JPH0264504A - Production of optical fiber for infrared light - Google Patents

Production of optical fiber for infrared light

Info

Publication number
JPH0264504A
JPH0264504A JP63216522A JP21652288A JPH0264504A JP H0264504 A JPH0264504 A JP H0264504A JP 63216522 A JP63216522 A JP 63216522A JP 21652288 A JP21652288 A JP 21652288A JP H0264504 A JPH0264504 A JP H0264504A
Authority
JP
Japan
Prior art keywords
fiber
extrusion
thallium
setting
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63216522A
Other languages
Japanese (ja)
Inventor
Hisanori Sugiura
久則 杉浦
Toshi Ikedo
池戸 才
Masabumi Watari
渡 正文
Hiromi Nakanou
中農 裕美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63216522A priority Critical patent/JPH0264504A/en
Publication of JPH0264504A publication Critical patent/JPH0264504A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/84Halide glasses other than fluoride glasses, i.e. Cl, Br or I glasses, e.g. AgCl-AgBr "glass"

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain the fiber which can transmit high energy by setting an extrusion temp. at 210 to 230 deg.C at the time of forming the solid soln. of thallium bromide and thallium iodide by a warm extrusion method to the fiber. CONSTITUTION:The perform crystal 1 of the solid soln. (KRS-5) of the thallium bromide and thallium iodide is set in a container 4 and is extruded to form the fiber by setting the extrusion temp. at 210 to 230 deg.C by a heater 5 and applying 8t/cm<2> pressure to a punching rod 7. While the causes for the deterioration of the fiber include the scattering by the stress and strain generated at the time of the extrusion molding and the thermal strain generated by rapid cooling, the scattering and thermal strain are minimized by setting the extrusion temp. at 210 to 230 deg.C. The optical fiber which has high power resistance and can transmit the high energy without being deteriorated even if CO2 laser light of high power is passed therethrough is obtd. in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザメスあるいはレーザ加工機に有用な高
エネルギー伝送等に用いられる赤外用光ファイバの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing an infrared optical fiber used for high energy transmission, etc. useful for laser scalpels or laser processing machines.

従来の技術 最近、医療分野におけるレーザメス、産業分野における
レーザ加工機等、赤外域のレーザ光の利用が試みられて
おり、特にCO2レーザが多く使われている。これらの
中赤外域の波長を高エネルギーで伝送できるファイバが
得られれば、大きく応用展開が可能となる。
BACKGROUND OF THE INVENTION Recently, attempts have been made to utilize laser light in the infrared region in laser scalpels in the medical field, laser processing machines in the industrial field, etc., and in particular, CO2 lasers are often used. If a fiber capable of transmitting these wavelengths in the mid-infrared region with high energy can be obtained, a wide range of applications will become possible.

中赤外用ファイバとしては、カルコゲンガラスや金属ハ
ロゲン化物が用いられ、特に、臭化タリウム、よう化タ
リウムの固溶体(KRS−5)は、CO2レーザの10
.6μmの波長を高パワーで伝送できる優れた材料であ
る。
Chalcogen glass and metal halides are used as mid-infrared fibers, and in particular, solid solutions of thallium bromide and thallium iodide (KRS-5) are used for CO2 lasers.
.. It is an excellent material that can transmit a wavelength of 6 μm with high power.

KRS−5フアイバは、温度約245°C1圧力約8t
/cm2で、温間押出法により製造される。
KRS-5 fiber has a temperature of approximately 245°C and a pressure of approximately 8 tons.
/cm2, manufactured by warm extrusion method.

発明が解決しようとする課題 しかしながら、従来の方法で製造されたKRS−5フア
イバに高パワーCO2レーザ光を通すと、約250Wで
劣化してしまう。レーザ加工機にファイバを用いるには
、少なくとも300WのC02レーザ光を透過させるこ
とが可能でなければならない。
Problems to be Solved by the Invention However, when a high power CO2 laser beam is passed through a KRS-5 fiber manufactured by a conventional method, it deteriorates at about 250 W. In order to use a fiber in a laser processing machine, it must be possible to transmit at least 300 W of C02 laser light.

ファイバの耐パワー性を上げるには、押し出したファイ
バを熱処理する方法があるが、この場合、機械的強度が
弱くなる。
One way to increase the power resistance of the fiber is to heat-treat the extruded fiber, but in this case the mechanical strength becomes weaker.

本発明は、上述した課題を解決し、機械的強度は従来の
ままで、耐パワー性の高い赤外用光ファイバの製造方法
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing an infrared optical fiber having high power resistance while maintaining mechanical strength as before.

