JPH0265057A - Thin type battery - Google Patents

Thin type battery

Info

Publication number
JPH0265057A
JPH0265057A JP63214122A JP21412288A JPH0265057A JP H0265057 A JPH0265057 A JP H0265057A JP 63214122 A JP63214122 A JP 63214122A JP 21412288 A JP21412288 A JP 21412288A JP H0265057 A JPH0265057 A JP H0265057A
Authority
JP
Japan
Prior art keywords
positive electrode
metal oxide
positive
terminal plate
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63214122A
Other languages
Japanese (ja)
Inventor
Hirohito Teraoka
浩仁 寺岡
Soichi Hanabusa
聡一 花房
Yuichi Fukushima
祐一 福嶋
Kunihiko Miyamoto
邦彦 宮本
Yoshiaki Asami
義明 阿左美
Shintaro Suzuki
信太郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP63214122A priority Critical patent/JPH0265057A/en
Publication of JPH0265057A publication Critical patent/JPH0265057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the decomposition of an electrolyte solvent on the surface of a metal oxide which is a positive electrode active material and prevent the occurrence of expansion at the time of storage at a high temperature by bringing a positive material black mix using the metal oxide as the active material into contact with the steam of 1,2-dimethoxyethane after heating and drying. CONSTITUTION:A separator 5 impregnated with a nonaqueous electrolyte using propylene carbonate as a solvent is inserted between a negative electrode pressed with a lithium metal 4 to a negative electrode terminal plate 3 and a positive electrode formed with a positive electrode black mix 2 using a metal oxide as a active material on a positive electrode terminal plate 1. Peripheries of the positive and negative electrode terminal plates 1 and 3 are sealed by an insulating seal body 6. To manufacture the positive electrode terminal plate 1, a positive electrode body made of manganese dioxide, graphite and polytetrafluoroethylene is formed on a steel plate, then it is dried for dehydration. The steel plate 11 formed with the positive electrode black mix 2 is sent to a processing chamber 12 of the dry atmosphere, and the steam 15 of 1,2-dimethoxyethane is brought into contact with the positive electrode black mix 2 to be absorbed by it. The decomposition of propylene carbonate on the surface of the metal oxide after a battery is constituted is thereby suppressed, and expansion can be suppressed at the time of storage at a high temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄形電池の改良に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in thin batteries.

[従来の技術及び課題] 近年の電子機器の小形化、薄形化に伴ないその電源とし
ての電池も小形化、薄形化が進んでいる。
[Background Art and Problems] As electronic devices have become smaller and thinner in recent years, batteries that serve as their power sources have also become smaller and thinner.

中でも、カード型電卓やICカードなどに代表されるカ
ード型電池機器の電源としては厚さ0.5mm以下の超
薄形電池が要望されている。
Among these, ultra-thin batteries with a thickness of 0.5 mm or less are in demand as power sources for card-type battery devices such as card-type calculators and IC cards.

ところで、上述した薄形電池としては従来より厚さ0.
02〜0.05a+の焼鈍ステンレス鋼板や焼鈍ニッケ
ル板からなる負極端子板にリチウム金属を圧管してなる
負極と前記負極端子板と同様な材料からなる正極端子板
に金属酸化物を活物質とする正極合剤(例えば二酸化マ
ンガン、導電剤及び結着剤からなる正極合剤を形成して
なる正極との間に、非水電解液を含浸させたプロピレン
不織布製のセパレータを介在させると共に前記正負極端
子板の周辺をポリニレフィン樹脂からなる絶縁封口体で
密閉した厚さ0.5 u以下の構造のものが知られてい
る。
By the way, the above-mentioned thin battery has a thickness of 0.
A negative electrode made of a pressure tube of lithium metal on a negative electrode terminal plate made of an annealed stainless steel plate or annealed nickel plate of 02 to 0.05a+, and a positive electrode terminal plate made of the same material as the negative electrode terminal plate, in which a metal oxide is used as an active material. A separator made of propylene nonwoven fabric impregnated with a nonaqueous electrolyte is interposed between the positive electrode and the positive electrode, which is formed by forming a positive electrode mixture consisting of a positive electrode mixture (for example, manganese dioxide, a conductive agent, and a binder). A structure having a thickness of 0.5 μm or less in which the periphery of the daughter plate is sealed with an insulating sealing body made of polynylefin resin is known.

