JPH02653Y2 - - Google Patents

Info

Publication number
JPH02653Y2
JPH02653Y2 JP2218881U JP2218881U JPH02653Y2 JP H02653 Y2 JPH02653 Y2 JP H02653Y2 JP 2218881 U JP2218881 U JP 2218881U JP 2218881 U JP2218881 U JP 2218881U JP H02653 Y2 JPH02653 Y2 JP H02653Y2
Authority
JP
Japan
Prior art keywords
temperature
hot wire
burnout
resistor
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2218881U
Other languages
Japanese (ja)
Other versions
JPS57135972U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2218881U priority Critical patent/JPH02653Y2/ja
Publication of JPS57135972U publication Critical patent/JPS57135972U/ja
Application granted granted Critical
Publication of JPH02653Y2 publication Critical patent/JPH02653Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 この考案は、熱線式流速計における熱線付着ご
み焼切り機構の改良に関する。
[Detailed Description of the Invention] This invention relates to an improvement in the burning-off mechanism of hot-wire adhering dust in a hot-wire current meter.

熱線式流速計において熱線にごみ類が付着する
ことに起因する測定誤差を無くすため、熱線に
やゝ大電流の焼切り電流を流して熱線温度を上昇
させることによつてごみ類を焼切る方式が実用化
されている。しかし、従来のごみ焼切り機構で
は、熱線雰囲気である測定流体温度の影響を受け
て焼切り電流を流しても熱線が十分に昇温しない
ため、ごみの焼切り除去が満足に行われないこと
があり、また逆に熱線が過度に昇温してその寿命
を損ずることがある。この点を詳しく、第1図を
用いて説明する。本図は、この種従来の熱線付着
ごみ焼切り機構を備えた熱線式流速計をエンジン
の吸入空気の流速測定に適用した概略図であり、
以下その構成・機能を簡単に説明する。図示の如
く、測定流体通路A(ここでは吸入空気通路)内
に雰囲気温度依存抵抗1および熱線Hを設置し、
ブリツジ抵抗2,3を設けて測定用のブリツジを
形成している。そして、ブリツジの両中性点a,
bに演算増幅器4の入力端子を接続し、その出力
端子を電源Sによつて駆動されるトランジスタ5
に接続して上記ブリツジを付勢するように構成す
る。かくして、吸入空気温度の変化を雰囲気温度
依存抵抗1によつて補償しつゝブリツジ抵抗3の
両端に現れる電圧を読取ることによつて吸入空気
の流速測定がなされる。
In order to eliminate measurement errors caused by debris adhering to the hot wire in a hot wire anemometer, a method of burning off the debris by passing a rather large burnout current through the hot wire to raise the temperature of the hot wire. has been put into practical use. However, with conventional garbage burning-off mechanisms, the temperature of the hot wire does not rise sufficiently even when a burning current is applied due to the influence of the temperature of the measured fluid, which is the hot wire atmosphere, so that the burning and removal of garbage cannot be performed satisfactorily. On the other hand, the heat rays may heat up excessively and shorten their lifespan. This point will be explained in detail using FIG. 1. This figure is a schematic diagram of this kind of conventional hot-wire flow velocity meter equipped with a hot-wire attached dust burning-off mechanism applied to measuring the flow velocity of engine intake air.
The configuration and functions will be briefly explained below. As shown in the figure, an ambient temperature dependent resistance 1 and a hot wire H are installed in the measurement fluid passage A (in this case, the intake air passage),
Bridge resistors 2 and 3 are provided to form a bridge for measurement. And both neutral points a of the bridge,
b is connected to the input terminal of an operational amplifier 4, and its output terminal is connected to a transistor 5 driven by a power supply S.
The bridge is configured to be connected to and energize the bridge. Thus, by compensating for changes in the intake air temperature by the ambient temperature dependent resistor 1 and reading the voltage appearing across the bridge resistor 3, the flow rate of the intake air is measured.