課題を解決するための手段 本発明は、臭化タリウム、よう化タリウムの固溶体を温
間押出法によってファイバ化する方法において、押出時
の温度を210℃から230°Cとする。
Means for Solving the Problems The present invention is a method of forming a solid solution of thallium bromide or thallium iodide into a fiber by warm extrusion, in which the temperature during extrusion is 210°C to 230°C.

作用 ファイバの劣化要因の一つに、押出成形時の応力歪によ
る散乱があり、耐パワー性を向上させるには、この応力
歪を減少させなければならない。
One of the causes of deterioration of working fibers is scattering due to stress strain during extrusion molding, and in order to improve power resistance, this stress strain must be reduced.

応力歪を少なくするには、高温で、結晶のやわらかい状
態で押し出してやればよいが、あまり高温にすると、押
し出された後に、急冷されることによる熱歪が入る。従
って、応力歪及び熱歪が最も小さくなるような温度で押
し出せば、耐パワー性の高いファイバが得られる。
In order to reduce stress strain, it is best to extrude the crystal at a high temperature in a soft state, but if the temperature is too high, thermal strain will occur due to rapid cooling after extrusion. Therefore, by extruding at a temperature that minimizes stress strain and thermal strain, a fiber with high power resistance can be obtained.

実施例 以下に、本発明の実施例を図面を用いて説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

第1図は、ファイバ製作装置の全体を示す概念図である
。lがプリフォーム結晶、2が多結晶赤外ファイバ、3
がファイバの太さを決めるダイス、4が加工用コンテナ
、5が加熱用ヒーター 6が上蓋を兼ねるガイド、7が
パンチ棒、8が保持台である。
FIG. 1 is a conceptual diagram showing the entire fiber manufacturing apparatus. l is preform crystal, 2 is polycrystalline infrared fiber, 3
is a die that determines the thickness of the fiber, 4 is a container for processing, 5 is a heater for heating, 6 is a guide that also serves as an upper lid, 7 is a punch rod, and 8 is a holding stand.

本発明にかかるファイバの製造法を順を追って説明する
。K RS −5単結晶をコンテナ4の形状に合うよう
に円柱状にプリフォーム加工する。このプリフォーム結
晶lをコンテナ4にセットし、ヒーター5で適当な温度
に設定して、油圧プレスで、約8t/cm2の圧力をバ
ンチ棒7に加えて押し出すことによりファイバ化する。
A method for manufacturing a fiber according to the present invention will be explained step by step. A KRS-5 single crystal is preformed into a cylindrical shape to match the shape of the container 4. This preform crystal 1 is set in a container 4, set at an appropriate temperature with a heater 5, and extruded into a fiber by applying a pressure of about 8 t/cm 2 to a bunch rod 7 using a hydraulic press.

第2図は、押出圧力8t/cm2の時の、押出温度と、
長さ6cmの短尺ファイバの損傷しきい値の関係を示す
グラフである。耐パワー性は、押出温度が220°Cで
極大値を示している。従って、押出温度は210°Cか
ら230°Cが適当である。
Figure 2 shows the extrusion temperature when the extrusion pressure is 8t/cm2,
It is a graph showing the relationship between damage thresholds of short fibers with a length of 6 cm. The power resistance shows a maximum value at an extrusion temperature of 220°C. Therefore, the appropriate extrusion temperature is 210°C to 230°C.

第3図は、押出温度220°Cの時、押出圧力と、長さ
Gcmの短尺ファイバの損傷しきい値の関係を示すグラ
フである。耐パワー性は、押出圧力にはほとんど影響を
受けない。従って、4 t / c m”から12t/
cm2のいずれの圧力で押し出してもよい。
FIG. 3 is a graph showing the relationship between extrusion pressure and damage threshold of a short fiber having a length of Gcm when the extrusion temperature is 220°C. Power resistance is hardly affected by extrusion pressure. Therefore, from 4 t/cm” to 12 t/cm”
It may be extruded at any pressure of cm2.

