JPH026479B2 - - Google Patents

Info

Publication number
JPH026479B2
JPH026479B2 JP15422182A JP15422182A JPH026479B2 JP H026479 B2 JPH026479 B2 JP H026479B2 JP 15422182 A JP15422182 A JP 15422182A JP 15422182 A JP15422182 A JP 15422182A JP H026479 B2 JPH026479 B2 JP H026479B2
Authority
JP
Japan
Prior art keywords
microphone
damper member
airflow
base material
electroacoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15422182A
Other languages
Japanese (ja)
Other versions
JPS5943699A (en
Inventor
Takeshi Yoshii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15422182A priority Critical patent/JPS5943699A/en
Publication of JPS5943699A publication Critical patent/JPS5943699A/en
Publication of JPH026479B2 publication Critical patent/JPH026479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/222Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only  for microphones

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Description

【発明の詳細な説明】 本発明は、外音およびハウリングに強い接話に
好適な気流マイクロホンに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an airflow microphone suitable for close speech that is resistant to external sounds and howling.

第1図は従来の接話用マイクロホンの一例を示
す。同図aは外観斜視図、同図bはその断面図で
ある。図において、1はケース、2は網目、3は
発電機構である。このマイクロホンは双指向性を
有する音圧傾斜型のマイクロホンで、前面と背
面、即ち、矢印A、Bの両方向からの音を捨う。
FIG. 1 shows an example of a conventional close-talk microphone. Figure a is an external perspective view, and figure b is a sectional view thereof. In the figure, 1 is a case, 2 is a mesh, and 3 is a power generation mechanism. This microphone is a sound pressure gradient type microphone with bidirectionality, and rejects sounds from both the front and back directions, that is, the directions of arrows A and B.

このような構造の接話用マイクロホンは、空気
中を伝搬してくる外来雑音を捨うため、建設現
場、空港、採石現場等の高騒音下で使用できない
という欠点があつた。また、ハウリングが起り易
いという欠点があつた。
Close-talk microphones having such a structure have the disadvantage that they cannot be used in high-noise environments such as construction sites, airports, and quarry sites because they discard external noise propagating through the air. Another drawback was that howling was likely to occur.

本発明の目的は、上記した従来の接話用マイク
ロホンの欠点を除去し、外音およびハウリングに
強く、かつ耐湿性のある気流マイクロホンを提供
するにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the conventional close-talk microphones described above, and to provide an airflow microphone that is resistant to external sounds and howling and is moisture resistant.

本発明の特徴は、支持基材、該支持基材に一端
を支持された電気音響変換素子、少なくとも前記
支持基材の電気音響変換素子支持部および電気音
響変換素子を覆うようにモールドした体積流の当
る側とその反対側とでは圧力差が生じる形状のヒ
ステリシスが大きいダンパー部材、前記支持基材
の前記電気音響変換素子が取り付けられた側とは
反対側に設けられた振動吸収部材を具備し、騒音
に強く、ハウリングが起りにくく、かつ耐湿性を
良くした点にある。
The present invention is characterized by a supporting base material, an electroacoustic transducing element whose one end is supported by the supporting base material, and a volume flow molded to cover at least the electroacoustic transducing element support portion of the supporting base material and the electroacoustic transducing element. a damper member having a large hysteresis and having a shape that causes a pressure difference between the side to which the electroacoustic transducer is attached and a vibration absorbing member provided on the opposite side of the support base material to the side on which the electroacoustic transducer is attached. , is resistant to noise, less prone to howling, and has good moisture resistance.

先ず、本発明の原理について説明する。発声時
には、呼気によつて声帯は振動する。声門はその
周期に一致して開閉し、声門を通過する呼気流を
継続させる。すなわち、呼気の継続流が声の音源
となる。
First, the principle of the present invention will be explained. When vocalizing, the vocal cords vibrate due to exhalation. The glottis opens and closes in accordance with its cycle, allowing continued exhaled airflow through the glottis. That is, the continuous flow of exhaled air becomes the source of the voice.

この呼気の体積流波形は声門面積の時間的変化
(面積波形)に密接な関係がある。この声門面積
波形は、発声時の声帯の位置や形状、声帯振動の
様相などによつて変化するから、声門における音
源の体積流波形は音声信号成分を備えていること
になる。
This expiratory volume flow waveform is closely related to the temporal change in glottis area (area waveform). Since this glottis area waveform changes depending on the position and shape of the vocal cords during vocalization, the mode of vocal fold vibration, etc., the volume flow waveform of the sound source in the glottis includes a voice signal component.

このような音声信号成分を有する体積流は共鳴
腔であり、かつ気流速度をコントロールする声道
を通り、開口端、すなわち、唇から放射される。
この時、開口端における体積流は声道の影響を受
けて変化する。すなわち、開口端における体積流
のスペクトルは音源のスペクトルと声道の伝達特
性の積となる。
The volume flow with such audio signal components passes through the vocal tract, which is a resonant cavity and controls the airflow velocity, and is radiated from the open end, ie, the lips.
At this time, the volume flow at the open end changes under the influence of the vocal tract. That is, the spectrum of the volume flow at the open end is the product of the spectrum of the sound source and the transfer characteristics of the vocal tract.

