JPH0264131A - Transparent cylindrical composition - Google Patents

Transparent cylindrical composition

Info

Publication number
JPH0264131A
JPH0264131A JP63214949A JP21494988A JPH0264131A JP H0264131 A JPH0264131 A JP H0264131A JP 63214949 A JP63214949 A JP 63214949A JP 21494988 A JP21494988 A JP 21494988A JP H0264131 A JPH0264131 A JP H0264131A
Authority
JP
Japan
Prior art keywords
refractive index
composition
metal alkoxide
reaction
index distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63214949A
Other languages
Japanese (ja)
Inventor
Takemoto Kamata
健資 鎌田
Yuichi Fukui
福居 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP63214949A priority Critical patent/JPH0264131A/en
Publication of JPH0264131A publication Critical patent/JPH0264131A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject composition, having a distribution of refractive index in the radial direction symmetric with the central axis and utilizable as rod lenses or optical fibers excellent in heat resistance by reacting a metal alkoxide with a terminal silanol group-containing polysiloxane. CONSTITUTION:The objective composition obtained by reacting a metal alkoxide expressed by the formula M(OR)x (M is Si, Ge, Sn, Pb, Se, Te, Sb, Fe, Ti, Zr, Nb, Al, B, Ga, In, Be, Mg, Ca, Ba, Li, Na, K, Cs, etc.; R is alkyl, such as methyl, ethyl, propyl or butyl), etc., with a terminal silnanol group-containing polysiloxane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半径方向に屈折率分布を有する透明円柱状組
成物に関する。この組成物は、耐熱性に優れたロフトレ
ンズや光学繊維として利用出来るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transparent cylindrical composition having a refractive index distribution in the radial direction. This composition can be used as loft lenses and optical fibers with excellent heat resistance.

〔従来の技術〕[Conventional technology]

半径方向に屈折率分布を有する光学材料としては、無機
ガラス系や透明性の優れた高分子材料を用いたロフトレ
ンズや光学繊維が公知である。特に、中心軸から外周に
向けて、半径方向に2次曲線に近い状態で減少する屈折
率勾配を有する円柱は、ロフトレンズ(GRINレンズ
)として像の伝送を行なうN能があり、該レンズをアレ
ー状に並べたものは、ロッドレンズアレーとして、電子
黒板、複写機、テレファックスの送受信機等に広く用い
られている。
As optical materials having a refractive index distribution in the radial direction, loft lenses and optical fibers made of inorganic glass or highly transparent polymer materials are known. In particular, a cylinder that has a refractive index gradient that decreases in the radial direction from the central axis toward the outer circumference in a state close to a quadratic curve has the N ability to transmit images as a loft lens (GRIN lens), and the lens Those arranged in an array are widely used as rod lens arrays in electronic whiteboards, copying machines, telefax transmitters and receivers, and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ポリメチルメタクリレート等の透明性の優れた高分子材
料からなるGRINレンズは耐熱性に劣り、使用上限温
度は高々80℃近辺であり、その用途が制限される。ま
た、無機系ガラスから得られるものは耐熱性に優れるが
、その製造に時間がかかり、生産性が悪い。即ち、金属
イオンを含有するガラスを溶融法により円柱状に紡糸し
、固化させた後、特定のイオンを含む水溶液中に該ガラ
スを浸漬し、拡散法によりイオン交換を行ない、半径方
向に屈折率の勾配を与えるのが一般的である。
GRIN lenses made of highly transparent polymeric materials such as polymethyl methacrylate have poor heat resistance, and their upper limit temperature is around 80° C. at most, which limits their uses. In addition, although those obtained from inorganic glasses have excellent heat resistance, they take time to manufacture and have poor productivity. That is, glass containing metal ions is spun into a cylindrical shape using a melting method and solidified, and then the glass is immersed in an aqueous solution containing specific ions, and ion exchange is performed using a diffusion method to change the refractive index in the radial direction. It is common to give a gradient of .

