JPH02302705A - Production of optical fiber for infrared ray - Google Patents

Production of optical fiber for infrared ray

Info

Publication number
JPH02302705A
JPH02302705A JP1124834A JP12483489A JPH02302705A JP H02302705 A JPH02302705 A JP H02302705A JP 1124834 A JP1124834 A JP 1124834A JP 12483489 A JP12483489 A JP 12483489A JP H02302705 A JPH02302705 A JP H02302705A
Authority
JP
Japan
Prior art keywords
crystal
extrusion
optical fiber
halide
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1124834A
Other languages
Japanese (ja)
Inventor
Hisanori Sugiura
久則 杉浦
Toshi Ikedo
池戸 才
Masabumi Watari
渡 正文
Hiromi Nakanou
中農 裕美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1124834A priority Critical patent/JPH02302705A/en
Publication of JPH02302705A publication Critical patent/JPH02302705A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/84Halide glasses other than fluoride glasses, i.e. Cl, Br or I glasses, e.g. AgCl-AgBr "glass"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To render high power resistance by setting an auxiliary crystal under a preform crystal in a container for extrusion. CONSTITUTION:When at least one kind of compd. selected among thallium halide, cesium halide and silver halide is formed into a fiber by warm extrusion, an auxiliary crystal 2 is set under a preform crystal 1 in a container 4 for extrusion. Since large strain imposed on the crystal 1 by a shock due to pressure applied first at the time of extrusion is reduced, the threshold value of damage of the crystal 1 is increased and an optical fiber for IR having high power resistance is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(表 レーザメスあるいはレーザ加工機に有用な
高エネルギー伝送用赤外用光ファイバの製造方法に関す
るものであム 従来の技術 最近 医療分野におけるレーザメス 産業分野における
レーザ加工機など、赤外域のレーザ光の利用が試みられ
ており、特にCO2レーザ(発振波長10.6μm)が
多く使われている。これらの中赤外域の波長を高エネル
ギーで伝送できるファイバが得られれば 大きく応用展
開が可能となる。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method for manufacturing an infrared optical fiber for high energy transmission useful for laser scalpels or laser processing machines.Recent Technology Laser scalpels in the medical field Industrial field Attempts are being made to utilize laser light in the infrared region, such as in laser processing machines in If this can be obtained, a wide range of applications will be possible.

中赤外用ファイバζよ 金属ハロゲン化物結晶から温間
押出法により製造されも これ(よ 次のような手順で
行なわれも まず、高純度な金属ハロゲン化物単結晶を
製造し 押出用コンテナに入るように円柱状に成形する
(プリフォーム結晶)。
The mid-infrared fiber ζ can be manufactured from metal halide crystals using the warm extrusion method.The process is as follows: First, a high-purity metal halide single crystal is manufactured, and then it is placed in an extrusion container. Form into a cylindrical shape (preform crystal).

これ圏 温度200〜300°Cで、圧力4〜12to
n/cm”を加えて、所定の径を持ったダイスから押し
出してファイバ化すも 発明が解決しようとする課題 しかしなが収 従来の方法で製造されたファイバにC0
gレーザ光を通すと、200W程度で劣化してしまう。
In this area, the temperature is 200 to 300°C, and the pressure is 4 to 12 to
However, the problem that the invention aims to solve can be solved by adding C0 to the fiber manufactured by the conventional method.
When a laser beam passes through it, it deteriorates at about 200W.