以上のことから、開口端、すなわち、唇から出
力される体積流は音声信号成分をもつていること
が明らかである。なお、これらの事は医学の分野
では公知である。
From the above, it is clear that the volume flow output from the open end, that is, the lips, has an audio signal component. Incidentally, these matters are known in the medical field.

本発明は、本発明者の全く新しい着想により、
唇から外界に放射される体積流から音声をピツク
アツプするようにしたものである。
The present invention is based on a completely new idea of the inventor,
This device picks up sound from the volume flow radiated from the lips to the outside world.

以下に、本発明を実施例によつて説明する。第
2図aは本発明の第1実施例の斜視図、同図bは
同図aのA−A線断面図を示す。図において11
は、例えば、真ちゆう、鉄、鉛等の振動を伝えに
くい重い金属材料からなる支持基材、12は核支
持基材11に一端が支持された電気音響変換素子
である。電気音響変換素子12としては、例え
ば、短冊状の形状に作られたチタン酸バリウム磁
器のような圧電部材からなるバイモルフ又は単層
の圧電部材等が用いられている。13は前記支持
基材11の電気音響変換素子支持部であり、支持
基材11に電気信号が漏洩しないように、絶縁材
が充填されている。14は電気音響変換素子支持
部13および電気音響変換素子12の全体をモー
ルドするダンパー部材であり、流体力学的に、体
積流の当る面と乱流が発生するその背面との圧力
差によつて変位を受ける形状を有し、かつ前記変
位を電気量に変換する電気音響変換素子12の共
振周波数のQを非線型振動によつて低下させるよ
うな、いわゆるヒステリシスの大きな材料から形
成されている。このダンパー部材14としては、
例えば、円柱状又は断面が円形に近い多角形をも
つ角柱状のシリコンゴムで作ることができる。
The present invention will be explained below with reference to Examples. FIG. 2a is a perspective view of the first embodiment of the present invention, and FIG. 2b is a sectional view taken along the line A--A in FIG. 2a. In the figure 11
12 is an electroacoustic transducer whose one end is supported by the core support base 11. Reference numeral 12 denotes a support base made of a heavy metal material that is difficult to transmit vibrations, such as brass, iron, or lead. As the electroacoustic transducer 12, for example, a bimorph or single-layer piezoelectric member made of a piezoelectric member such as barium titanate porcelain made into a rectangular shape is used. Reference numeral 13 denotes an electroacoustic transducer support portion of the support base 11, which is filled with an insulating material to prevent electrical signals from leaking into the support base 11. Reference numeral 14 denotes a damper member that molds the entire electroacoustic transducer support 13 and electroacoustic transducer 12. Hydrodynamically, the damper member 14 molds the entire electroacoustic transducer support 13 and the electroacoustic transducer 12. It is formed from a material with so-called large hysteresis that has a shape that receives displacement and that reduces the Q of the resonant frequency of the electroacoustic transducer 12 that converts the displacement into an electrical quantity by nonlinear vibration. As this damper member 14,
For example, it can be made of cylindrical or prismatic silicone rubber with a polygonal cross section close to circular.

また、15は支持基材11のダンパー部材14
とは反対側に取り付けられたシリコン樹脂、ポリ
ウレタン等からなる振動吸収部材である。16は
電気音響変換素子12によつてピツクアツプされ
た音声の電気信号を取り出すためのコードであ
り、電気音響変換素子12の一端から支持基材1
1、振動吸収部材15をへて外部に取り出されて
いる。
Further, 15 is a damper member 14 of the support base material 11.
This is a vibration absorbing member made of silicone resin, polyurethane, etc. attached to the opposite side. Reference numeral 16 denotes a cord for extracting the electrical signal of the audio picked up by the electroacoustic transducer 12, which connects one end of the electroacoustic transducer 12 to the support base 1.
1. It is taken out to the outside through the vibration absorbing member 15.

このような構造の気流マイクロホンを製造する
にあたつては、先ず、支持基材11中に電気音響
変換素子12を植立し、続いてダンパー部材14
および振動吸収部材15をモールドして作ると製
造が簡単であり、かつ安価に作ることができる。
In manufacturing an airflow microphone having such a structure, first, the electroacoustic transducer element 12 is installed in the support base material 11, and then the damper member 14 is installed.
If the vibration absorbing member 15 is made by molding, it is easy to manufacture and can be made at low cost.