この方法では、直径が1fl程度のGRINレンズを得
るのに、1ケ月近くの拡散時間を特徴とする特許って、
直径の大きいGRINレンズを得るにはさらに長い時間
を要し、直径2順以上のものはまだ実用化されていない
。また、このように長時間の拡散時間が必要なため、製
造工程はバッチ工程であり、連続工程をとることは出来
ない。
With this method, the patent features a diffusion time of nearly one month to obtain a GRIN lens with a diameter of about 1 fl.
It takes a longer time to obtain a GRIN lens with a larger diameter, and one with diameters larger than 2 has not yet been put to practical use. Furthermore, since such a long diffusion time is required, the manufacturing process is a batch process and cannot be a continuous process.

本発明者等は、これら有機材料と無機材料の欠点をなく
すべく検討した結果、耐熱性に優れかつ製造時間の短か
い、新規なGRINレンズあるいは屈折率分布型光学繊
維にも利用可能な屈折率分布を有する透明円柱状組成物
を見出し、本発明を完成するに至ったものである。
As a result of studies to eliminate the drawbacks of these organic and inorganic materials, the present inventors have developed a new GRIN lens that has excellent heat resistance and short manufacturing time, and a refractive index that can be used for a new GRIN lens or graded index optical fiber. They discovered a transparent cylindrical composition having a distribution, and completed the present invention.

[課題を解決するための手段〕 本発明は、金属アルコキシドと末端シラノール基含有ポ
リジメチルシロキサンとを反応させテ得られる、中心軸
に対して対称に半径方向に屈折率の分布を有する透明円
柱状組成物である。
[Means for Solving the Problems] The present invention provides a transparent cylindrical material having a refractive index distribution in the radial direction symmetrical to the central axis, which is obtained by reacting a metal alkoxide with a polydimethylsiloxane containing a terminal silanol group. It is a composition.

すなわち、本発明は、無機物質の前駆体となる金属アル
コキシドと有機オリゴマーないしはポリマーである末端
シラノールポリシロキサンを分子分散させ、かつ金属ア
ルコキシドの組成を半径方向に変化させることにより、
屈折率の分布を形成させたものである。
That is, the present invention molecularly disperses a metal alkoxide, which is a precursor of an inorganic substance, and a terminal silanol polysiloxane, which is an organic oligomer or polymer, and changes the composition of the metal alkoxide in the radial direction.
It forms a refractive index distribution.

〔作 用〕[For production]

本発明の基本的な思想は、無機系ガラスの中に耐熱性に
優れかつガラス転移温度の低いポリシロキサンという有
機ポリマーを均一に分散させた状態にすれば、無機系ガ
ラスに比べて分子運動性が容易となり、拡散法により組
成分布が容易に形成されるということにある。以下、本
発明の詳細な説明する。
The basic idea of the present invention is that if an organic polymer called polysiloxane, which has excellent heat resistance and a low glass transition temperature, is uniformly dispersed in inorganic glass, molecular mobility will be higher than that of inorganic glass. This means that the composition distribution can be easily formed by the diffusion method. The present invention will be explained in detail below.

本発明において、金属アルコキシドは公知のものを使用
することが出来る。金属アルコキシドは、一般に、M(
OR)xで表すことができる。周期律表の■族のハロゲ
ンおよび0族の希ガスを除いたすべての金属原子につい
てアルコキシドを形成することが知られているが、透明
なガラスを目的とする本発明では、金属成分Mとして、
Si、Ge。
In the present invention, known metal alkoxides can be used. The metal alkoxide is generally M(
OR) x. It is known that all metal atoms except halogens in group Ⅰ and noble gases in group 0 of the periodic table form alkoxides, but in the present invention, which aims at transparent glass, as the metal component M,
Si, Ge.

Sn、Pb、Se、Te、Sb、Fe、Ti 。Sn, Pb, Se, Te, Sb, Fe, Ti.

Zr、  Nb、  Ta、  AI、  B、  G
a、  In、  Be。
Zr, Nb, Ta, AI, B, G
a, In, Be.