次に、熱線Hに付着したごみ類を焼いて除去す
る焼切り電流を熱線Hに流すために、ブリツジ抵
抗2と並列に焼切り電流制御用抵抗7にトランジ
スタ6を図示の如くに接続しておく。しかると
き、所望時(エンジン停止後すなわち吸入空気が
流れていないとき)に所定のパターンに従つて焼
切り信号を点cに加えてトランジスタ6がオンす
るようにすれば、中性点a,b間の電位の平衡が
破れて焼切り電流が熱線Hに流れ、これに付着し
たごみ類を除去することができる。
Next, in order to send a burnout current to the hot wire H to burn and remove the dust attached to the hot wire H, a transistor 6 is connected to the burnout current control resistor 7 in parallel with the bridge resistor 2 as shown in the figure. put. In this case, if a burnout signal is applied to point c according to a predetermined pattern at a desired time (after the engine has stopped, that is, when intake air is not flowing) to turn on transistor 6, the neutral points a and b can be turned on. The equilibrium of the potential between them is broken, and a burning current flows through the hot wire H, making it possible to remove dust attached to it.

しかし、かゝる従来の焼切り機構においては、
雰囲気温度依存抵抗1の抵抗値は吸入空気温度に
依つて変化し、これに伴つて熱線Hの焼切り電流
による温度の上昇が安定しなくなる。即ち、寒冷
時には熱線の焼切り温度が不十分でごみの完全除
去ができないことがあり、逆に暑熱時には焼切り
温度が上昇し過ぎて熱線寿命の低下を招くおそれ
がある。
However, in such a conventional burn-off mechanism,
The resistance value of the ambient temperature dependent resistor 1 changes depending on the intake air temperature, and as a result, the temperature rise due to the burning current of the hot wire H becomes unstable. That is, when it is cold, the burn-off temperature of the hot wire may be insufficient and dust cannot be completely removed.On the other hand, when it is hot, the burn-off temperature may rise too much, leading to a reduction in the life of the hot wire.

この考案の目的は、上記した従来の焼切り機構
の欠点を無くし、安定したごみ焼切りを行い得る
熱線付着ごみ焼切り機構を提供するにある。この
目的を達成するため、本考案は、焼切り電流制御
用抵抗を測定流体通路内に設けることを特徴とす
るもので、さらにその抵抗の温度係数を所定範囲
に選ぶことによつて、安定したごみ焼切りを行う
ことができる。
The purpose of this invention is to provide a heat ray-adhered dust burn-off mechanism that eliminates the drawbacks of the conventional burn-off mechanism described above and can perform stable dust burn-off. In order to achieve this purpose, the present invention is characterized by providing a resistance for controlling the burnout current in the measurement fluid passage, and furthermore, by selecting the temperature coefficient of the resistance within a predetermined range, a stable Garbage burning can be done.

以下、実施例によつて本考案を詳しく説明す
る。第2図に本考案の一実施例の概略構成を示
し、測定流体通路A内に焼切り電流制御用抵抗7
を設置してこれが雰囲気温度依存を可能にしてい
る。いま、焼切り時、吸気温度を20℃としたとき
の熱線Hの抵抗値Rは、次式により表わされる。
Hereinafter, the present invention will be explained in detail with reference to Examples. FIG. 2 shows a schematic configuration of an embodiment of the present invention, in which a burnout current control resistor 7 is installed in the measuring fluid passage A.
This makes it possible to depend on the ambient temperature. Now, the resistance value R of the hot wire H when the intake air temperature is 20° C. during burning out is expressed by the following formula.

R=R1・R3(R2+RK)/R2・RK ……(1) ここでR1,RKはそれぞれ雰囲気温度依存抵抗
1、焼切り電流制御用抵抗7の基準温度20℃にお
ける抵抗値である。
R=R 1・R 3 (R 2 +R K )/R 2・R K ...(1) Here, R 1 and R K are the ambient temperature dependent resistance 1 and the reference temperature 20 of the burnout current control resistance 7, respectively. This is the resistance value at °C.

上記に対し、吸気温度が+Δt変化したときの
熱線Hの抵抗値R′は R′=R1(1+α1Δt)・R3/R2・RK(1+αKΔt) {R2+RK(1+αKΔt)} ……(2) となる。ここで、α1、αKはそれぞれ抵抗1、抵
抗7の基準温度20℃における抵抗の温度係数であ
る。
Regarding the above, the resistance value R' of the hot wire H when the intake air temperature changes by +Δt is R'=R 1 (1+α 1 Δt)・R 3 /R 2・R K (1+α K Δt) {R 2 +R K ( 1+α K Δt)} ...(2). Here, α 1 and α K are the temperature coefficients of resistance of resistor 1 and resistor 7 at a reference temperature of 20° C., respectively.