レーザ加工機にファイバを用いるには 少なくとも30
0WのCO2レーザ光を透過させることが可能でなけれ
ばならな一〜 本発明&よ 上述した課題を解決し 耐パワー性の高い
赤外用光ファイバを提供することを目的とす4 課題を解決するための手段 請求項1記載の発明(戴 ハロゲン化タリウ入ハロゲン
化セシウベ ハロゲン化銀の少なくとも1種類からなる
化合物を温間押出法によってファイバ化する方法におい
て、押出用コンテナ内℃プリフォーム結晶の下に補助結
晶を設置することによって、上記目的を達成すも 請求項2記載の発明法 前記押出法においてプリフォー
ム結晶の下端の形状を円錐型にして、押出用ダイスの形
状と等しくすることによって、上記目的を達成すも 作   用 温間押出法でファイバを押し出す阪 最初に加わる圧力
による衝撃で、結晶に大きな歪が加わムファイバの劣化
要因の一つく 押出成形時の応力歪による散乱があり、
これを減少させることにより、損傷しきい値を高くする
ことができる。
To use a fiber in a laser processing machine, at least 30
It must be possible to transmit 0W CO2 laser light.The present invention aims to solve the above-mentioned problems and provide an infrared optical fiber with high power resistance. In a method for forming a compound comprising at least one type of silver halide containing thallium halide into a fiber by a warm extrusion method, the invention according to claim 1 is provided with The invention method according to claim 2, wherein the above object is achieved by installing an auxiliary crystal in the extrusion method.In the extrusion method, the shape of the lower end of the preform crystal is made into a conical shape to be equal to the shape of the extrusion die. In order to achieve the above purpose, the fiber is extruded using the warm extrusion method.The shock caused by the initial pressure applied causes a large strain on the crystal, which is one of the causes of fiber deterioration.There is scattering due to stress strain during extrusion molding.
By reducing this, the damage threshold can be increased.

従って、請求項1記載の発明(よ 押出用コンテナ内で
、プリフォーム結晶の下に補助結晶を設置す、ることに
より、また 請求項2記載の発明ζ友プリフォーム結晶
の下端の形状を円錐型にして、押出用ダイスの形状と等
しくすることにより、加圧時の衝撃を抑え 成形時の応
力歪を小さくすることによって、耐パワー性の高い赤外
用光ファイバが得られも 実施例 以下、本発明の実施例を図面を用いて説明する。
Therefore, the invention as claimed in claim 1 (by installing an auxiliary crystal under the preform crystal in the extrusion container, and the invention as claimed in claim 2), the lower end of the preform crystal is shaped into a conical shape. By molding it into a mold and making it the same shape as the extrusion die, the impact during pressurization can be suppressed, and the stress strain during molding can be reduced to obtain an infrared optical fiber with high power resistance. Embodiments of the present invention will be described using the drawings.