Mg、Ca、Ba、Li 、Na、に、Csなどを用い
ることが出来る。また、アルキル基Rは、メチル、エチ
ル、プロピル、ブチルおよびこれらの異性体であってよ
い。
Mg, Ca, Ba, Li, Na, Cs, etc. can be used. The alkyl group R may also be methyl, ethyl, propyl, butyl and isomers thereof.

ポリシロキサンは、金属アルコキシドと反応することの
できる末端シラノール基を含有することが必要であり、
シロキサンのアルキル置換基トシてはメチル基、エチル
基、フェニル基等が一般的であるが、これらに限定され
るものではない。末端シラノールポリシロキサンの重合
度は1以上5000以下であるのが好ましく、より好ま
しくは1000以下である。重合度が1000を超える
と、末端反応基の濃度が小さくなりかつ粘度が増大して
、均質な反応が困難となる。
The polysiloxane is required to contain terminal silanol groups capable of reacting with metal alkoxides;
The alkyl substituent of siloxane is generally a methyl group, an ethyl group, a phenyl group, etc., but is not limited to these. The degree of polymerization of the terminal silanol polysiloxane is preferably 1 or more and 5,000 or less, more preferably 1,000 or less. When the degree of polymerization exceeds 1000, the concentration of terminal reactive groups decreases and the viscosity increases, making it difficult to carry out a homogeneous reaction.

金属アルコキシドと末端シラノール基含有ポリシロキサ
ンとの反応には加水分解のための水が必要であり、その
量は金属アルコキシドに対し4倍モル以下であるのが好
ましい。触媒としては、塩酸、硫酸、硝酸などの無機酸
、ギ酸、酢酸、シュウ酸などの有機酸など種々の酸を用
いることが出来る。また、NaOH,N)+40H等の
塩基性触媒も使用可能である。反応は無溶剤下あるいは
溶剤存在下のいずれでも行うことができるが、分子を分
散させるための均質反応が容易な反応場として適当量の
アルコールを存在せしめるのが好ましい。この場合、あ
る程度の反応の進行後、アルコールを蒸発させ、濃縮す
ることも出来る。
The reaction between the metal alkoxide and the polysiloxane containing a terminal silanol group requires water for hydrolysis, and the amount thereof is preferably 4 times or less in mole relative to the metal alkoxide. As the catalyst, various acids can be used, such as inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as formic acid, acetic acid, and oxalic acid. Moreover, basic catalysts such as NaOH, N)+40H can also be used. Although the reaction can be carried out either in the absence of a solvent or in the presence of a solvent, it is preferable to have an appropriate amount of alcohol present as a reaction site that facilitates a homogeneous reaction for dispersing molecules. In this case, after the reaction has progressed to a certain extent, the alcohol can be evaporated and concentrated.