一方、熱線Hの温度をtbとし、熱線の20℃のと
きの抵抗値をRH0とすると RH=RH0{1+αH(tb−20)} となる。ここで、αHは熱線Hの基準温度20℃にお
ける抵抗の温度係数である。上式から tb=(RH/RH0−1)/αH+20 ……(3) が得られる。
On the other hand, if the temperature of the hot wire H is t b and the resistance value of the hot wire at 20° C. is R H0 , then R H =R H0 {1+α H (t b −20)}. Here, α H is the temperature coefficient of resistance of the hot wire H at a reference temperature of 20°C. From the above equation, t b = (R H /R H0 -1)/α H +20...(3) is obtained.

焼切り時の吸気温度20℃における熱線温度tb
は、式(3)に式(1)を代入(ただし、RH=R)して tb{R1・R3(R2+RK)/R2・RK/RH0−1} /αH+20 ……(4) となり、また、吸気温度が+Δt変化したときの
熱線温度tb′は、同様にして(ただし、RH=R′) tb′={R1・R3/R2・RK・RH0・(1+α1Δt)/(
1+αKΔt) ・(R2+RK+RK・αK・Δt)−1)} /αH+20 ……(5) となる。ここで、R1・R3/R2・RK・RH0=A、R2+RK= Bとおくと、式(4),(5)は tb=(A・B−1)/αH+20 ……(6) tb′={A・1+α1Δt/1+αKΔt(B+RK・αK ・Δt)−1}±/αH+20 ……(7) となる。
Hot wire temperature t b at intake air temperature 20℃ during grilling
Substituting equation (1) into equation (3) (where R H = R), t b {R 1・R 3 (R 2 +R K )/R 2・R K /R H0 −1} / α H +20 ...(4) In addition, the hot wire temperature t b ′ when the intake air temperature changes by +Δt is calculated similarly (however, R H = R′) t b ′ = {R 1・R 3 / R 2・R K・R H0・(1+α 1 Δt)/(
1+α K Δt) ・(R 2 +R K +R K・α K・Δt)−1)} /α H +20 ……(5). Here, if we set R 1・R 3 /R 2・R K・R H0 = A and R 2 +R K = B, equations (4) and (5) become t b = (A・B−1)/ α H +20 ……(6) t b ′={A・1+α 1 Δt/1+α K Δt(B+R K・α K・Δt)−1}±/α H +20 ……(7)

従つて、焼切り温度の雰囲気による差Δtb
tb′−tbを式(6),(7)から求めると Δtb=A・Δt/αH(1+αK・Δt) ×(RK・αK+α1・B+α1・RK ・αK・Δt−B・αK) ……(8) が得られ、式(8)を書き換えると Δtb=A/αH{α1・RK・Δt−R2+R2(1+α1・Δ
t)/Δt・αK+1}=R1・R3/αH・R2・RK・RH0 {α1・RK・Δt−R2+R2(1+α1・Δt)/Δt・
αK+1}……(9) が得られる。
Therefore, the difference in burning temperature depending on the atmosphere Δt b =
Calculating t b ′−t b from equations (6) and (7), Δt b = A・Δt/α H (1+α K・Δt) × (R K・α K1・B+α 1・R K・α K・Δt−B・α K ) ...(8) is obtained, and by rewriting equation (8), Δt b = A/α H1・R K・Δt−R 2 +R 2 (1+α 1・Δ
t) /Δt・α K +1}=R 1・R 3H・R 2・R K・R H01・R K・Δt−R 2 +R 2 (1+α 1・Δt)/Δt・
α K +1}...(9) is obtained.

