JPH01109306A - Production of optical fiber for infrared light - Google Patents

Production of optical fiber for infrared light

Info

Publication number
JPH01109306A
JPH01109306A JP62268569A JP26856987A JPH01109306A JP H01109306 A JPH01109306 A JP H01109306A JP 62268569 A JP62268569 A JP 62268569A JP 26856987 A JP26856987 A JP 26856987A JP H01109306 A JPH01109306 A JP H01109306A
Authority
JP
Japan
Prior art keywords
fiber
crystal
single crystal
polycrystalline
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62268569A
Other languages
Japanese (ja)
Inventor
Toshi Ikedo
池戸 才
Masabumi Watari
渡 正文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62268569A priority Critical patent/JPH01109306A/en
Publication of JPH01109306A publication Critical patent/JPH01109306A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/008Polycrystalline optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/84Halide glasses other than fluoride glasses, i.e. Cl, Br or I glasses, e.g. AgCl-AgBr "glass"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To eliminate the liberation of the grain boundaries and impurity elements in a fiber by using a single crystal for the base crystal for the fiber and converting the same to a polycrystalline fiber. CONSTITUTION:The single crystal is used for the base crystal for the fiber and is converted to the polycrystalline fiber by a heating extrusion method. Thallium halide, silver halide or cesium halide is preferably used and the crystal (KRS-5) of TlBr-TlI (40-45wt.% TlBr) is more preferably used for the base material of the single crystal. For example, the polycrystalline IR optical fiber 2 is produced by heating a perform crystal 1 consisting of the KRS-5 single crystal to a desired temp. and extruding the same. The fiber 2 with which the heat generation by the liberation of the grain boundaries and impurity elements is decreased and which is capable of transmitting high energy is thereby obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ加工やレーザ医療に用いる赤外光ファ
イバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an infrared optical fiber used for laser processing and laser medical treatment.

従来の技術 中赤外域(4μm〜20μm)を伝送するファイバ材料
として、カルコゲンガラスや金属ハロゲン化物が用いら
れており、中でもハロゲン化タリウムは数μmから20
μm以上を透過できる材料であり、特にCO2レーザの
IO26μmの波長のを高パワーのエネルギーを伝送で
きる数少ない優れたファイバである。
Conventional technology Chalcogen glass and metal halides are used as fiber materials that transmit mid-infrared wavelengths (4 μm to 20 μm), and among them, thallium halide is used for transmission in the mid-infrared region (4 μm to 20 μm).
It is a material that can transmit wavelengths of μm or more, and is one of the few excellent fibers that can transmit high-power energy, especially at the wavelength of IO26 μm of CO2 laser.

更に、TlBr−Tl1結晶(にR5−5)は、加熱押
出法により作成される多結晶ファイバである。
Furthermore, TlBr-Tl1 crystal (R5-5) is a polycrystalline fiber made by a hot extrusion method.

このような多結晶KRS−5ファイバは、10数μmか
ら60μmの微結晶が中赤外域では光学的界面をもたな
いファイバである。
Such a polycrystalline KRS-5 fiber is a fiber in which microcrystals of 10-odd μm to 60 μm have no optical interface in the mid-infrared region.

発明が解決しようとする問題点 以−Eの方法で制作されたファイバにCO2レーザ光を
通し、人力パワーを増加させて行くと、ファイバの途中
で溶解し、ファイバが破断する現象がみられる0例えば
、0.5mmx1.5mのKRS−5のファイバにCO
2レーザを伝送すると、100W程度で溶断が始まる。
Problems to be Solved by the Invention - When a CO2 laser beam is passed through a fiber produced by the method E and the manual power is increased, a phenomenon is observed in which the fiber melts in the middle and the fiber breaks. For example, CO on a 0.5mm x 1.5m KRS-5 fiber
When two lasers are transmitted, fusing starts at about 100W.

このファイバが高パワーのCO2レーザ光で溶断する原
因は、ファイバ内の結晶粒界の遊離や不純物元素による
ものと考えられる。
The reason why this fiber is fused by high-power CO2 laser light is thought to be due to the release of crystal grain boundaries within the fiber and impurity elements.

問題点を解決するための手段 加熱押出法により赤外光学結晶をファイバ化する方法に
おいて、ファイバ用母結晶に単結晶を用い、多結晶ファ
イバ化する。
Means for Solving the Problems In a method of forming an infrared optical crystal into a fiber by a heating extrusion method, a single crystal is used as a fiber mother crystal, and a polycrystalline fiber is formed.