上記電池に使用される電解液としては、電気化学的に安
定性があり、沸点が241.7℃と高い炭酸プロピレン
などの非プロトン性有機溶媒に支持塩として過塩素酸リ
チウムを溶解したものが用いられている。この炭酸プロ
ピレンは、沸点が241.7℃と高いために前記正極端
子板と負極端子板との間に正極合剤、電解液を含むセパ
レータ及びリチウム金属を配置させ、その周辺部を枠状
絶縁封口体を介して正負極端子板を100〜200 ’
Cで熱融着する際、電解液の蒸発による電池性能の劣化
や電池の高温貯蔵時での電解液の蒸発による脹れを抑制
できる。
The electrolyte used in the above battery is electrochemically stable and has lithium perchlorate dissolved as a supporting salt in an aprotic organic solvent such as propylene carbonate, which has a high boiling point of 241.7°C. It is used. Since this propylene carbonate has a high boiling point of 241.7°C, a separator containing the positive electrode mixture and electrolyte and lithium metal are placed between the positive terminal plate and the negative terminal plate, and the surrounding area is insulated in the form of a frame. Connect the positive and negative terminal plates 100 to 200' through the sealing body.
When heat-sealing with C, deterioration of battery performance due to evaporation of the electrolyte and swelling due to evaporation of the electrolyte when the battery is stored at high temperatures can be suppressed.

一方、通常の電池では電解質の比伝導率を高める目的で
炭酸プロピレンに1,2−ジメトキシエタンを25〜6
5体積%含有させて電池性能を向上させることが行われ
ている。但し、1.2−ジェトキシメタンの沸点が84
.7℃と低いため、かかる1、2−ジェトキシメタンの
添加は前記封口時に100〜200 ℃の熱処理がなさ
れる前記薄形電池には不適当であり、非水電解液の溶媒
としては専ら炭酸プロピレンのみを使用している。
On the other hand, in normal batteries, 1,2-dimethoxyethane is added to propylene carbonate to increase the specific conductivity of the electrolyte.
It has been attempted to improve battery performance by containing 5% by volume. However, the boiling point of 1,2-jethoxymethane is 84
.. Since the temperature is as low as 7°C, the addition of 1,2-jethoxymethane is inappropriate for the thin battery which is subjected to heat treatment at 100 to 200°C during sealing, and carbonate is used exclusively as a solvent for the non-aqueous electrolyte. Only propylene is used.

しかしながら、上記溶媒として使用される炭酸プロピレ
ンは71i気化学的に安定であるが、下記構造式に示す
ようにエステルであるため、カルボニル基が電子異性効
果により電子を吸引し、かつアルキル基が誘起効果によ
り電子を供与するため酸素(0)と夫々結合する2つの
炭素(C)位置の電子密度が低下する。このため、例え
ば水酸化物イオンの存在下では下記(1)式のように水
酸化物イオンと炭酸プロピレンの前記炭素の位置への求
核反応によって炭酸プロピレンがアルカリ加水分解する
ことがA、H,5aadl and  W、  H,L
ee。
However, although the propylene carbonate used as the solvent is 71i chemically stable, since it is an ester as shown in the structural formula below, the carbonyl group attracts electrons due to the electron isomerism effect, and the alkyl group Due to this effect, the electron density at the two carbon (C) positions that bond with oxygen (0), respectively, decreases because electrons are donated. For this reason, for example, in the presence of hydroxide ions, propylene carbonate undergoes alkaline hydrolysis due to a nucleophilic reaction between the hydroxide ions and propylene carbonate at the carbon position as shown in equation (1) below. ,5aadl and W, H,L
ee.

