JPH0265192A - Manufacture of distributed feedback semiconductor laser - Google Patents

Manufacture of distributed feedback semiconductor laser

Info

Publication number
JPH0265192A
JPH0265192A JP63217129A JP21712988A JPH0265192A JP H0265192 A JPH0265192 A JP H0265192A JP 63217129 A JP63217129 A JP 63217129A JP 21712988 A JP21712988 A JP 21712988A JP H0265192 A JPH0265192 A JP H0265192A
Authority
JP
Japan
Prior art keywords
distributed feedback
semiconductor laser
layer
feedback semiconductor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63217129A
Other languages
Japanese (ja)
Inventor
Masatoshi Fujiwara
正敏 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63217129A priority Critical patent/JPH0265192A/en
Publication of JPH0265192A publication Critical patent/JPH0265192A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • H01S5/1243Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts by other means than a jump in the grating period, e.g. bent waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To partly vary the ratio of thicknesses of an active layer to a waveguide layer and to obtain a single wavelength oscillation with a low threshold value by employing the selective growth of an optical CVD crystal growing technique in a distributed feedback semiconductor laser. CONSTITUTION:A shielding mask 5 is mounted on a semiconductor substrate 1 formed with a diffraction grating thereby to form an optical guide 2 while radiating the part with a light. Then, a shielding mask 6 is employed to invert the part to be radiated with the light and the part to be shielded thereby to form an active layer 3. Thereafter, a different conductivity type clad layer 4 from the substrate 1 is formed. After these crystal growths are finished, a mesa stripe is formed, buried, grown to form electrodes, and its refractive index is varied on the way of the layer 2 to obtain a similar effect to that of a lambda/4 sift method. A distributed feedback semiconductor laser in which enables a single wavelength oscillation only at the Bragg's wavelength is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、分布帰還型半導体レーザの製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a distributed feedback semiconductor laser.

〔従来の技術〕[Conventional technology]

第2図は、従来の分布帰還型半導体レーザの製造工程の
一部を示す断面斜視図である。図において、(1)は半
導体基板であり、あらかじめ表面に回折格子が形成しで
ある。(2)は光導波路層、(3)は活性層、(4]は
半導体基板と導電型の異なるクラッド層である。
FIG. 2 is a cross-sectional perspective view showing a part of the manufacturing process of a conventional distributed feedback semiconductor laser. In the figure, (1) is a semiconductor substrate on which a diffraction grating has been formed in advance. (2) is an optical waveguide layer, (3) is an active layer, and (4) is a cladding layer having a conductivity type different from that of the semiconductor substrate.

上記各半導体層を形成した後、光の導波方向にメサスト
ライプの形成を行うが、この時、レーザ素子の中央部の
みストライプ幅を拡げて形成する。
After forming each of the semiconductor layers described above, mesa stripes are formed in the light waveguide direction, but at this time, the stripe width is expanded only in the center of the laser element.

上記工程を経た後、埋め込み層の形成、及び電極形成を
行うことによりレーザ素子を形成する(図示せず)。
After passing through the above steps, a laser element is formed by forming a buried layer and forming electrodes (not shown).

次にこのDFB−LD (DisLribul、ad 
Fe6dback−Laaer piode)  の特
性について説明する。
Next, this DFB-LD (DisLribul, ad
The characteristics of Fe6dback-Laaer piode) will be explained.

一般にDFB−LDは、通常、光導波路に回折格子が形
成されており、これを反射器としてレーザ発振するため
、発振波長の選択性が、素子端面を共振器とするFP 
(¥abry Perrot)−LDに比べ良いものに
なっている。
In general, a DFB-LD has a diffraction grating formed in the optical waveguide, and uses this as a reflector to oscillate the laser, so the selectivity of the oscillation wavelength is better than that of an FP that uses the element end face as a resonator.
(¥abry Perrot) - Better than LD.

しかし、DFB−LDにおいて、単に回折格子を形成し
ただけでは、回折格子のピッチで決定されるブラッグ波
長で発振せずに、ブラッグ波長を中心として等距離の波
長の所に同じしきい利得を持つ発振モードが2つ存在す
るため、2モ一ド発振してしまう。そこで、発振モード
を1つにするために、以下のような製造方法が考えられ
ている。
However, in a DFB-LD, simply forming a diffraction grating does not oscillate at the Bragg wavelength determined by the pitch of the diffraction grating, and instead has the same threshold gain at wavelengths equidistant from the Bragg wavelength. Since there are two oscillation modes, bimodal oscillation occurs. Therefore, in order to reduce the number of oscillation modes to one, the following manufacturing method has been considered.

(1)回折格子を形成する際に、光導波路の途中で回折
格子の位相をずらす方法(λ/45ift法)(2)先
導波路の途中で光導波路の屈折率を変化させることによ
り1人/d 5ift法と同様な効果を持たせた方法。
(1) When forming a diffraction grating, the phase of the diffraction grating is shifted in the middle of the optical waveguide (λ/45ift method) (2) The refractive index of the optical waveguide is changed in the middle of the leading waveguide. d A method that has the same effect as the 5ift method.