上式(9)におけるΔtbとαKとの関係を、Δtbを縦
軸に、αKを横軸にとり、吸気温度の変化Δtをパ
ラメータとして図示した例を、第3図に示す。こ
こで、αHは0.003620/℃(白金線温度係数)、R2
は770Ω、RKは7700Ω、RH0は2Ω、R1は713.5
Ω、R3は4Ω、α1は0.003620/℃である。また、
Δtとしては、60℃(すなわち吸気温度80℃)、20
℃(吸気温度40℃)、−20℃(吸気温度0℃)をと
つてある。この図は、αKがごく小さいときには、
吸気温度の0℃〜80℃の変動によつてΔtbは約
160℃の変動を生じるのに対し、αKが0.03では、
Δtbの変動は約60℃に減少することを示してい
る。焼切り温度は一般に1000℃程度に設定される
から、Δtbの変動が60℃程度に収まれば、極めて
有効である。従つて、αK即ち焼切り電流制御用
抵抗7の温度係数を所定の範囲に選ぶことによつ
て、熱線Hの雰囲気温度による温度変化の影響を
実用上問題のない程度に小さくできることが判
る。即ち、焼切り電流制御用抵抗7を測定流体通
路A内に設け、かつその温度係数を所定の範囲に
選ぶことによつて安定した熱線付着ごみ焼切りが
可能となる。
FIG. 3 shows an example in which the relationship between Δt b and α K in the above equation (9) is illustrated with Δt b on the vertical axis and α K on the horizontal axis, and the change in intake air temperature Δt as a parameter. Here, α H is 0.003620/℃ (platinum wire temperature coefficient), R 2
is 770Ω, R K is 7700Ω, R H0 is 2Ω, R 1 is 713.5
Ω, R 3 is 4Ω, and α 1 is 0.003620/°C. Also,
Δt is 60℃ (i.e. intake air temperature 80℃), 20
℃ (intake air temperature 40℃) and -20℃ (intake air temperature 0℃). This figure shows that when α K is very small,
Due to the fluctuation of the intake air temperature from 0℃ to 80℃, Δt b is approximately
This causes a fluctuation of 160°C, whereas when α K is 0.03,
It shows that the variation of Δt b decreases to about 60°C. Since the burn-off temperature is generally set at about 1000°C, it is extremely effective if the variation in Δt b is within about 60°C. Therefore, it can be seen that by selecting α K , that is, the temperature coefficient of the burnout current control resistor 7, within a predetermined range, the influence of temperature changes due to the ambient temperature of the hot wire H can be reduced to a level that poses no practical problem. That is, by providing the burn-off current control resistor 7 in the measuring fluid passage A and selecting its temperature coefficient within a predetermined range, stable burn-off of hot wire adhering dust becomes possible.

なお、上記の所定範囲の値にαKを選定するに
は、抵抗7としてその温度係数が所定範囲の値で
あるような材料を選べば良く、また異なる温度係
数の数種の抵抗を例えば並列接続して合成した温
度係数が所定範囲の値になるようにしても差支え
ない。
In addition, in order to select α K within the above-mentioned predetermined range, it is sufficient to select a material for the resistor 7 whose temperature coefficient is within the predetermined range, or to connect several types of resistors with different temperature coefficients in parallel, for example. There is no problem even if the temperature coefficient obtained by connecting and synthesizing the temperature coefficient has a value within a predetermined range.