このような組成の液体混合物を混合攪拌すると、金属ア
ルコキシドが水により加水分解され、この加水分解され
たちの同志あるいは加水分解物と末端シラノールポリシ
ロキサン、あるいはポリシロキサン同志が脱水重縮合反
応により高分子量化し、ついには無機物質と有機物質が
分子分散された架橋ゲル体となる。水や溶剤が蒸発した
後の架橋ゲル体は透明であり、その力学特性(強度、伸
度、弾性率など)は反応条件(水量、触媒量、温度等)
によって微妙に変化するが、大きくは金属アルコキシド
とポリシロキサン(PSOと略す)の比(rと略す。r
 = P S O/ M(OR)x、重量比)およびP
SOの重合度によって左右される。r=0のものは公知
の無機ガラス前駆体であるが、rが大きくなるにつれて
PSOの特性が現れ、ゴム状に近いものが得られる。金
属アルコキシドとして、S i (OCJs) <  
(テトラエトキシシラン、TEOSと略す)を用い、P
SOとしてポリジメチルシロキサン(PDMSと略す)
を用いた場合、PDl’lSの分子量が10万以下のも
のを使用すると、r = 1.0で屈曲性のある架橋ゲ
ル体が得られる。従って、rを変えることによって弾性
率や伸度等の力学的の異なる架橋ゲル体を得ることが出
来る。架橋ゲル体には未反応の水酸基が若干残存してい
ると考えられ、200℃以上に加熱することにより、反
応が完了するものと思われる。
When a liquid mixture with such a composition is mixed and stirred, the metal alkoxide is hydrolyzed by water, and the hydrolyzed comrades or the hydrolyzate and terminal silanol polysiloxane or polysiloxanes undergo a dehydration polycondensation reaction to form a high molecular weight. , and finally becomes a crosslinked gel in which inorganic and organic substances are molecularly dispersed. After the water and solvent have evaporated, the crosslinked gel body is transparent, and its mechanical properties (strength, elongation, elastic modulus, etc.) are determined by the reaction conditions (water amount, catalyst amount, temperature, etc.)
The ratio of metal alkoxide to polysiloxane (abbreviated as PSO) (abbreviated as r.
= P SO / M (OR) x, weight ratio) and P
It depends on the degree of polymerization of SO. The one with r=0 is a known inorganic glass precursor, but as r becomes larger, PSO characteristics appear and a material close to rubber-like can be obtained. As metal alkoxides, S i (OCJs) <
(tetraethoxysilane, abbreviated as TEOS), P
Polydimethylsiloxane (abbreviated as PDMS) as SO
When using PDl'lS with a molecular weight of 100,000 or less, a crosslinked gel body with flexibility at r = 1.0 can be obtained. Therefore, by changing r, it is possible to obtain crosslinked gel bodies with different mechanical properties such as elastic modulus and elongation. It is thought that some unreacted hydroxyl groups remain in the crosslinked gel, and the reaction is thought to be completed by heating to 200° C. or higher.

本発明の円柱状組成物を得るには、反応組成物が流動性
を有している段階で鋳型成形するか、反応がある程度進
行し、紡糸性を有する段階で適切なノズルを用いて紡糸
する。鋳型成形の場合、テフロンチューブ等の表面エネ
ルギーの小さいチューブを用いると、ゲル化後の離型が
容易である。
In order to obtain the cylindrical composition of the present invention, the reaction composition is molded when it has fluidity, or it is spun using an appropriate nozzle when the reaction has progressed to a certain extent and it has spinnability. . In the case of mold molding, if a tube with low surface energy, such as a Teflon tube, is used, it is easy to release the mold after gelation.

円柱の直径は使用目的によって適宜選択することが出来
る。GRINレンズの場合、0.5 mm〜2龍の直径
のものが従来技術において用いられているが、本発明の
場合には後に述べるごとく、拡散速度を早くすることが
可能であるため、IO■鳳以上のものを製造することも
可能である。直径の大きいGRINレンズは光量を多く
とることができるので、明るいレンズとなり、有利であ
る。GRIN型光学繊維の場合も、屈曲性等の取扱い性
に問題がなければ、光量の関係より太いものの方が有利
であるが、数10μから数鶴迄のものが製造可能である
The diameter of the cylinder can be appropriately selected depending on the purpose of use. In the case of GRIN lenses, those with a diameter of 0.5 mm to 2 mm are used in the prior art, but in the case of the present invention, as described later, it is possible to increase the diffusion rate, so the IO It is also possible to manufacture something more than a phoenix. A GRIN lens with a large diameter can take in a large amount of light, resulting in a bright lens, which is advantageous. In the case of GRIN type optical fibers as well, if there are no problems with handling such as flexibility, thicker fibers are more advantageous in terms of light intensity, but fibers with a thickness of several tens of microns to several cranes can be manufactured.