本実施例の気流マイクロホンは、図示されてい
ないヘツドセツトの一端に設けられた環状部にそ
の振動吸収部材15を嵌挿することによつて、ヘ
ツドセツトに取り付けられる。このヘツドセツト
を話者が装着すると、該気流マイクロホンは話者
の口の近辺に配置される。話者が話をすると、話
者の口からマイクロホンに向けて音声信号成分を
有する体積流が放射される。この体積流が円筒状
のダンパー部材14に当ると、該ダンパー部材1
4の話者の口に面した側は体積流によつて口から
離れる方向の押圧力を受ける。一方、該ダンパー
部材14の後側には、体積流が該ダンパー部材1
4によつて押し分けられるので、体積流の乱流が
生じる。これによつてダンパー部材14は口に向
う方向の力を受ける。しかしながら、ダンパー部
材14によつて押し分けられる流体は粘性流体で
あるから、前記した口から離れる方向の押圧力の
方が乱流によつてひき起される口に向う方向の力
に比べて大きい。この圧力差によつて、ダンパー
部材14はたわむ。一方この圧力差は体積流波形
に依存する。したがつて、ダンパー部材14は体
積流波形に応じた大きさのたわみを生ずる。この
ようにして、話者の話し声が電気信号に変換さ
れ、コード16を通つて後段の電気回路へ送られ
る。
The airflow microphone of this embodiment is attached to a headset by fitting its vibration absorbing member 15 into an annular portion (not shown) provided at one end of the headset. When the headset is worn by a speaker, the airflow microphone is placed near the speaker's mouth. When a speaker speaks, a volume stream containing an audio signal component is radiated from the speaker's mouth toward the microphone. When this volume flow hits the cylindrical damper member 14, the damper member 1
The side facing the speaker's mouth in No. 4 receives a pressing force in a direction away from the mouth due to the volume flow. On the other hand, on the rear side of the damper member 14, the volume flow
4, a turbulent volumetric flow occurs. This causes the damper member 14 to receive a force in a direction toward the mouth. However, since the fluid pushed apart by the damper member 14 is a viscous fluid, the pressing force in the direction away from the mouth is greater than the force in the direction towards the mouth caused by the turbulent flow. This pressure difference causes the damper member 14 to flex. On the other hand, this pressure difference depends on the volume flow waveform. Therefore, the damper member 14 produces a deflection of a magnitude corresponding to the volume flow waveform. In this way, the speaker's speech is converted into an electrical signal and sent through the cord 16 to the subsequent electrical circuit.

ダンパー部材14は前述のように、シリコンゴ
ム等から作られている。このダンパー部材14は
加工圧に対する変位量のヒステリシスが大きく、
かつ柔軟でその音響インピーダンスは空気のイン
ピーダンスよりもはるかに大きい。
As mentioned above, the damper member 14 is made of silicone rubber or the like. This damper member 14 has a large hysteresis in the amount of displacement with respect to processing pressure.
It is flexible and its acoustic impedance is much larger than that of air.

このため、外界から伝わつてくる外音、騒音等
の空気振動音はその一部はダンパー部材14の表
面で反射される。なお、本実施例の気流マイクは
ダンパー部材でモールドされているので、質量お
よび抵抗が大きく、この外音の反射によつて振動
することはない。一方、ダンパー部材14に吸収
された他の一部はダンパー部材14のヒステリシ
スが大きいためダンプされる。したがつて、外
音、騒音等によつて電気音響変換素子12が振動
を受けることはない。また、遠方の音はマイクの
四方から同相で入つてくるため、互いに相殺さ
れ、これによつても、電気音響変換素子12の振
動は妨げられる。したがつて、本実施例のマイク
ロホンは外音あるいは騒音に強いということがで
きる。
Therefore, a portion of air vibration sounds such as external sounds and noises transmitted from the outside world are reflected by the surface of the damper member 14. Note that since the airflow microphone of this embodiment is molded with a damper member, its mass and resistance are large, and it does not vibrate due to reflection of this external sound. On the other hand, the other part absorbed by the damper member 14 is dumped because the hysteresis of the damper member 14 is large. Therefore, the electroacoustic transducer 12 is not subjected to vibrations due to external sounds, noise, etc. Furthermore, since distant sounds enter the microphone from all sides in the same phase, they cancel each other out, and this also prevents the electroacoustic transducer 12 from vibrating. Therefore, it can be said that the microphone of this embodiment is resistant to external sounds or noise.

また、ダイパー部材14としては上記のような
ヒステリシスの大きな材料を用いているため、電
気音響変換素子12の振動系のもつ固有共振のQ
は該ダンパー部材14によつて低下し、該振動系
の自由振動が非線系になる。このため電気音響交
換素子12は特定の共振点をもたなくなり、ハウ
リングが起りづらい。
In addition, since the diameter member 14 is made of a material with large hysteresis as described above, the Q of the natural resonance of the vibration system of the electroacoustic transducer 12 is
is reduced by the damper member 14, and the free vibration of the vibration system becomes nonlinear. Therefore, the electroacoustic exchange element 12 no longer has a specific resonance point, making it difficult for howling to occur.

さらに、本実施例においては、ヘツドセツトの
一端に設けられた環状部に、直接気流マイクロホ
ンの振動吸収部材15が取り付けられている。こ
のため、ヘツドセツトで捨われた外音、騒音等の
空気振動音は振動吸収部材15に吸収され、重い
金属材料からなる支持基材11に伝達されること
はない。たとえ、伝達されたとしても、重い金属
材料からなる支持基材11がその重さによつて伝
達してくる振動を軽減するから、ヘツドセツトで
捨われた音によつて、電気音響変換素子12が振
動することはなく、ヘツドセツトを介して騒音を
捨つたり、ハウリングを起したりする恐れはな
い。
Furthermore, in this embodiment, a vibration absorbing member 15 of the direct airflow microphone is attached to an annular portion provided at one end of the headset. Therefore, air vibration sounds such as external sounds and noises thrown away by the headset are absorbed by the vibration absorbing member 15 and are not transmitted to the support base 11 made of a heavy metal material. Even if the sound is transmitted, the supporting base material 11 made of a heavy metal material reduces the transmitted vibration due to its weight, so the electroacoustic transducer element 12 is affected by the sound thrown away by the headset. It does not vibrate and there is no risk of discarding noise through the headset or causing howling.