T、 Chcra、  Soc、  (B) 、 19
6B、1に報告されている。
T, Chcra, Soc, (B), 19
Reported in 6B, 1.

CIl3−CIl−C1!□ 上述した報告から、炭酸プロピレンは酸やアルカリの存
在下では容易に加水分解を起こしたり、ある種の溶質の
存在下などで分解を起こしてガスを発生するなどの問題
を有する。特に、高温貯蔵時には前記炭酸プロピレンの
分解が促進される。
CIl3-CIl-C1! □ From the above reports, propylene carbonate has problems such as being easily hydrolyzed in the presence of acids or alkalis, and decomposing and generating gas in the presence of certain solutes. In particular, the decomposition of the propylene carbonate is accelerated during high temperature storage.

このようなガス発生が著しくなると、電池の膨張を生じ
させ薄形電池の脹れを生じるばかりか分解生成物が電池
性能を低下させ、更には液量の減少などにより放電が不
可能となってしまう。
If such gas generation becomes significant, not only will the battery expand and cause the thin battery to swell, but the decomposition products will reduce the battery performance, and furthermore, the liquid volume will decrease, making it impossible to discharge. Put it away.

上述した現象は、正極活物質が二酸化マンガンなどの金
属酸化物を用いた場合に顕著となる。この原因について
検討した結果、次の3つの点が予71−jされる。
The above-mentioned phenomenon becomes remarkable when a metal oxide such as manganese dioxide is used as the positive electrode active material. As a result of examining this cause, the following three points are predicted 71-j.

即ち、■金属酸化物の表面には微量の水酸基が存在し、
その割合は金属酸化物の種類により異なるが、該表面の
水酸基がある条件下で活性なプロトンとなり、ブレンス
テッド酸としての役割を果たし、炭酸プロピレンを分解
すること、■金属酸化物表面での付着水が関与し、水酸
化物イオンをJ離して炭酸プロピレンの分解を促進する
こと、■二酸化マンガン表面の活性酸素により炭酸プロ
ピレンが酸化されて分解すること等が考えられる。
That is, ■ there are trace amounts of hydroxyl groups on the surface of the metal oxide,
The proportion varies depending on the type of metal oxide, but the hydroxyl group on the surface becomes an active proton under certain conditions, plays the role of a Brønsted acid, and decomposes propylene carbonate. ■ Adhesion on the metal oxide surface It is thought that water is involved and promotes the decomposition of propylene carbonate by releasing hydroxide ions, and (2) propylene carbonate is oxidized and decomposed by active oxygen on the surface of manganese dioxide.

本発明は、上記従来の課題を解決するためになされたも
ので、組立て後において正極活物質である金属酸化物表
面での電解液の溶媒である炭酸プロピレンの分解を抑制
して高温貯蔵時での脹れ発生等を防止した高性能、高信
頼性の薄形電池を提供しようとするものである。
The present invention was made to solve the above-mentioned conventional problems, and suppresses the decomposition of propylene carbonate, which is a solvent for an electrolytic solution, on the surface of a metal oxide, which is a positive electrode active material, after assembly, so that it can be stored at high temperatures. The purpose is to provide a high-performance, highly reliable thin battery that prevents the occurrence of swelling, etc.

[課題を解決するための手段] 本発明は、負極端子板にリチウム金属を圧着してなる負
極と正極端子板に金属酸化物を活物質とする正極合剤を
形成してなる正極との間に、炭酸プロピレンを溶媒とし
て少なくとも1種の溶質からなる非水電解液を含浸させ
たセパレータを介在させて前記正負極端子板の周辺を絶
縁封口体で密閉した構造の薄形電池において、前記金属
酸化物を活物質とする正極合剤は加熱乾燥後に1,2−
ジメトキシエタンの蒸気に接触させたものであることを
特徴とする薄形電池である。
[Means for Solving the Problems] The present invention provides a solution between a negative electrode formed by pressing lithium metal onto a negative terminal plate and a positive electrode formed by forming a positive electrode mixture containing a metal oxide as an active material on the positive terminal plate. In a thin battery having a structure in which the periphery of the positive and negative terminal plates is sealed with an insulating sealing body with a separator impregnated with a non-aqueous electrolyte consisting of at least one solute using propylene carbonate as a solvent, the metal The positive electrode mixture containing an oxide as an active material becomes 1,2- after heating and drying.
This is a thin battery characterized by being brought into contact with dimethoxyethane vapor.