第1図(友 本発明の第1の実施例(請求項1記載の発
明に対応)における赤外用光ファイバの製造方法の実施
に使用される光フアイバ製造装置の全体断面図であも 
同図において、 ■はプリフォーム結a 2は補助結晶
 3はファイバの太さを決めるダイ、L4は加工用コン
テナ、 5は加熱用ヒーター、 6は上蓋を兼ねるガイ
ド、 7はバンチIIL8は保持台であも ファイバの製造法を順を追って説明すも 原材料の単結
晶を、コンテナ4の形状に合うようく7.6〜7 、9
 mmφの円柱状のプリフォームに加工すム また プ
リフォーム結晶1と同材料で、同径へ 高さ約2mm〜
5mmの円柱状の補助結晶2を準備すム これらを図に
示すようにコンテナ4にセットし 温度をヒーター5で
200〜300“Cに設定して、油圧ブレス(図示せず
)で4〜12ton/cm”の圧力をパンチ棒7に加え
て押し出すことによりファイバ化すも    − 第2図(上 臭化タリウム よう化タリウム固溶体(K
H2−5)を上記の方法で押し出したファイバの先端か
ら10cmずつ短尺に切ったときへそれぞれの短尺へ 
長尺ファイバにおける位置と、損傷しきい値の関係を示
すグラフであa 補助結晶2にあたる部分を除いた後の
ファイバの損傷しきい値(瓜 すべで300W以上であ
ム 従って、上記の方法で押し出し 補助結晶2にあた
る部分を取り除くと、損傷しきい値300W゛以上のフ
ァイバが得られも 第3図ζ友 本発明の第2の実施例(請求項2記載の発
明に対応)における赤外用光ファイバの製造方法の実施
に使用される光フアイバ製造装置の全体断面図であも プリフォーム結晶1ζ上 7.6〜7 、9 mmφの
円柱状で、先端C友  ダイス3の形状に合うように円
錐状に加工す4 これを、図に示すようにコンテナ4に
セットし 上記の製造法と同じ温度 圧力条件で押し出
す。以上の方法により製造されたKH2−5フアイバの
損傷しきい値+L300W以上であっ丸 発明の効果 以上の説明から明らかなよう番、:、本発明は ハロゲ
ン化タリウ入 ハロゲン化セシウな ハロゲン化銀の少
なくとも1種類からなる化合物を温間押出法でファイバ
化する際 押出用コンテナ内で、プリフォーム結晶の下
に補助結晶を設置すること、あるいはプリフォーム結晶
の下端の形状を円錐型にして、押出用ダイスの形状と等
しくすることにより、加圧時の衝撃を抑え 成形時の応
力歪を小さくすることによって、耐パワー性の高い赤外
用光ファイバが得られるものである。
FIG. 1 is an overall cross-sectional view of an optical fiber manufacturing apparatus used to carry out a method for manufacturing an infrared optical fiber in a first embodiment of the present invention (corresponding to the invention claimed in claim 1).
In the same figure, ① is a preform crystal, 2 is an auxiliary crystal, 3 is a die that determines the thickness of the fiber, L4 is a container for processing, 5 is a heater for heating, 6 is a guide that also serves as an upper lid, 7 is a bunch IIL8 is a holding stand The following is a step-by-step explanation of the manufacturing method for the fiber.The raw material single crystal is shaped to fit the shape of the container 47.6~7,9
Processed into a cylindrical preform of mmφ.Also, made of the same material as preform crystal 1, with the same diameter and height of about 2mm~
Prepare a 5mm cylindrical auxiliary crystal 2. Set these in a container 4 as shown in the figure, set the temperature to 200 to 300"C with a heater 5, and use a hydraulic press (not shown) to heat 4 to 12 tons. /cm'' pressure is applied to the punch rod 7 to extrude the fibers.
When cutting H2-5) into short lengths of 10 cm from the tip of the fiber extruded using the above method, each short length is
This is a graph showing the relationship between the position in a long fiber and the damage threshold. If the part corresponding to the extrusion auxiliary crystal 2 is removed, a fiber with a damage threshold of 300 W or more can be obtained. This is an overall cross-sectional view of the optical fiber manufacturing equipment used to carry out the fiber manufacturing method.The preform crystal 1ζ has a cylindrical shape with a diameter of 7.6 to 7.9 mm, and the tip has a C shape to match the shape of the die 3. Process it into a conical shape 4 Set this in a container 4 as shown in the figure and extrude it under the same temperature and pressure conditions as the above manufacturing method.The damage threshold of KH2-5 fiber manufactured by the above method +L300W or more Effects of the Atmaru Invention As is clear from the above explanation: The present invention is a container for extrusion when a compound consisting of at least one type of silver halide containing thallium halide, cesium halide, or silver halide is made into a fiber by warm extrusion method. By installing an auxiliary crystal under the preform crystal, or by making the lower end of the preform crystal conical in shape and making it the same shape as the extrusion die, the impact during pressurization can be suppressed. By reducing the stress strain of , an infrared optical fiber with high power resistance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における赤外用光ファイ
バの製造方法の実施に使用される光フアイバ製造装置の
全体断面図 第2図は同実施例で得られたファイバの先
端からの切断位置と損傷しきい値との関係を示すグラフ
、第3図は本発明の第2の実施例における赤外用光ファ
イバの製造方法の実施に使用される光フアイバ製造装置
の全体断面図であム 110.プリフォーム結&  2.、、補助結昌 3.
。 、ダイ、l、、  4.、、加工用コンテナ、 509
.加熱用ヒーター。 代理人の氏名 弁理士 粟野重孝 ほか1名菓 1rl
!J 3り゛イス
FIG. 1 is an overall sectional view of an optical fiber manufacturing apparatus used to carry out the infrared optical fiber manufacturing method according to the first embodiment of the present invention. FIG. FIG. 3 is a graph showing the relationship between the cutting position and the damage threshold. FIG. 3 is an overall sectional view of an optical fiber manufacturing apparatus used to carry out the method for manufacturing an infrared optical fiber according to the second embodiment of the present invention. Mu110. Preform knot & 2. ,, Auxiliary Yusho 3.
. ,Die,l,, 4. ,,processing container, 509
.. Heater for heating. Name of agent: Patent attorney Shigetaka Awano and 1 other famous person 1rl
! J3 chair

Claims (2)