上記した本発明の第1実施例は、電気音響変換
素子12が、円筒状のダンパー部材のほぼ中心軸
上に設けられているため、指向性をもたない。
In the first embodiment of the present invention described above, the electroacoustic transducer element 12 is provided approximately on the central axis of the cylindrical damper member, and therefore does not have directivity.

次に、本発明の気流マイクロホンに指向性をも
たせた実施例を説明する。第3図は本発明の第2
実施例の斜視図を示す。
Next, an embodiment in which the airflow microphone of the present invention is provided with directivity will be described. Figure 3 shows the second embodiment of the present invention.
A perspective view of an example is shown.

図中の符号は第2図aと同じものを示す。この
実施例が前記第1実施例と構造上で異る点は、電
気音響変換素子12を円筒状のダンパー部材14
の中心軸から偏心させて設けた点である。本実施
例のマイクロホンは、矢印A方向から体積流を入
力すると、つまりうすいダンパー部材を介して電
気音響変換素子12に体積流を当てると、他の方
向から体積流を当てた場合に比べインテンシテイ
のより大きな音をピツクアツプすることができ
る。
The reference numerals in the figure indicate the same ones as in FIG. 2a. The structural difference between this embodiment and the first embodiment is that the electroacoustic transducer 12 is connected to a cylindrical damper member 14.
This is a point located eccentrically from the central axis of the In the microphone of this embodiment, when a volume flow is input from the direction of arrow A, that is, when the volume flow is applied to the electroacoustic transducer element 12 through the thin damper member, the intensity is lower than when the volume flow is applied from other directions. You can pick up louder sounds.

第4図a,bは前記第2実施例と同趣旨の本発
明の第3実施例を示す。第4図aは斜視図、同図
bは同図aのA−A線断面図である。なお、図中
の符号は第2図aのものと同じものを示す。
FIGS. 4a and 4b show a third embodiment of the present invention having the same meaning as the second embodiment. FIG. 4a is a perspective view, and FIG. 4b is a sectional view taken along line A--A in FIG. 4a. Note that the reference numerals in the figure indicate the same ones as in FIG. 2a.

本実施例が前記第1実施例と異る点は、同筒状
のダンパー部材14の中心軸に対して所定の角度
になるように、電気音響変換素子12を支持基材
11に支持させ、電気音響変換素子12の遊端が
ダンパー部材14の表面近くに来るようにした
点、支持基材11として例えばエポキシ樹脂、ポ
リカーボネートあるいはベーク材等の固い材料か
ら形成した点、および振動吸収部材15上にマイ
クロホン支持具17を嵌挿した点である。
This embodiment differs from the first embodiment in that the electroacoustic transducer 12 is supported on the support base 11 at a predetermined angle with respect to the central axis of the cylindrical damper member 14, The free end of the electroacoustic transducer 12 is located close to the surface of the damper member 14, the supporting base material 11 is made of a hard material such as epoxy resin, polycarbonate, or baked material, and the vibration absorbing member 15 is This is the point where the microphone support 17 is inserted.

このような構成にすると、前記第2実施例と同
様に矢印B方向から体積流を当てた時、他の方向
から当てた場合に比べてより大きなインテンシテ
イを得ることができる。また、本実施例の気流マ
イクロホンはマイクロホン支持具17を介して、
ヘツドセツト等に支持されるが、ヘツドセツトや
マイクロホン支持具17等で捨われた外音、騒音
等の空気振動音は振動吸収部材15に吸収され支
持基材11に殆んど伝達されない。さらに、本実
施例では、支持基材11としてエポキシ樹脂ある
いはポリカーボネートを用いた場合、支持基材1
1と電気音響変換素子12とを一体にモールドし
て作れるので、第1、第2実施例のものに比べ
て、製造がより簡単である。
With this configuration, when a volume flow is applied from the direction of arrow B, as in the second embodiment, a greater intensity can be obtained compared to when the volume flow is applied from other directions. In addition, the airflow microphone of this embodiment has the following features via the microphone support 17:
Although it is supported by a headset or the like, air vibration sounds such as external sounds and noises thrown away by the headset, microphone support 17, etc. are absorbed by the vibration absorbing member 15 and hardly transmitted to the support base 11. Furthermore, in this embodiment, when epoxy resin or polycarbonate is used as the support base material 11, the support base material 1
1 and the electroacoustic transducer element 12 can be integrally molded, so the manufacturing process is simpler than that of the first and second embodiments.

この第3実施例は指向性がある点、製造が容易
な点で第1実施例と異るが、その他の点では前記
第1実施例と同等の効果があることは勿論であ
る。
This third embodiment differs from the first embodiment in that it has directivity and is easy to manufacture, but it goes without saying that it has the same effects as the first embodiment in other respects.

第5図は本発明の第4実施例を示す。この実施
例が第3図に示した第2実施例と異なる点は、ダ
ンパー部材14に代えて、金属又はシリコンゴム
等の樹脂からなる円筒形の容器18中に入れたシ
リコンオイル19を用いた点にある。本実施例に
おいては、シリコンオイル19がダンパーの働き
をするので、前記した本発明の第2実施例と同様
の効果を得ることができる。
FIG. 5 shows a fourth embodiment of the invention. This embodiment differs from the second embodiment shown in FIG. 3 in that a silicone oil 19 placed in a cylindrical container 18 made of metal or resin such as silicone rubber is used instead of the damper member 14. At the point. In this embodiment, since the silicone oil 19 functions as a damper, it is possible to obtain the same effect as in the second embodiment of the present invention described above.