上記活物質である金属酸化物としては、例えば二酸化マ
ンガン、三酸化モリブデン、三二酸化コバルト、四三酸
化コバルト、酸化第二銅、三二酸化ビスマス、五酸化バ
ナジウム、四三酸化鉛等を挙げることができる。
Examples of the metal oxide as the active material include manganese dioxide, molybdenum trioxide, cobalt sesquioxide, tricobalt tetroxide, cupric oxide, bismuth sesmuth oxide, vanadium pentoxide, and trilead tetroxide. can.

上記金属酸化物を活物質とする正極合剤を1.2−ジメ
トキシエタンに接触させる場合、後述する作用、効果か
ら加熱乾燥直後に接触させることが好ましい。1.2−
ジメトキシエタンの接触は、10分間以上行なうことが
望ましい。
When bringing the positive electrode mixture containing the above-mentioned metal oxide as an active material into contact with 1,2-dimethoxyethane, it is preferable to bring it into contact immediately after heating and drying in view of the functions and effects described below. 1.2-
It is desirable that the contact with dimethoxyethane be carried out for 10 minutes or more.

[作用] 本発明によれば、金属酸化物を活物質とする正極合剤を
加熱乾燥後に1,2−ジメトキシエタンの蒸気に接触さ
せることによって、電池構成後の金属酸化物表面での炭
酸プロピレンの分解を抑制し、高温貯蔵時での脹れを抑
制した高信頼性、高性能の薄形電池を得ることができる
。こうした1、2−ジメトキシエタン蒸気の接触による
効果は、■、2−ジメトキシエタンのドナーナンバー(
D、N、)が20と炭酸プロピレン(D、 N、  ;
15.1)に比べて高いことに起因すると考えられる。
[Function] According to the present invention, by heating and drying a cathode mixture containing a metal oxide as an active material and then bringing it into contact with 1,2-dimethoxyethane vapor, propylene carbonate is released on the surface of the metal oxide after battery construction. It is possible to obtain a highly reliable, high-performance thin battery that suppresses decomposition and swelling during high-temperature storage. The effect of contact with 1,2-dimethoxyethane vapor is
D, N, ) is 20 and propylene carbonate (D, N, ;
This is thought to be due to the fact that it is higher than 15.1).

即ち、金属酸化物にり、N、の高い1.2−ジメトキシ
エタンの蒸気に接触させると、例えば金属酸化物表面の
水酸基から遊離し易い活性プロトンを還元し、電池構成
後の表面水酸基による電解液中の炭酸プロピレンの分解
を抑制する効果、及び酸化物表面の活性酸素が問題であ
る場合にも1,2−ジメトキシエタンが活性酸素を還元
させ、電池構成後の金属酸化物表面の電位が低下し、炭
酸プロピレンの酸化分解を抑制する効果が考えられる。
That is, when a metal oxide is brought into contact with vapor of 1,2-dimethoxyethane with a high N content, active protons that are easily released from hydroxyl groups on the surface of the metal oxide are reduced, and electrolysis by the surface hydroxyl groups occurs after battery construction. It has the effect of suppressing the decomposition of propylene carbonate in the liquid, and even when active oxygen on the oxide surface is a problem, 1,2-dimethoxyethane reduces the active oxygen, reducing the potential of the metal oxide surface after battery construction. This is thought to have the effect of suppressing the oxidative decomposition of propylene carbonate.