【特許請求の範囲】[Claims] (1)ハロゲン化タリウム、ハロゲン化セシウム、ハロ
ゲン化銀の少なくとも1種類からなる化合物を温間押出
法によってファイバ化する方法において、押出用コンテ
ナ内で、プリフォーム結晶の下に補助結晶を設置するこ
とを特徴とする赤外用光ファイバの製造方法
(1) In a method of fiberizing a compound consisting of at least one of thallium halide, cesium halide, and silver halide by warm extrusion, an auxiliary crystal is installed under the preform crystal in an extrusion container. A method for manufacturing an infrared optical fiber characterized by
(2)ハロゲン化タリウム、ハロゲン化セシウム、ハロ
ゲン化銀の少なくとも1種類からなる化合物を温間押出
法によってファイバ化する方法において、押出用コンテ
ナ内で、プリフォーム結晶の下端の形状を円錐型にして
、押出用ダイスの形状と等しくすることを特徴とする赤
外用光ファイバの製造方法
(2) In a method of fiberizing a compound consisting of at least one of thallium halide, cesium halide, and silver halide by warm extrusion, the lower end of the preform crystal is shaped into a conical shape in an extrusion container. A method for manufacturing an infrared optical fiber, characterized in that the shape is made equal to the shape of an extrusion die.
JP1124834A 1989-05-18 1989-05-18 Production of optical fiber for infrared ray Pending JPH02302705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124834A JPH02302705A (en) 1989-05-18 1989-05-18 Production of optical fiber for infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124834A JPH02302705A (en) 1989-05-18 1989-05-18 Production of optical fiber for infrared ray

Publications (1)

Publication Number Publication Date
JPH02302705A true JPH02302705A (en) 1990-12-14

Family

ID=14895250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124834A Pending JPH02302705A (en) 1989-05-18 1989-05-18 Production of optical fiber for infrared ray

Country Status (1)

Country Link
JP (1) JPH02302705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655423A1 (en) * 1992-11-23 1995-05-31 CeramOptec GmbH Method of making infrared crystalline fiber and product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655423A1 (en) * 1992-11-23 1995-05-31 CeramOptec GmbH Method of making infrared crystalline fiber and product

Similar Documents

Publication Publication Date Title
CN105259611A (en) Manufacturing method of fingerprint acquisition optical fiber panel
EP3766843A1 (en) Method for producing a hollow core fibre and for producing a preform for a hollow core fibre
WO2021009218A1 (en) Methods for producing a hollow-core fiber and for producing a preform for a hollow-core fiber
JP2004536764A5 (en)
WO2021009224A1 (en) Methods for producing a hollow-core fiber and for producing a preform for a hollow-core fiber
EP3766850A1 (en) Method for producing a hollow core fibre and for producing a preform for a hollow core fibre
JPH02302705A (en) Production of optical fiber for infrared ray
EP3766840A1 (en) Method for producing a hollow core fibre and for producing a preform for a hollow core fibre
US20200354260A1 (en) Method for Preparing All-Solid-State Photonic Crystal Fiber Preforms by Extrusion
WO2021009236A1 (en) Methods for producing a hollow-core fiber and for producing a preform for a hollow-core fiber
JPH0293405A (en) Production of optical fiber for infrared light
JPH0210304A (en) Manufacture of infrared optical fiber
JPH04172404A (en) Manufacture of infrared optical fiber
WO2021009222A1 (en) Methods for producing a hollow-core fiber and for producing a preform for a hollow-core fiber
JPH0264504A (en) Production of optical fiber for infrared light
CN108793723B (en) Optical fiber and preparation method and preparation mold thereof
KR920009662B1 (en) Infrared optical fiber and method of manufacturing same
EP3771696A1 (en) Method and intermediate product for producing a hollow core fibre and method for producing a preform for a hollow core fibre
JPH01147504A (en) Production of optical fiber for infrared light
JPS60155542A (en) Method for molding fiber for optical communication
JPH0210303A (en) Manufacture of infrared optical fiber
JPS61128207A (en) Production of polycrystalline optical fiber for infrared light
JPH01108505A (en) Production of optical fiber for infrared light
JPS5874534A (en) Manufacture of constant polarization type optical fiber
JPS63311303A (en) Production of optical fiber for infrared light