なお、本実施例の円筒形の容器18の外部にゴ
ム等のダンパー部材をさらに設けてもよい。
Note that a damper member such as rubber may be further provided outside the cylindrical container 18 of this embodiment.

第6図aは本発明の第5実施例の斜視図、同図
bはそのA−A線断面図である。この実施例が前
記第3実施例と異なる所は、支持基材11のダン
パー部材14接着面、および振動吸収部材15接
着面に、突起部11aおよび11bを設けた点、
およびマイクロホン支持具17の形状を変形した
点である。なお、符号11a,11b以外の符号
は第4図aと同じ物又は同等物を示す。
FIG. 6a is a perspective view of a fifth embodiment of the present invention, and FIG. 6b is a sectional view taken along line A--A. This embodiment differs from the third embodiment in that protrusions 11a and 11b are provided on the adhesion surface of the damper member 14 and the vibration absorption member 15 of the support base material 11,
and the shape of the microphone support 17 is modified. Note that the symbols other than 11a and 11b indicate the same or equivalent components as in FIG. 4a.

本実施例では、支持基材11に突起部11a,
11bが設けられているので、支持基材11とダ
ンパー部材14、あるいは支持基材11と振動吸
収部材15との接触面積が増大し、両者間の固着
強度が強いという効果がある。
In this embodiment, the supporting base material 11 has protrusions 11a,
11b, the contact area between the supporting base material 11 and the damper member 14, or the supporting base material 11 and the vibration absorbing member 15 increases, and there is an effect that the adhesion strength between the two is strong.

第7図は本発明の第6実施例を示す。図中の符
号は第4図aと同じ物又は同等物を示す。この実
施例が前記した第3実施例と異なる点は、支持基
材11をダンパー部材14中に埋設し、マイク全
体をダンパー部材14でモールドした点である。
このようにすると、ヘツドセツト又はマイクロホ
ン支持具17を介して伝達してきた音は、ダンパ
ー部材14によつて反射又は吸収されるので、第
3実施例と同様の効果が得られる。
FIG. 7 shows a sixth embodiment of the invention. The reference numerals in the figure indicate the same or equivalent parts as in FIG. 4a. This embodiment differs from the third embodiment described above in that the supporting base material 11 is embedded in the damper member 14, and the entire microphone is molded with the damper member 14.
In this way, the sound transmitted through the headset or microphone support 17 is reflected or absorbed by the damper member 14, so that the same effect as in the third embodiment can be obtained.

第8図は本発明の第7実施例を示す。図におい
て、20はシリコンゴム等の振動を伝達しない材
料からなる容器、21は該容器20中に入れられ
たシリコンオイル等の液体である。他の符号は第
4図aのものと同じ物又は同等物を示す。
FIG. 8 shows a seventh embodiment of the invention. In the figure, 20 is a container made of a material that does not transmit vibrations, such as silicone rubber, and 21 is a liquid such as silicone oil placed in the container 20. Other numerals indicate the same or equivalent items as in FIG. 4a.

本実施例が、第4図aに示されている第3実施
例と異なる点は、振動吸収部材15に代えて、シ
リコンオイル等の液体を用いていることである。
This embodiment differs from the third embodiment shown in FIG. 4a in that a liquid such as silicone oil is used in place of the vibration absorbing member 15.

本実施例においても、ヘツドセツト又はマイク
ロホン支持具17を介して伝達してきた音は容器
20および液体21によつて遮断されるため、第
3、第6実施例と同様の効果がある。
In this embodiment as well, the sound transmitted through the headset or microphone support 17 is blocked by the container 20 and the liquid 21, so that the same effects as in the third and sixth embodiments are achieved.

第9図は本発明の第8実施例の斜視図を示す。
この実施例が前記した各実施例と異なる点は、ダ
ンパー部材14を球状にした点である。なお、図
中の符号は第4図aと同じ物又は同等物を示す。
FIG. 9 shows a perspective view of an eighth embodiment of the invention.
This embodiment differs from the previous embodiments in that the damper member 14 is spherical. Note that the reference numerals in the figure indicate the same or equivalent components as in FIG. 4a.

本実施例のマイクを口の近辺に取り付け、話者
が話をすると、球状のダンパー部材14に体積流
が当る。そうすると、ダンパー部材14の口と向
い合つた側は押圧力を受け、その後側は体積流の
乱流が出来吸引される。したがつて、球状のダン
パー部材14は音声信号によつて変化する体積流
波形に応じて振動し、これによつて電気音響変換
素子12はたわみを生ずる。このようにして、話
者の話し声が電気信号に変換される。
When the microphone of this embodiment is attached near the mouth and the speaker speaks, a volume flow hits the spherical damper member 14. Then, the side of the damper member 14 facing the mouth receives a pressing force, and the rear side generates a turbulent volumetric flow and is sucked. Therefore, the spherical damper member 14 vibrates in accordance with the volume flow waveform that changes depending on the audio signal, thereby causing the electroacoustic transducer element 12 to deflect. In this way, the speaker's speaking voice is converted into an electrical signal.