作用 ファイバのパワー伝送能力を向上させるには、ファイバ
自身を構成している微結晶の粒界の遊離や発熱の原因に
なる不純物元素を除去する必要がある。この2つの大き
な原因を取り除くためには、ファイバ用母結晶の吠態が
大切であり、上記の方法により、多結晶ファイバの結晶
粒界の遊離がなくなるとともに、光の反射ロスによる発
熱がなくなる。さらに、結晶の純度が向上し、ファイバ
自身の発熱が小さくなり、高エネルギーを伝送できる赤
外ファイバが製作できる。
In order to improve the power transmission ability of a working fiber, it is necessary to remove impurity elements that cause the release of grain boundaries of microcrystals constituting the fiber itself and heat generation. In order to eliminate these two major causes, the state of the fiber host crystal is important, and the above method eliminates the separation of the crystal grain boundaries of the polycrystalline fiber and also eliminates heat generation due to light reflection loss. Furthermore, the purity of the crystal is improved, the heat generation of the fiber itself is reduced, and an infrared fiber that can transmit high energy can be manufactured.

実施例 第1図はブリッジマン法などで制作されたKRS−5の
結晶を切り出し6面を光学研磨したものである。(a)
は、いろんな結晶方向を持った結晶、 (b)は、1つ
の結晶方位しか示さない単結晶である0本発明は、 (
b)のような単結晶を用いる0次に、多結晶K RS 
−5フアイバの製造方法は加熱押出法を用いた。第2図
は押出装置の概念図である。lはプリフォーム結晶、2
は多結晶ファイバ、3は加圧するためのパンチ棒、4は
ファイバの径をきめるダイス、5はヒータを示す。
Embodiment FIG. 1 shows a KRS-5 crystal produced by the Bridgman method or the like, cut out and optically polished on six sides. (a)
is a crystal with various crystal orientations, and (b) is a single crystal that shows only one crystal orientation.
b) Zero-order, polycrystalline KRS using a single crystal like
-5 fiber was manufactured using a heating extrusion method. FIG. 2 is a conceptual diagram of the extrusion device. l is preform crystal, 2
3 indicates a polycrystalline fiber, 3 a punch rod for applying pressure, 4 a die for determining the diameter of the fiber, and 5 a heater.

次に製造手順について述べる。第3図は多結晶ファイバ
の製造行程を示す。
Next, the manufacturing procedure will be described. FIG. 3 shows the manufacturing process of polycrystalline fiber.

単結晶の評価は、第1図に示したように切り出した結晶
の6面を光学研磨し、He−Neレーザで照射すること
によって簡易的に選別できる。則ち、結晶の中に異なる
成長面があると反射と散乱が生ずる。このようにHe−
Neレーザを照射し観察して選別できる。ダイの径は任
意に選定できるが実施例では直径0.5mmとした。押
し出し用コンテナの径に合わせてKRS−5単結晶を円
柱状に成形し、押出前のプリフォーム結晶とした。
Single crystals can be easily evaluated by optically polishing six sides of the cut crystal as shown in FIG. 1 and irradiating it with a He-Ne laser. In other words, reflection and scattering occur when there are different growth planes within the crystal. In this way, He-
It can be sorted by irradiating with Ne laser and observing. The diameter of the die can be arbitrarily selected, but in the example, the diameter was 0.5 mm. A KRS-5 single crystal was molded into a cylindrical shape to match the diameter of an extrusion container to obtain a preform crystal before extrusion.

結晶の径はコンテナの壁面と出来るだけ密着する方がよ
い、ファイバ押出し温度は200°C−270°Cで押
出を行なう、押出し温度が低くなるとファイバの出てく
る速度が遅くなる。十分にファイバに加圧されるような
条件が上述である。第2図に示す押出装置を使ってファ
イバを制作する。
It is better for the diameter of the crystal to be in close contact with the wall of the container as much as possible.The fiber extrusion temperature is 200°C-270°C.The lower the extrusion temperature, the slower the speed at which the fiber comes out. The above conditions are such that the fiber is sufficiently pressurized. The fiber is produced using the extrusion apparatus shown in FIG.

次に、ファイバの両端面を研磨し、CO2レーザを通す
ことが可能になる。
Next, both end faces of the fiber are polished to allow passage of a CO2 laser.

表1.はファイバのパワー伝送限界を示す、ファイバを
つくる母結晶のKRS−5の結晶性を比較している。
Table 1. compares the crystallinity of KRS-5, the host crystal from which the fiber is made, which indicates the power transmission limit of the fiber.

多相を有するKRS−5結晶とは、第1図の(a)に示
したものであり、(b)の単結晶とは大きく異なってい
る。使用する結晶を2つに大別し、前述の方法でファイ
バを製作し、C02レーザを通し、パワー伝送能力を測
定した結果の平均値を示す。
The KRS-5 crystal having multiple phases is shown in FIG. 1(a), and is significantly different from the single crystal shown in FIG. 1(b). The crystals used are roughly divided into two types, fibers are fabricated by the method described above, and the power transmission capabilities are measured by passing them through a C02 laser.The average value of the results is shown.

(以下余白) 表  1 KRS−5単結晶から製作したファイバは、パワーの伝
送能力が3倍あり、非常に優れている。
(Left below) Table 1 Fiber made from KRS-5 single crystal has three times the power transmission ability, which is extremely superior.

