光源からの出射光を導くライトガイドと
、該ライトガイドから出射した光をコリメターレンズの
焦点に集光するコンデンサーレンズと、該コンデンサー
レンズを通って来た光を平行光に変えるコリメターレン
ズと、該平行光を偏光に変えるポラライザーと、該偏光
を1/4波長板へ反射し、かつ1/4波長板を透過して
きた光を透過する偏光ビームスプリッターと、該偏光ビ
ームスプリッターによって反射された偏光を被検査体表
面へ、また、被検査体表面からの正反射光を偏光ビーム
スプリッターへ、1/4波長相当の位相変化を与えて透
過する1/4波長板と、偏光ビームスプリッターを透過
して来た光のうち所定の偏光のみを透過するアナライザ
と、該アナライザを通った偏光を固体撮像素子の受光面
に集光させるアクロマートレンズとからなる光学系と、
該光学系から入射した光を取り込み光電変換する固体撮
像素子と、該固体撮像素子からの出力を色階調変換し、
その後2値化する画像処理装置とを有することを特徴と
する欠点検出機。
(1) A light source, a light guide that guides the light emitted from the light source, a condenser lens that focuses the light emitted from the light guide onto the focal point of a collimator lens, and a parallel light that converts the light that has passed through the condenser lens. a polarizer that changes the parallel light into polarized light, a polarizing beam splitter that reflects the polarized light to a quarter-wave plate and transmits the light that has passed through the quarter-wave plate, and A 1/4 wavelength plate that transmits the polarized light reflected by the beam splitter to the surface of the object to be inspected, and specularly reflected light from the surface of the object to be inspected to the polarizing beam splitter with a phase change equivalent to 1/4 wavelength. , an optical system comprising an analyzer that transmits only predetermined polarized light out of the light that has passed through the polarizing beam splitter, and an achromatic lens that focuses the polarized light that has passed through the analyzer onto a light receiving surface of a solid-state image sensor;
a solid-state image sensor that captures light incident from the optical system and converts it into electricity; a solid-state image sensor that converts the output from the solid-state image sensor into color gradation;
1. A defect detector comprising: an image processing device that then performs binarization.
JP21632688A 1988-09-01 1988-09-01 Defect detecting machine Pending JPH0266433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21632688A JPH0266433A (en) 1988-09-01 1988-09-01 Defect detecting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21632688A JPH0266433A (en) 1988-09-01 1988-09-01 Defect detecting machine

Publications (1)

Publication Number Publication Date
JPH0266433A true JPH0266433A (en) 1990-03-06

Family

ID=16686778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21632688A Pending JPH0266433A (en) 1988-09-01 1988-09-01 Defect detecting machine

Country Status (1)

Country Link
JP (1) JPH0266433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257932A (en) * 2001-03-06 2002-09-11 Nippon Telegr & Teleph Corp <Ntt> Imaging device of type detecting reflected electromagnetic wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257932A (en) * 2001-03-06 2002-09-11 Nippon Telegr & Teleph Corp <Ntt> Imaging device of type detecting reflected electromagnetic wave

Similar Documents

Publication Publication Date Title
JP7373527B2 (en) Workpiece defect detection device and method
JP5032114B2 (en) Patterned or non-patterned wafer and other specimen inspection systems
JP5355922B2 (en) Defect inspection equipment
US7773212B1 (en) Contemporaneous surface and edge inspection
JPWO2009072484A1 (en) Inspection apparatus and inspection method
JP2012164801A (en) Inspection apparatus and inspection method
WO2009133849A1 (en) Inspection device
JPH10148619A (en) Method and device for inspecting face defect of substrate under inspection
JPS61104243A (en) Method and apparatus for detecting foreign matter
JPH0256626B2 (en)
WO2022126677A1 (en) Semiconductor inspection device and inspection method
JPH0266433A (en) Defect detecting machine
US7457454B1 (en) Detailed grey scale inspection method and apparatus
TWI818047B (en) Testing equipment and testing methods
JPH09218162A (en) Surface defect inspection device
JPH0587781B2 (en)
JPH04344447A (en) Detecting device for defect in transparent glass substrate
JPH10170240A (en) Method and device for inspection of pattern flaw
JPH1019791A (en) Method and device for inspecting semiconductor material
JPH07119703B2 (en) Surface defect inspection device
JP3572545B2 (en) Pass / fail judgment method of substrate
JP5668113B2 (en) Defect inspection equipment
JP2021167794A (en) Defect inspection apparatus, defect inspection method, and scattered light detection system
JPH02201208A (en) Defect inspector
JPH02190749A (en) Foreign matter inspecting device