なお、金属酸化物表面に吸着した1、2−ジメトキシエ
タンは体積として微量であるため、正負極端子板と絶縁
封口体との熱融着による封止工程において何等悪影響を
与えない。
Note that since the 1,2-dimethoxyethane adsorbed on the surface of the metal oxide is a small amount in terms of volume, it does not have any adverse effect on the sealing process by thermal fusion of the positive and negative electrode terminal plates and the insulating sealing body.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

実施例 第1図は、薄形電池を示す断面図である。図中の1は、
5US304からなる厚さ0.03mmの正極端子板で
あり、この端子板1上には後述する方法で1.2−ジメ
トキシエタン蒸気を接触させた二酸化マンガン、黒鉛及
びポリテトラフルオロエチレンからなる正極合剤2が形
成されている。図中の3は、5US304からなる厚さ
0 、03 amの負極端子板であり、この端子板3上
には金属リチウムの負極シート4が圧着されれいる。前
記正負極端子板1.3は、前記正極合剤2及び負極シー
ト4の間に炭酸プロピレンに過塩素酸リチウムを1モル
/ノとなるように溶解した非水溶媒電解液を含浸させた
ポリプロピレン不織布からなるセパレータ5を介在させ
て積層している。また、前記正負極端子板1.3間には
前記正極合剤2、セパレータ5及び負極シート4を囲繞
するように変性ポリプロピレンからなる枠状の絶縁封口
体6が配置されている。そして、前記正負極端子板1.
3と絶縁封口体6を200℃で熱圧着することにより前
記前記正極合剤2、セパレータ5及び負極シート4を密
閉して厚さ0.5mmの薄形電池を構成している。
Embodiment FIG. 1 is a sectional view showing a thin battery. 1 in the diagram is
The positive terminal plate is made of 5US304 and has a thickness of 0.03 mm, and on this terminal plate 1 is a positive electrode composite made of manganese dioxide, graphite, and polytetrafluoroethylene that has been brought into contact with 1,2-dimethoxyethane vapor by the method described later. Agent 2 is formed. 3 in the figure is a negative electrode terminal plate made of 5US304 and having a thickness of 0.03 am, and a negative electrode sheet 4 made of metallic lithium is crimped onto this terminal plate 3. The positive and negative electrode terminal plates 1.3 are made of polypropylene impregnated with a non-aqueous electrolyte in which lithium perchlorate is dissolved in propylene carbonate at a concentration of 1 mole/no between the positive electrode mixture 2 and the negative electrode sheet 4. They are laminated with a separator 5 made of nonwoven fabric interposed therebetween. Further, a frame-shaped insulating sealing body 6 made of modified polypropylene is arranged between the positive and negative electrode terminal plates 1.3 so as to surround the positive electrode mixture 2, the separator 5, and the negative electrode sheet 4. The positive and negative terminal plates 1.
3 and an insulating sealing body 6 at 200° C., the positive electrode mixture 2, separator 5, and negative electrode sheet 4 are sealed to form a thin battery with a thickness of 0.5 mm.

前記1.2−ジメトキシエタン蒸気を接触させた正極合
剤2を有する正極端子板1を作製するには、まず、二酸
化マンガン、黒鉛及びポリテトラフルオロエチレンから
なる組成の正極体を厚さ0.03Hの5US304鋼板
上に形成した後、脱水のために250℃、5時間の乾燥
した。つづいて、第2図に示すように正極合剤2が形成
された鋼板11を相対湿度1%以下の乾燥雰囲気の処理
室12に移送し、該処理室12底部に収容された1、2
−ジメトキシエタン液13をヒータ14に加熱して蒸気
15を発生させ、正極合剤2に接触させ、吸着した。こ
の後、処理室12から鋼板11を取出し、所定形状に打
抜いて正極端子板を作製した。
To produce the positive terminal plate 1 having the positive electrode mixture 2 brought into contact with the 1,2-dimethoxyethane vapor, first, a positive electrode body having a composition of manganese dioxide, graphite, and polytetrafluoroethylene is formed to a thickness of 0.5 mm. After forming on a 03H 5US304 steel plate, it was dried at 250° C. for 5 hours for dehydration. Subsequently, as shown in FIG. 2, the steel plate 11 on which the positive electrode mixture 2 has been formed is transferred to a processing chamber 12 in a dry atmosphere with a relative humidity of 1% or less, and the steel plates 1 and 2 housed at the bottom of the processing chamber 12 are
- Dimethoxyethane liquid 13 was heated by heater 14 to generate steam 15, which was brought into contact with positive electrode mixture 2 and adsorbed. Thereafter, the steel plate 11 was taken out from the processing chamber 12 and punched into a predetermined shape to produce a positive terminal plate.