以上、本発明の各種の実施例を説明したが、図
示して説明した実施例は本発明のうちの一部にす
ぎず、さらに次のような他の変形が可能である。
Although various embodiments of the present invention have been described above, the illustrated and described embodiments are only a part of the present invention, and other modifications as described below are possible.

(1) 前記した各実施例では、電気音響変換素子1
2がダンパー部材14の軸と平行な物および平
行でない物、支持基材11として重い金属を用
いた物および固い樹脂を用いた物、振動吸収部
材15上にマイクロホン支持具を設けない物お
よび設けた物の代表例を説明したが、前記した
各実施例において、上記の二者のうちのいずれ
か一つを任意に取拾選択してもよい。例えば、
第1実施例における電気音響変換素子12を第
3実施例のようにダンパー部材14の軸に対し
て傾けてもよいし、あるいはマイクロホン支持
具17を取り付ける等して、第1実施例を変形
してもよい。
(1) In each of the above embodiments, the electroacoustic transducer 1
2 is parallel to the axis of the damper member 14 and those not parallel to the axis of the damper member 14, those using heavy metal and hard resin as the support base material 11, and those where no microphone support is provided on the vibration absorbing member 15. Although representative examples of the above-mentioned types have been described, in each of the above-described embodiments, any one of the above two types may be arbitrarily selected. for example,
The electroacoustic transducer 12 in the first embodiment may be tilted with respect to the axis of the damper member 14 as in the third embodiment, or the first embodiment may be modified by attaching a microphone support 17, etc. It's okay.

(2) 前記した各実施例では、ダンパー部材14の
形状として、円筒状および球状のものを示した
が、本発明はこれに限定されない。要は、ダン
パー部材に体積流が当つた時、ダンパー部材の
体積流が当つた側に押圧力が働き、その裏側
に、体積流の流れによつて乱流が形成される形
状で、かつ遠方から来た外音が相殺されるよう
な形状であればよい。したがつて、断面が楕円
の柱状でもよく、また、楕円球でもよく、さら
に断面が円に近い多角形をもつ角柱状であつて
もよい。
(2) In each of the above embodiments, the damper member 14 has a cylindrical shape and a spherical shape, but the present invention is not limited thereto. The point is that when a volume flow hits a damper member, a pressing force acts on the side of the damper member that the volume flow hits, and on the back side, a turbulent flow is formed by the flow of the volume flow. Any shape is sufficient as long as it cancels out external sounds coming from the outside. Therefore, it may be columnar with an elliptical cross section, an elliptical sphere, or even a prism with a polygon close to a circle in cross section.

(3) マイクロホン支持具17を支持部としてダン
パー部材14の全体を包むような棒状の囲いを
設けてもよい。このようにすると、ダンパー部
材14に指や外物等がじかに当らないので、電
気音響変換素子12の破損を防止することがで
きる。
(3) A rod-shaped enclosure may be provided that surrounds the entire damper member 14 using the microphone support 17 as a support part. This prevents fingers, foreign objects, etc. from directly hitting the damper member 14, thereby preventing damage to the electroacoustic transducer element 12.

(4) 電気音響変換素子12の遊端に重りを設けて
もよい。このようにすると、ピツクアツプ効率
が一層良くなる。
(4) A weight may be provided at the free end of the electroacoustic transducer 12. In this way, the pickup efficiency is further improved.

(5) 前記した各実施例において、支持基材11
に、第4実施例に示されているような突起を設
けてもよい。又は、支持基材11のダンパー部
材14および振動吸収部材15との接触面を粗
面にしてもよい。
(5) In each of the above embodiments, the supporting base material 11
In addition, a protrusion as shown in the fourth embodiment may be provided. Alternatively, the contact surface of the support base material 11 with the damper member 14 and the vibration absorbing member 15 may be made rough.

第10図は第1図に示されている従来の接話用
マイクと第4図aに示されている本実施例のマイ
クとを使つて、「ア」「イ」「ウ」「エ」「オ」とい
う音声をピツクアツプした時の波形図を示す。
FIG. 10 shows how to use the conventional close-talk microphone shown in FIG. 1 and the microphone of this embodiment shown in FIG. A waveform diagram is shown when the voice "o" is picked up.

両者の波形を比較すればわかるように、従来の
接話用マイクと本実施例の接話用マイクとでピツ
クアツプした音声の波形はほぼ同等になるという
ことができる。
As can be seen by comparing the waveforms of the two, the waveforms of the voices picked up by the conventional close-talking microphone and the close-talking microphone of this embodiment are almost the same.

第11図はホワイトノイズがある環境下で、音
声をピツクアツプした時の波形図である。同図a
は第1図に示されている従来のマイクによる波
形、同図bは第4図aの本実施例のマイクによる
波形を示す。
FIG. 11 is a waveform diagram when audio is picked up in an environment with white noise. Figure a
shows the waveform produced by the conventional microphone shown in FIG. 1, and FIG. 4b shows the waveform produced by the microphone of the present embodiment shown in FIG. 4a.