以上の説明から明かなように本考案によると、
焼切り電流による熱線の昇温は雰囲気温度に左右
されることなく安定するので、熱線の寿命を損ず
ることなく常に確実なごみ焼切りができる。しか
も、従来機構から本機構への改造は回路的には極
めて簡単であるという長所もある。
As is clear from the above explanation, according to the present invention,
Since the heating of the hot wire due to the burning current is stable regardless of the ambient temperature, garbage can always be burned off reliably without impairing the life of the hot wire. Moreover, it has the advantage that the modification of the conventional mechanism to the present mechanism is extremely simple in terms of circuitry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の焼切り機構を示す概略図、第2
図は本考案の一実施例の機構を示す概略図、第3
図は熱線温度の変化分と焼切り電流制御用抵抗の
温度係数との関係を示すグラフ図である。 A:測定流体通路、H:熱線、1:雰囲気温度
依存抵抗、2,3:ブリツジ抵抗、4:演算増幅
器、5,6:トランジスタ、7:焼切り電流制御
用抵抗、S:電源。
Figure 1 is a schematic diagram showing a conventional burn-off mechanism;
The figure is a schematic diagram showing the mechanism of one embodiment of the present invention.
The figure is a graph showing the relationship between the change in hot wire temperature and the temperature coefficient of the resistance for controlling the burnout current. A: Measuring fluid passage, H: Hot wire, 1: Atmosphere temperature dependent resistance, 2, 3: Bridge resistance, 4: Operational amplifier, 5, 6: Transistor, 7: Resistor for controlling burnout current, S: Power supply.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 測定流体通路A内に設置された雰囲気温度依存
抵抗1および熱線Hとブリツジ抵抗2および3に
よつて構成されるブリツジを演算増幅器4とトラ
ンジスタ5とを介して電源Sによつて付勢すると
ともに、焼切り電流制御用のトランジスタ6およ
び抵抗7とを介して所定の焼切り信号によつて焼
切り電流を発生させるように形成された熱線式流
速計において、前記焼切り電流制御用抵抗7を前
記測定流体通路A内に設置するとともに、熱線付
着ごみ焼切り温度が測定流体温度の影響を受けな
いように、該焼切り電流制御用抵抗7の温度係数
を所定の範囲に選定したことを特徴とする熱線式
流速計の熱線付着ごみ焼切り機構。
A bridge constituted by an ambient temperature dependent resistor 1 and a hot wire H installed in the measuring fluid passage A and bridge resistors 2 and 3 is energized by a power supply S via an operational amplifier 4 and a transistor 5. , in a hot-wire anemometer formed to generate a burnout current in response to a predetermined burnout signal via a burnout current control transistor 6 and a resistor 7, the burnout current control resistor 7 is It is installed in the measurement fluid passage A, and the temperature coefficient of the burnout current control resistor 7 is selected within a predetermined range so that the burnout temperature of the hot wire adhering dust is not affected by the temperature of the measurement fluid. A mechanism for burning off hot wire adhering debris in a hot wire current meter.
JP2218881U 1981-02-20 1981-02-20 Expired JPH02653Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2218881U JPH02653Y2 (en) 1981-02-20 1981-02-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2218881U JPH02653Y2 (en) 1981-02-20 1981-02-20

Publications (2)

Publication Number Publication Date
JPS57135972U JPS57135972U (en) 1982-08-25
JPH02653Y2 true JPH02653Y2 (en) 1990-01-09

Family

ID=29820005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2218881U Expired JPH02653Y2 (en) 1981-02-20 1981-02-20

Country Status (1)

Country Link
JP (1) JPH02653Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609827B2 (en) * 2011-09-07 2014-10-22 株式会社デンソー Air flow measurement device
JP5477358B2 (en) * 2011-10-31 2014-04-23 株式会社デンソー Air flow measurement device

Also Published As

Publication number Publication date
JPS57135972U (en) 1982-08-25

Similar Documents

Publication Publication Date Title
US5247156A (en) Apparatus for measuring physical properties of fluids
JPH0663803B2 (en) Zero compensation method
JPH02653Y2 (en)
JPH0422206B2 (en)
JPS5866018A (en) Air flowmeter
US4807470A (en) Circuit arrangement with a flow-measuring probe operated in a bridge circuit
US4571991A (en) Air flow measuring apparatus
JPH0663800B2 (en) Heater temperature control circuit
JP3706283B2 (en) Flow sensor circuit
JPH0143883B2 (en)
JPH0518665Y2 (en)
JPH0399273A (en) Hot-wire anemometer with deterioration prevention device
KR930702659A (en) How to measure the flow rate of a fluid
JPH0147749B2 (en)
JP2771949B2 (en) Thermal flow sensor
JPS6221958Y2 (en)
JPS62280615A (en) Sticking matter burning-off circuit for hot-wire type air flow meter
JPH08285807A (en) Contact combustion-type gas sensor circuit
JPH0353128A (en) Zero point correcting circuit
JPH0642223Y2 (en) Magnetic detection circuit
JP2003315129A (en) Thermal flow measuring instrument
JPS60154116A (en) Hot wire type flow meter
JPS61283825A (en) Thermal type air flowmeter
JPH04225722A (en) Air capacity detector for burner
JPH01245119A (en) Hot-wire type flow rate measuring instrument