次に、屈折率の分布を形成する方法について、具体例を
挙げて説明する。各種の方法が考えられるが、2種類の
金属アルコキシド、例えば、TEOSとテトラ−h−ブ
トキシチタン、Ti(OCaHq)4、とを用いる場合
について説明する。この場合、架橋反応後に形成される
構造に於いて、−3i−構造よりも−Ti−構造の方が
屈折率が大きいため、半径方向にこの両者の組成を変化
させることにより、屈折率の分布が形成される。S i
 (OCzHs) sとT i (OC4tl、)4は
加水分解反応および、それに続く重縮合の反応速度が異
なるため、S 1(OCztls) s成分が完全に反
応して架橋構造を形成しても、Ti(OCJq)n成分
あるいはその加水分解物は1部分モノマーの状態で残存
している。この残存成分を拡散法により円柱の外周部か
ら除去する操作を行なえば、ある拡散時間に於いて組成
分布が形成される。本発明では、先にも述べたごとく、
架橋ゲル体中にポリシロキサンを均一分散させているた
め、未反応のT i C0CaHq) 4は拡散し易く
、短時間で組成分布、即ち屈折率分布の形成が達成され
る。
Next, a method of forming a refractive index distribution will be explained using a specific example. Although various methods can be considered, a case will be described in which two types of metal alkoxides, for example, TEOS and tetra-h-butoxytitanium, Ti(OCaHq)4, are used. In this case, in the structure formed after the crosslinking reaction, the -Ti- structure has a higher refractive index than the -3i- structure, so by changing the composition of both in the radial direction, the refractive index distribution can be changed. is formed. Si
(OCzHs)s and Ti(OC4tl,)4 have different reaction rates of hydrolysis and subsequent polycondensation, so even if the S1(OCztls)s component completely reacts to form a crosslinked structure, Part of the Ti(OCJq)n component or its hydrolyzate remains in the monomer state. If this residual component is removed from the outer periphery of the cylinder by a diffusion method, a compositional distribution will be formed within a certain diffusion time. In the present invention, as mentioned earlier,
Since the polysiloxane is uniformly dispersed in the crosslinked gel body, unreacted T i C0CaHq) 4 is easily diffused, and a composition distribution, that is, a refractive index distribution can be formed in a short time.

本発明の屈折率分布を有する透明円柱状組成物を形成さ
せる基本的な思想は上記のとうりであり、この思想に基
づけば各種の方法が可能である。例えば、2種類の金属
アルコキシドを用いる場合でも、第1成分の反応がある
程度進行した段階で、拡散成分である第2成分の金属ア
ルコキシドを加えて反応を行ない、円柱状架橋ゲル体を
賦形し、拡散させることも可能である。拡散法は円柱状
架橋ゲル体を拡散成分の溶剤、たとえば、アルコールな
どに浸漬することによって容易に行なうことが出来るが
、アルコール中に酸や塩基触媒を添加すると、その添加
量によって拡散速度が大きく変化することが見出された
。従って、触媒の量を変えることにより、屈折率分布を
変化させたものを得ることが出来る。拡散法により屈折
率分布を形成したものは、構造の固定を完全なものとす
るため、200℃以上の熱処理に付するのが望ましい。
The basic idea for forming the transparent cylindrical composition having a refractive index distribution according to the present invention is as described above, and various methods are possible based on this idea. For example, even when using two types of metal alkoxides, once the reaction of the first component has progressed to a certain extent, the metal alkoxide of the second component, which is a diffusion component, is added and reacted to form a cylindrical cross-linked gel body. , it is also possible to diffuse it. The diffusion method can be easily carried out by immersing a cylindrical cross-linked gel body in a solvent for the diffusion component, such as alcohol, but if an acid or base catalyst is added to the alcohol, the diffusion rate increases depending on the amount added. was found to change. Therefore, by changing the amount of catalyst, it is possible to obtain a material with a changed refractive index distribution. In order to completely fix the structure of a material in which a refractive index distribution is formed by the diffusion method, it is desirable to subject it to heat treatment at 200° C. or higher.