30dB〜40dBで「イ」音を連続して入力したと
ころ、両者共明瞭な音がピツクアツプできた。し
かし、40dBより大きくなると、同図aから明ら
かなように、従来の接話用マイクではノイズを捨
い、入力された「ウ」音をピツクアツプすること
はできない。これに対し、本実施例のマイクで
は、同図bから明らかなように、明瞭に「ウ」音
をピツクアツプできた。したがつて、本実施例の
マイクは外音や騒音に強いということが実証され
た。
When I input a continuous "A" sound at 30dB to 40dB, both were able to pick up a clear sound. However, when the noise is greater than 40 dB, as is clear from Figure 1A, conventional close-talk microphones are unable to discard noise and pick up the input "u" sound. In contrast, the microphone of this example was able to clearly pick up the "u" sound, as is clear from FIG. Therefore, it was demonstrated that the microphone of this example is resistant to external sounds and noise.

第12図、第13図はハウリングテストの波形
図を示し、それぞれ第1図に示した従来の接話用
マイクによる波形図、第4図aの本実施例の気流
マイクによる波形図を示す。この波形の測定はス
ピーカとマイクを約1m離し、ボリウムを連続的
に変えると共に、「オ」音を入力して行なつた。
FIGS. 12 and 13 show waveform diagrams of the howling test, respectively, showing the waveform diagram of the conventional close-talking microphone shown in FIG. 1 and the waveform diagram of the airflow microphone of the present embodiment shown in FIG. 4a. This waveform measurement was performed by placing the speaker and microphone approximately 1 meter apart, changing the volume continuously, and inputting an "o" sound.

従来のマイクに第12図aのような「オ」音を
入力し、−40dBのボリウム位置から徐々に大きく
していつたところ、−3dBのボリウム位置近辺で
ハウリングが起きた。これに対して、本実施例の
マイクに、第12図aと同様の第13図aに示さ
れているような「オ」音を入力し、−40dBのボリ
ウム位置から徐々に大きくしていつたところ、
0dBのボリウム位置に来てもハウリングが起こら
なかつた。したがつて、本実施例の気流マイクは
ハウリングに強いということが実証された。
When I input the "o" sound shown in Figure 12a into a conventional microphone and gradually increased the volume from the -40 dB volume position, howling occurred around the -3 dB volume position. In contrast, an "o" sound as shown in Figure 13a, which is similar to Figure 12a, was input to the microphone of this example, and the volume was gradually increased from the -40dB volume position. However,
Howling did not occur even when the volume was at 0dB. Therefore, it was demonstrated that the airflow microphone of this example is resistant to howling.

以上のように、本発明の気流マイクは騒音に強
く、ハウリングが起こりづらいという、大きな効
果がある。このため、建設現場、空港、採石現場
等の高騒音下で使用できる。また、ハウリングに
強いので、スピーカの近傍で使用することができ
る。
As described above, the airflow microphone of the present invention has great effects in that it is resistant to noise and hardly causes howling. Therefore, it can be used in high noise environments such as construction sites, airports, and quarry sites. Additionally, it is resistant to feedback, so it can be used near speakers.

また、電気音響変換素子がダンパー部材でモー
ルドされているので、湿気に強く、堅牢である。
このため、寿命が長いという効果がある。
Furthermore, since the electroacoustic transducer element is molded with a damper member, it is resistant to moisture and is robust.
Therefore, it has the effect of having a long life.

さらに、本発明による気流マイクの支持基材、
ダンパー部材、および振動吸収部材は、モールド
によつても作成できるので、製造コストが簡単で
かつコストが安価になるという効果もある。
Furthermore, a supporting base material for an airflow microphone according to the present invention,
Since the damper member and the vibration absorbing member can also be made by molding, there is an effect that the manufacturing cost is simple and the cost is low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の接話用マイクロホンの外観斜視
図と断面図、第2図a、第3図、第4図a、第5
図、第6図a、第7図、第8図および第9図はそ
れぞれ本発明の第1、第2、第3、第4、第5、
第6、第7および第8実施例の斜視図、第2図
b、第4図bおよび第6図bはそれぞれ前記第
1、第3および第5実施例の断面図、第10図は
従来の接話用マイクと本実施例の接話用マイクで
音声をピツクアツプした時の波形図、第11図は
ホワイトノイズ発生下において音声をピツクアツ
プした時の両マイクロホンの波形図、第12図は
従来の接話用マイクロホンでハウリングテストを
した時の波形図、第13図は本発明の接話用マイ
クロホンでハウリングテストをした時の波形図を
示す。 11……支持基材、12……電気音響変換素
子、13……電気音響変換素子支持部、14……
ダンパー部材、15……振動吸収部材、16……
コード、17……マイクロホン支持具、18……
容器、19……オイル、20……容器、21……
液体。
Fig. 1 is an external perspective view and a sectional view of a conventional close-talk microphone, Fig. 2a, Fig. 3, Fig. 4a, Fig. 5.
6a, 7, 8 and 9 are the first, second, third, fourth, fifth, and third embodiments of the present invention, respectively.
2b, 4b and 6b are respectively sectional views of the first, third and fifth embodiments, and FIG. 10 is a conventional Figure 11 is a waveform diagram when audio is picked up with the close-talking microphone of this embodiment and the close-talking microphone of this embodiment, Figure 11 is a waveform diagram of both microphones when audio is picked up under white noise generation, and Figure 12 is the waveform diagram of the conventional microphone. FIG. 13 shows a waveform diagram when a howling test was performed using the close-talking microphone of the present invention. FIG. DESCRIPTION OF SYMBOLS 11...Supporting base material, 12...Electroacoustic conversion element, 13...Electroacoustic conversion element support part, 14...
Damper member, 15... Vibration absorbing member, 16...
Cord, 17...Microphone support, 18...
Container, 19...Oil, 20...Container, 21...
liquid.