この従来例は、上記(2)の方法に当たる。This conventional example corresponds to the method (2) above.

(参考文献; H,Kogelnik and CJ、
5hank、’Coupled mode theor
y of distributed feedback
lasers、’ J、Appl、Phys、vol 
、43.pp 2327.1972 )〔発明が解決し
ようとする課題〕 従来の分布帰還型半導体レーザは1以上のように構成さ
れていたため、メサストライプの幅の広い部分に流れる
電流が発振に寄与しない無効電流となり、しきい値電流
の低減が困難という問題点があった。
(References; H, Kogelnik and CJ,
5hank, 'Coupled mode theor
y of distributed feedback
lasers,' J, Appl, Phys, vol.
, 43. pp 2327.1972) [Problems to be Solved by the Invention] Conventional distributed feedback semiconductor lasers were configured as one or more, so the current flowing through the wide part of the mesa stripe became a reactive current that did not contribute to oscillation. However, there was a problem in that it was difficult to reduce the threshold current.

この発明は、上記のような問題点を解消するためになさ
れたものであり、単一波長発振できるとともに、しきい
値の低減が可能となる分布帰還型半導体レーザを得るこ
とを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a distributed feedback semiconductor laser that is capable of oscillating a single wavelength and of reducing the threshold value.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る分布帰還型半導体レーザは、光CVD結
晶成長技術の選択成長性を用いることにより、活性層と
導波路層の厚みの比率を部分的に変化させたものである
The distributed feedback semiconductor laser according to the present invention is one in which the ratio of the thicknesses of the active layer and the waveguide layer is partially changed by using the selective growth property of the optical CVD crystal growth technique.

〔作用〕[Effect]

この発明における分布帰還型半導体レーザは、活性層と
導波路層の厚みの比率を部分的に変化させることにより
、部分的に屈折率を変化させてλ/45hifL法と同
様な効果が得られ、低しきい値で単一波長発振する。
In the distributed feedback semiconductor laser of the present invention, by partially changing the ratio of the thickness of the active layer and the waveguide layer, the refractive index is partially changed, and an effect similar to that of the λ/45hifL method can be obtained. Single wavelength oscillation with low threshold.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図(a)〜(d)は、分布帰還型半導体レーザの製造工
程の一部を示した断面図である。第1図に於いて(1]
〜(4)は第2図の従来例に示したものと同等であるの
で説明を省略する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
Figures (a) to (d) are cross-sectional views showing a part of the manufacturing process of a distributed feedback semiconductor laser. In Figure 1 (1)
-(4) are the same as those shown in the conventional example of FIG. 2, so their explanation will be omitted.

t5+ 1.t 遮へいマスクl 、 +61は遮へい
マス’y 1 (511−明暗の逆転した遮へいマスク
2.+71は結晶成長の際の照射光である。
t5+ 1. t shielding mask l, +61 is shielding mass 'y 1 (511-shielding mask 2 with reversed brightness and darkness. +71 is irradiation light during crystal growth.

ます、回折格子を形成した半導体基板(υ(第1図(a
))上に遮へいマスク1(5)を設置することにより半
導体基板(1)の一部に光を当てながら、光導波路1層
(2)を形成する(v、1図(b))。次に、遮へいマ
スク2(6)を用いて光をあてる部分と遮へいする部分
を反転させ、活性層(3)を形成する(第1図(C))
First, the semiconductor substrate (υ) on which the diffraction grating is formed (Fig. 1 (a)
)) One layer of optical waveguide (2) is formed while exposing a part of the semiconductor substrate (1) to light by placing a shielding mask 1 (5) thereon (v, Figure 1 (b)). Next, the active layer (3) is formed by using the shielding mask 2 (6) to invert the light-irradiated part and the shielded part (Fig. 1 (C)).
.

その後、半導体基板(1)と導電型の異なるクラッド層
(4)を形成する(第1図(d))。
Thereafter, a cladding layer (4) having a conductivity type different from that of the semiconductor substrate (1) is formed (FIG. 1(d)).

上記結晶成長終了後(以下図示せず)メサストライプ形
成、埋め込み成長、電極形成を行う。
After the above crystal growth is completed (not shown below), mesa stripe formation, buried growth, and electrode formation are performed.

次に動作について説明する。従来例で示したように、光
導波路層(2)の途中で屈折率を変化させることにより
、λ/45ift 法と同様な効果が得られる。すなわ
ち、ブラッグ波長のみで単一波長発振可能な分布帰還型
半導体レーザが得られる。
Next, the operation will be explained. As shown in the conventional example, by changing the refractive index in the middle of the optical waveguide layer (2), the same effect as the λ/45ift method can be obtained. That is, a distributed feedback semiconductor laser capable of single-wavelength oscillation using only the Bragg wavelength can be obtained.