発明の効果 以上の説明から明らかなように、本発明は、KRS−5
結晶を温間押出法でファイバ化する際、押出温度を21
0°Cから230°Cとすることにより、成形時の応力
歪及び熱歪を最小に抑え、散乱を少なくして、レーザメ
スあるいはレーザ加工機などに、より耐パワー性の高い
高エネルギー伝送赤外用光ファイバを提供することがで
きるという効果を有する。
Effects of the Invention As is clear from the above explanation, the present invention provides KRS-5
When converting crystals into fibers by warm extrusion, the extrusion temperature is set to 21
By setting the temperature from 0°C to 230°C, stress strain and thermal strain during molding are minimized, and scattering is reduced, making it suitable for high-energy transmission infrared with higher power resistance for laser scalpels or laser processing machines. This has the effect of being able to provide optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る赤外用光ファイバの製造方法の
実施に使用されるファイバ製作装置の全体を示す概念図
、第2図は、押出圧力8t/cin2の時の、押出温度
と、長さ6cmの短尺ファイバの損傷しきい値の関係を
示すグラフ、第3図は、押出温度220°Cの時の、押
出圧力と、長さ6cmの短尺ファイバの損傷しきい値の
関係を示すグラフである。 l・・・プリフォーム結晶、2・・・多結晶赤外ファイ
ト・・プリフォーム結晶、2・・・多結晶赤外ファイバ
、3・・・ダイス、4・・・加工用コンテナ、5・・・
加熱用ヒーター 6・・・ガイド、7・・・パンチ棒、
8・・・保持台 代理人の氏名 弁理士 粟野重孝 はか1名第 図 2多結晶赤外フアイバ 第 図 才甲 出 温度 (°C)
FIG. 1 is a conceptual diagram showing the entire fiber manufacturing apparatus used for carrying out the infrared optical fiber manufacturing method according to the present invention, and FIG. 2 shows the extrusion temperature at an extrusion pressure of 8 t/cin2, A graph showing the relationship between the damage threshold of a short fiber with a length of 6 cm, and FIG. 3 shows the relationship between the extrusion pressure and the damage threshold of a short fiber with a length of 6 cm when the extrusion temperature is 220 ° C. It is a graph. l... Preform crystal, 2... Polycrystalline infrared phyto... Preform crystal, 2... Polycrystalline infrared fiber, 3... Dice, 4... Container for processing, 5...・
Heating heater 6...Guide, 7...Punch rod,
8...Name of holding stand agent Patent attorney Shigetaka Awano 1 person Fig. 2 Polycrystalline infrared fiber Fig. Output temperature (°C)

Claims (1)

【特許請求の範囲】[Claims] (1)臭化タリウム、よう化タリウムの固溶体を温間押
出法によってファイバ化する方法において、押出時の温
度を210℃から230℃とすることを特徴とする赤外
用光ファイバの製造方法。
(1) A method for producing an infrared optical fiber, which comprises forming a solid solution of thallium bromide or thallium iodide into a fiber by warm extrusion, the temperature during extrusion being 210°C to 230°C.
JP63216522A 1988-08-31 1988-08-31 Production of optical fiber for infrared light Pending JPH0264504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63216522A JPH0264504A (en) 1988-08-31 1988-08-31 Production of optical fiber for infrared light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216522A JPH0264504A (en) 1988-08-31 1988-08-31 Production of optical fiber for infrared light

Publications (1)

Publication Number Publication Date
JPH0264504A true JPH0264504A (en) 1990-03-05

Family

ID=16689750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216522A Pending JPH0264504A (en) 1988-08-31 1988-08-31 Production of optical fiber for infrared light

Country Status (1)

Country Link
JP (1) JPH0264504A (en)

Similar Documents

Publication Publication Date Title
US4381141A (en) Infrared optical fiber and method for manufacture thereof
US8509269B2 (en) Method for producing a cylindrical optical component of quartz glass and optically active component obtained by said method
CN104570199A (en) Selentellurium single crystal compound optical fiber and manufacturing method thereof
Itoh et al. Low-loss fluorozirco-aluminate glass fiber
JPH0264504A (en) Production of optical fiber for infrared light
EP0450645B1 (en) An infrared optical fiber and a method of manufacturing the same
EP0089220B1 (en) A crystalline fiber and a process for the production thereof
JPH0293405A (en) Production of optical fiber for infrared light
JPH0210304A (en) Manufacture of infrared optical fiber
Phomsakha et al. Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers
US4678275A (en) Optical fiber for infrared transmission consisting essentially of high purity mixed crystal of thallium bromide and thallium iodide
JPH01147504A (en) Production of optical fiber for infrared light
CN108793723B (en) Optical fiber and preparation method and preparation mold thereof
JPH0210303A (en) Manufacture of infrared optical fiber
JPH04172404A (en) Manufacture of infrared optical fiber
JPH02302705A (en) Production of optical fiber for infrared ray
Kimura et al. Characteristics of KRS-5 fiber with crystalline cladding
CN112939443A (en) High borosilicate glass cladding cesium iodide single crystal core optical fiber and preparation method and application thereof
JPS625204A (en) Production of optical fiber for infrared light
JPS63311303A (en) Production of optical fiber for infrared light
McNamara et al. A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission
JPH01109306A (en) Production of optical fiber for infrared light
JPH0210302A (en) Manufacture of single crystal infrared fiber
JPH0293602A (en) Production of optical fiber for infrared ray
JPS58158603A (en) Method and device for manufacturing fiber for infrared light