比較例 1.2−ジメトキシエタンの蒸気を接触させなかった正
極合剤を用いた以外、実施例と同様な構成の薄形電池を
組立てた。
Comparative Example 1. A thin battery having the same configuration as in Example was assembled, except that a positive electrode mixture that was not brought into contact with 2-dimethoxyethane vapor was used.

しかして、本実施例及び比較例の薄形電池を各々100
個製造し、60℃下で貯蔵した時の貯蔵日数に対する電
池総高(100個当りの平均値)の変化を調べたところ
、第3図に示す特性図を得た。なお、第3図中のAは本
実施例の電池における特性線、Bは比較例の電池におけ
る特性線を示す。第3図から明らかなように本実施例の
薄形電池は比較例の薄形電池に比べて電池総高の変化が
小さく高温貯蔵性能が優れていることがわかる。
Therefore, the thin batteries of this example and comparative example were each
The changes in the total height of the batteries (average value per 100 batteries) with respect to the number of days of storage when the batteries were manufactured individually and stored at 60° C. were investigated, and the characteristic diagram shown in FIG. 3 was obtained. In addition, A in FIG. 3 shows the characteristic line of the battery of this example, and B shows the characteristic line of the battery of the comparative example. As is clear from FIG. 3, it can be seen that the thin battery of this example has a smaller change in total battery height than the thin battery of the comparative example and is superior in high-temperature storage performance.

なお、電解液は有機溶媒として炭酸プロピレンを用いた
ものの他にγ−ブチロラクトン、炭酸エチレンを用いた
ものにも同様に適用できる。
In addition to the electrolytic solution using propylene carbonate as an organic solvent, it is also applicable to electrolytic solutions using γ-butyrolactone or ethylene carbonate.

[発明の効果] 以上詳述した如く、本発明によれば組立て後において正
極活物質である金属酸化物表面での電解液の溶媒である
炭酸プロピレンの分解を抑制して高温貯蔵時での脹れ発
生等を防止した高性能、高信頼性の薄形電池を提供でき
る。
[Effects of the Invention] As detailed above, according to the present invention, after assembly, the decomposition of propylene carbonate, which is the solvent of the electrolytic solution, on the surface of the metal oxide, which is the positive electrode active material, is suppressed, and swelling during high-temperature storage is suppressed. It is possible to provide a high-performance, highly reliable thin battery that prevents the occurrence of damage, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における薄形電池の断面図、第
2図は本実施例における正極合剤に1,2−ジメトキン
エタンの蒸気を接触、吸若するのに使用した装置の一形
態を示す概略図、第3図は本実施例及び比較例の薄形電
池の高温貯蔵日数に対する総高の変化を示す特性図であ
る。 1・・・正極端子板、2・・・正極合剤、3・・・負極
端子板、4・・・負極シート、5・・・セパレータ、6
・・・絶縁封口体、11・・・5US304鋼板、12
・・・処理室、13・・・1 2−ジエメシキエタン液。
Figure 1 is a cross-sectional view of a thin battery according to an example of the present invention, and Figure 2 is an embodiment of a device used to contact and absorb 1,2-dimethquinethane vapor into the positive electrode mixture in this example. FIG. 3 is a characteristic diagram showing changes in total height with respect to the number of days of high-temperature storage of the thin batteries of the present example and comparative example. DESCRIPTION OF SYMBOLS 1... Positive electrode terminal plate, 2... Positive electrode mixture, 3... Negative electrode terminal plate, 4... Negative electrode sheet, 5... Separator, 6
...Insulating sealing body, 11...5US304 steel plate, 12
...Processing chamber, 13...1 2-diemeshikiethane liquid.