これらの方法は、ハロゲン化銀、ハロゲン化セシウムを
用いて多結晶ファイバを製作する上で応用される。
These methods are applied to fabricate polycrystalline fibers using silver halide and cesium halide.

発明の効果 本発明により高出力化されたファイバを用いたC O2
レーザ用光ケーブルは、従来の3倍以上の伝送が可能に
なり、鉄板の切断も可能になった。
Effects of the invention CO2 using a fiber with high output according to the present invention
Laser optical cables can now transmit more than three times as much as conventional cables, and can also cut iron plates.

は単結晶を各々示す斜視図、第2図は多結晶ファイバの
押出装置の概念図、第3図はファイバ製造の全体行程を
示す工程図である。
2 is a perspective view showing each single crystal, FIG. 2 is a conceptual diagram of an extrusion device for polycrystalline fiber, and FIG. 3 is a process diagram showing the entire process of fiber manufacturing.

l・・・・プリフォーム結晶、2・・・・多結晶赤外フ
ァイバ、3・・・・パンチ棒、4・・・・ダイス、5・
・・・ヒータ。
l... Preform crystal, 2... Polycrystalline infrared fiber, 3... Punch rod, 4... Dice, 5...
···heater.

代理人の氏名 弁理士 中尾敏男 はか1名Il1図 (CL)           (b)WE 2 図Name of agent: Patent attorney Toshio Nakao (1 person) (CL) (b) WE 2 Diagram

Claims (3)

【特許請求の範囲】[Claims] (1)加熱押出法により赤外光学結晶をファイバ化する
方法において、ファイバ用母結晶に単結晶を用い、多結
晶ファイバ化することを特徴とする赤外用光ファイバの
製造方法。
(1) A method for producing an infrared optical fiber, which is characterized in that a single crystal is used as a fiber mother crystal to form a polycrystalline fiber in a method of forming an infrared optical crystal into a fiber by a heating extrusion method.
(2)単結晶母材料として、ハロゲン化タリウム、ハロ
ゲン化銀、またはハロゲン化セシウムを用いることを特
徴とする特許請求の範囲第1項記載の赤外用光ファイバ
の製造方法。
(2) The method for manufacturing an infrared optical fiber according to claim 1, characterized in that thallium halide, silver halide, or cesium halide is used as the single crystal base material.
(3)単結晶母材料として、TlBr−TlI(TlB
r40−45wt%)の単結晶を用いることを特徴とす
る特許請求の範囲第1項記載の赤外用光ファイバの製造
方法。
(3) TlBr-TlI (TlB
2. The method for manufacturing an infrared optical fiber according to claim 1, characterized in that a single crystal of r40-45 wt%) is used.
JP62268569A 1987-10-23 1987-10-23 Production of optical fiber for infrared light Pending JPH01109306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62268569A JPH01109306A (en) 1987-10-23 1987-10-23 Production of optical fiber for infrared light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62268569A JPH01109306A (en) 1987-10-23 1987-10-23 Production of optical fiber for infrared light

Publications (1)

Publication Number Publication Date
JPH01109306A true JPH01109306A (en) 1989-04-26

Family

ID=17460342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62268569A Pending JPH01109306A (en) 1987-10-23 1987-10-23 Production of optical fiber for infrared light

Country Status (1)

Country Link
JP (1) JPH01109306A (en)

Similar Documents

Publication Publication Date Title
JPS585406B2 (en) Infrared optical fiber and its manufacturing method
EP0450645B1 (en) An infrared optical fiber and a method of manufacturing the same
JPH01109306A (en) Production of optical fiber for infrared light
EP0172988B1 (en) Optical fibers for infrared transmission
JPH01147504A (en) Production of optical fiber for infrared light
JPH0210304A (en) Manufacture of infrared optical fiber
JPH04172404A (en) Manufacture of infrared optical fiber
JPS59147302A (en) Optical fiber for infrared rays
JPS63311303A (en) Production of optical fiber for infrared light
JPH02136807A (en) Manufacture of optical fiber coupler
JPH0210302A (en) Manufacture of single crystal infrared fiber
JPH0293602A (en) Production of optical fiber for infrared ray
JPS59152405A (en) Manufacture of infrared transmitting fiber
JPH0293405A (en) Production of optical fiber for infrared light
JPH0264504A (en) Production of optical fiber for infrared light
JP3649283B2 (en) Manufacturing method of optical material for ultraviolet laser beam
JP7114805B2 (en) Formation of polymer optical devices by template-constrained relaxation expansion
JPH01115897A (en) Production of magnesium fluoride single crystal
JPH01108505A (en) Production of optical fiber for infrared light
JPS62102203A (en) Crystal fiber and its production
Korsakova et al. Towards the Realization of Hollow-Core Silver Halide Fibers for Laser Angioplasty
JPS58132702A (en) Producing device for polycrystalline optical fiber
JPS58158603A (en) Method and device for manufacturing fiber for infrared light
JPH0274906A (en) Production of optical fiber for infrared light
JPH0235815Y2 (en)