また、上記実施例では;半導体基板(11に回折格子を
形成した後、結晶成長を行なったが、半導体基板tll
上に活性層(31、光導波路層(2)を形成した後、回
折格子を形成し、クラッドB(4)を形成しても良い。
In addition, in the above embodiment; crystal growth was performed after forming the diffraction grating on the semiconductor substrate (11).
After forming an active layer (31) and an optical waveguide layer (2) thereon, a diffraction grating may be formed, and then a cladding B (4) may be formed.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、光CVD技術を用い
て光導波路を形成したので、低しきい値の分布帰還型半
導体レーザが得られる効果がある。
As described above, according to the present invention, since the optical waveguide is formed using the optical CVD technique, a distributed feedback semiconductor laser with a low threshold value can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜(d)はこの発明の一実施例による分布
帰還型半導体レーザの製造工程の一部を示す断面図、第
2図は従来の分布帰還型半導体レーザの製造工程の一部
を示した断面斜視図である。 図において、(υは半導体基板、(2)は光導波路層、
(3)は活性層%(4)はクラッド層、(5)は遮へい
マスク1 、 [61は遮へいマスク2、(7)は照射
光である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIGS. 1A to 1D are cross-sectional views showing part of the manufacturing process of a distributed feedback semiconductor laser according to an embodiment of the present invention, and FIG. 2 is a part of the manufacturing process of a conventional distributed feedback semiconductor laser. It is a cross-sectional perspective view showing (υ) a semiconductor substrate;
(3) is the active layer% (4) is the cladding layer, (5) is the shielding mask 1, [61 is the shielding mask 2, and (7) is the irradiation light. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 回折格子を形成した半導体基板上に、光の導波方向に垂
直となるようなストライプを持つマスクを用いて光を遮
へいし、光CVDにより第一の半導体層を形成した後、
上記マスクと明暗の反転したマスクを用いて、上記と同
様に光CVDを用いて第二の半導体層を形成し、全面に
わたり、上記半導体基板と導電型の異なる第三の半導体
層を形成した後、例えば、光の導波方向にメサストライ
プを形成し、埋め込み成長を行うことを特徴とする分布
帰還型半導体レーザの製造方法。
After forming a first semiconductor layer by optical CVD on a semiconductor substrate on which a diffraction grating is formed, using a mask having stripes perpendicular to the light waveguide direction to block light,
After forming a second semiconductor layer using photo-CVD in the same manner as above using a mask whose brightness and darkness are reversed from the above mask, and forming a third semiconductor layer having a conductivity type different from that of the semiconductor substrate over the entire surface. , for example, a method of manufacturing a distributed feedback semiconductor laser characterized by forming mesa stripes in the light waveguide direction and performing buried growth.
JP63217129A 1988-08-30 1988-08-30 Manufacture of distributed feedback semiconductor laser Pending JPH0265192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63217129A JPH0265192A (en) 1988-08-30 1988-08-30 Manufacture of distributed feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63217129A JPH0265192A (en) 1988-08-30 1988-08-30 Manufacture of distributed feedback semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0265192A true JPH0265192A (en) 1990-03-05

Family

ID=16699308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63217129A Pending JPH0265192A (en) 1988-08-30 1988-08-30 Manufacture of distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0265192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936496A (en) * 1995-07-21 1997-02-07 Nec Corp Semiconductor light emitting element and fabrication thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936496A (en) * 1995-07-21 1997-02-07 Nec Corp Semiconductor light emitting element and fabrication thereof

Similar Documents

Publication Publication Date Title
US4782035A (en) Method of forming a waveguide for a DFB laser using photo-assisted epitaxy
JP4618854B2 (en) Semiconductor device and manufacturing method thereof
GB2124024A (en) Semiconductor laser and manufacturing method therefor
JPH0265192A (en) Manufacture of distributed feedback semiconductor laser
JPS61190994A (en) Semiconductor laser element
JPH10308553A (en) Semiconductor laser device
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
KR100377184B1 (en) Gain coupled single mode semiconductor laser and method for fabricating the same
JPS6065588A (en) Manufacture of semiconductor laser
JPH10190122A (en) Variable wavelength semiconductor laser and its manufacture
KR100368323B1 (en) Fabrication method of gain coupled single-mode semiconductor laser
JPH0316288A (en) Semiconductor laser element and manufacture thereof
JP3817074B2 (en) Manufacturing method of distributed feedback semiconductor laser
JPH05136521A (en) Semiconductor laser
JPH0642583B2 (en) Semiconductor laser device
JPH0669586A (en) Distributed reflector and variable wavelength semiconductor laser using the same
JPH0349286A (en) Semiconductor laser device and manufacturing process
JPS62221182A (en) Distributed reflection laser
JPH0671115B2 (en) Quantum well semiconductor laser
JPH1187851A (en) Manufacture of semiconductor laser
JPS59119887A (en) Semiconductor laser
JPH07283479A (en) Optical semiconductor device, manufacture thereof and use thereof
JPH0430198B2 (en)
JPH0621573A (en) Semiconductor laser and its manufacture
JPS6136719B2 (en)