Claims (1)

【特許請求の範囲】[Claims]  負極端子板にリチウム金属を圧着してなる負極と正極
端子板に金属酸化物を活物質とする正極合剤を形成して
なる正極との間に、炭酸プロピレンを溶媒として少なく
とも1種の溶質からなる非水電解液を含浸させたセパレ
ータを介在させて前記正負極端子板の周辺を絶縁封口体
で密閉した構造の薄形電池において、前記金属酸化物を
活物質とする正極合剤は加熱乾燥後に1、2−ジメトキ
シエタンの蒸気に接触させたものであることを特徴とす
る薄形電池。
Between the negative electrode formed by pressing lithium metal onto the negative terminal plate and the positive electrode formed by forming a positive electrode mixture containing a metal oxide as an active material on the positive terminal plate, at least one solute is mixed with propylene carbonate as a solvent. In a thin battery having a structure in which the periphery of the positive and negative electrode terminal plates is sealed with an insulating sealant with a separator impregnated with a non-aqueous electrolyte interposed therebetween, the positive electrode mixture containing the metal oxide as the active material is heated and dried. A thin battery characterized in that it is subsequently brought into contact with vapor of 1,2-dimethoxyethane.
JP63214122A 1988-08-29 1988-08-29 Thin type battery Pending JPH0265057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63214122A JPH0265057A (en) 1988-08-29 1988-08-29 Thin type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214122A JPH0265057A (en) 1988-08-29 1988-08-29 Thin type battery

Publications (1)

Publication Number Publication Date
JPH0265057A true JPH0265057A (en) 1990-03-05

Family

ID=16650588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214122A Pending JPH0265057A (en) 1988-08-29 1988-08-29 Thin type battery

Country Status (1)

Country Link
JP (1) JPH0265057A (en)

Similar Documents

Publication Publication Date Title
JP3703667B2 (en) Nonaqueous electrolyte secondary battery
CN110112388B (en) Porous tungsten trioxide coated modified positive electrode material and preparation method thereof
JPS6324301B2 (en)
EP2639199A1 (en) Heterojunction nanomaterial, cathode pole piece for lithium-ion batteries, and lithium-ion battery
CN115557546A (en) Sodium ion positive electrode material and preparation method and application thereof
JPS61288374A (en) Organic electrolyte cell
Chen et al. Improved performance of LiNi 0.5 Mn 1.5 O 4 cathode for high-voltage lithium-ion battery at elevated temperature by using gel polymer electrolyte
JP2006228468A (en) Electrolyte secondary battery
WO2022237106A1 (en) Cobalt-free positive electrode material slurry, preparation method therefor and application technical field thereof
JPH0265057A (en) Thin type battery
JPS60112261A (en) Method of producing solid state battery
CN114583161A (en) Composite graphite negative electrode material and preparation method and application thereof
CN112928337A (en) Preparation method of all-solid-state battery and all-solid-state battery
JPH0265067A (en) Thin type battery
CN105990565A (en) Active material of negative electrode and preparation method thereof, and lithium ion battery
JPS63148550A (en) Nonaqueous secondary battery
CN117712311B (en) Sodium ion battery positive electrode material and preparation method and application thereof
CN116525771B (en) Modified lithium ion battery anode material and preparation method and application thereof
JPH0261095B2 (en)
JPS62108457A (en) Non aqueous secondary cell
JPS6155746B2 (en)
CN116789098A (en) Method for preparing sodium-electricity positive electrode material by alkaline leaching
JPH0787098B2 (en) Non-aqueous secondary battery
JPS6151749A (en) Nonaqueous electrolyte battery
JPH0588514B2 (en)