Claims (1)

【特許請求の範囲】 1 支持基材、該支持基材に一端を支持された電
気音響変換素子、少なくとも前記支持基材の電気
音響変換素子支持部および電気音響変換素子を覆
うようにモールドした体積流の当る側とその反対
側とでは圧力差が生じる形状のヒステリシスが大
きいダンパー部材、前記支持基材の前記電気音響
変換素子が取り付けられた側とは反対側に設けら
れた振動吸収部材を具備したことを特徴とする気
流マイクロホン。 2 前記ダンパー部材が円筒状、楕円柱状、球状
又は楕円球状にしたことを特徴とする前記特許請
求の範囲第1項記載の気流マイクロホン。 3 前記電気音響変換素子が前記ダンパー部材の
ほぼ中心軸上又は直径上に延びており、マイクロ
ホンが無指向性を有するようにしたことを特徴と
する前記特許請求の範囲第1項又は第2項記載の
気流マイクロホン。 4 前記電気音響変換素子の少なくとも遊端が前
記ダンパー部材の表面近くにあり、マイクロホン
に指向性をもたせたことを特徴とする前記特許請
求の範囲第1項又は第2項記載の気流マイクロホ
ン。 5 前記振動吸収部材が前記ダンパー部材と同じ
材料で一体に形成され、前記支持基材が該ダンパ
ー部材中に埋設されていることを特徴とする前記
特許請求の範囲第1〜4項のいずれかに記載され
た気流マイクロホン。
[Scope of Claims] 1. A supporting base material, an electroacoustic transducing element whose one end is supported by the supporting base material, and a volume molded to cover at least the electroacoustic transducing element support portion of the supporting base material and the electroacoustic transducing element. A damper member having a large hysteresis and having a shape that causes a pressure difference between the side to which the flow hits and the opposite side thereof, and a vibration absorbing member provided on the side of the support base opposite to the side to which the electroacoustic transducer is attached. An airflow microphone characterized by: 2. The airflow microphone according to claim 1, wherein the damper member has a cylindrical shape, an elliptical cylinder shape, a spherical shape, or an ellipsoidal shape. 3. Claims 1 or 2, characterized in that the electroacoustic conversion element extends substantially on the central axis or diameter of the damper member, so that the microphone has omnidirectionality. Airflow microphone as described. 4. The airflow microphone according to claim 1 or 2, wherein at least a free end of the electroacoustic transducer is located near the surface of the damper member, giving the microphone directivity. 5. Any one of claims 1 to 4, wherein the vibration absorbing member is integrally formed of the same material as the damper member, and the supporting base material is embedded in the damper member. Airflow microphone described in .
JP15422182A 1982-09-04 1982-09-04 Air flow microphone Granted JPS5943699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15422182A JPS5943699A (en) 1982-09-04 1982-09-04 Air flow microphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15422182A JPS5943699A (en) 1982-09-04 1982-09-04 Air flow microphone

Publications (2)

Publication Number Publication Date
JPS5943699A JPS5943699A (en) 1984-03-10
JPH026479B2 true JPH026479B2 (en) 1990-02-09

Family

ID=15579490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15422182A Granted JPS5943699A (en) 1982-09-04 1982-09-04 Air flow microphone

Country Status (1)

Country Link
JP (1) JPS5943699A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2595946B2 (en) * 1986-12-15 1997-04-02 いすゞ自動車株式会社 Composite piston and method of manufacturing the same

Also Published As

Publication number Publication date
JPS5943699A (en) 1984-03-10

Similar Documents

Publication Publication Date Title
US11082764B1 (en) Microphone and speaker all-in-one machine
JPH09502315A (en) Receiver for hearing aid
CN207995381U (en) Osteoacusis loudspeaker
JPS58182398A (en) Magnetic bone conduction and eardrum oscillation microphone in common use of transmission and reception
JP2007516658A (en) Noise canceling microphone with acoustically tuned ports
JP2541621B2 (en) Directional microphone
CN101622883B (en) Vibration pickup microphone
KR20110030418A (en) Microphone unit, voice input device of close-talking type, information processing system, and method for manufacturing microphone unit
CN101014204A (en) Speaker and method of outputting acoustic sound
CN208094773U (en) Loud speaker with sound wave steering structure and its sound wave steering structure
JPH026479B2 (en)
JPS58182397A (en) Magnetic bone conduction microphone
EP3941089A1 (en) Microphone and speaker all-in-one machine
CN1193236A (en) Integrated duct-type telephone transmitter and receiver with vibration acoustical pick-up device
CN1142671C (en) High feedback inhibited transmitting/receiving integrated earphone
JP2007043516A (en) Microphone for picking up body propagation of articulatory expiration sounds
US6907121B1 (en) Impedance matched horn having impedance matched to impedance of an ear
JPS6345104Y2 (en)
JPH0158920B2 (en)
EP0469955A2 (en) Transmitter-receiver handset
CN219269068U (en) Bone conduction loudspeaker of penetrating sound
JPS5824544Y2 (en) audio equipment
US245436A (en) John b
JPS6345105Y2 (en)
US660796A (en) Hygienic resonator for telephones or other sound-transmitting devices.