〔発明の効果〕〔Effect of the invention〕

本発明の屈折率分布を有する透明円柱状組成物において
は、無機系ガラスに比べ、その生産性に優れかつ今まで
にない大口径のロンドレンズなどを提供可能である。ま
た、有機系に比べ、耐熱性に優れる。また、ポリシロキ
サンの量を変えることにより、屈曲性のあるレンズを得
ることが可能である。
The transparent cylindrical composition having a refractive index distribution of the present invention has superior productivity compared to inorganic glasses, and can provide a Rondo lens with an unprecedented large diameter. It also has superior heat resistance compared to organic types. Further, by changing the amount of polysiloxane, it is possible to obtain a lens with flexibility.

〔実施例〕〔Example〕

以下、実施例により、本発明をさらに説明する。 The present invention will be further explained below with reference to Examples.

実施例1 TEOS/PDMS/水/塩酸(35%濃度)/エタノ
ール=13/13/1.1310.13/11.5 (
重量部)の混合物を、還流管を装備したフラスコ内で、
60℃で30分間加熱し、反応させた。PDMSは、末
端に水酸基を有する、分子量1700のポリメチルシロ
キサンであった。反応物を室温に冷却後、T i (O
C4flJ 4 /アンモニア水(25%濃度)/水/
エタノール/ホルムアミド= 1310.63/3.6
15.75/2.4 (重量部)の混合物を該反応物に
添加し、さらに60℃で30分間加熱し、反応させた。
Example 1 TEOS/PDMS/water/hydrochloric acid (35% concentration)/ethanol = 13/13/1.1310.13/11.5 (
parts by weight) in a flask equipped with a reflux tube.
The mixture was heated at 60° C. for 30 minutes to cause a reaction. PDMS was a polymethylsiloxane with a molecular weight of 1700 having a hydroxyl group at the end. After cooling the reaction to room temperature, T i (O
C4flJ 4 / ammonia water (25% concentration) / water /
Ethanol/formamide = 1310.63/3.6
A mixture of 15.75/2.4 (parts by weight) was added to the reaction mixture and further heated at 60° C. for 30 minutes to react.

反応混合物を室温まで冷却後、内径2mm、長さ20a
mのテフロンチューブに該反応混合物を充填し、室温で
1昼夜放置してゲル化させた。ゲル化した透明円柱状組
成物をテフロンチューブより取出し、塩酸を含むエタノ
ール溶液中に1時間浸漬後(塩酸含量を変えることによ
り、5つのサンプルを得た)ゲルロッドを取出し、室温
で乾燥後250℃で1時間熱処理を行なった。このよう
にして得られたロッドは、透明で無機系ガラスのように
固いものであり、約1.5胴の直径を有していた。
After cooling the reaction mixture to room temperature, the inner diameter was 2 mm and the length was 20 mm.
The reaction mixture was filled into a Teflon tube of 100 mL, and allowed to stand at room temperature for 1 day to form a gel. The gelled transparent cylindrical composition was taken out from the Teflon tube and immersed in an ethanol solution containing hydrochloric acid for 1 hour (5 samples were obtained by varying the hydrochloric acid content).The gel rod was taken out, dried at room temperature, and then heated at 250°C. Heat treatment was performed for 1 hour. The rod thus obtained was transparent and hard like inorganic glass, and had a diameter of about 1.5 barrels.

これらのロッドの半径方向の屈折率分布を干渉顕微鏡(
カール・ツァイス社製、インターフアコ干渉顕微鏡)で
測定した結果を第1図に示す。
The radial refractive index distribution of these rods was observed using an interference microscope (
Figure 1 shows the results of measurement using an Interfaco interference microscope (manufactured by Carl Zeiss).

第1図において、横軸はロッドの中心から半径方向の距
離であり、縦軸は屈折率(波長589nm )である。
In FIG. 1, the horizontal axis is the radial distance from the center of the rod, and the vertical axis is the refractive index (wavelength 589 nm).

第1図の番号は、それぞれ、浸漬液中の塩酸含量が異な
るものを示し、それぞれの含量を下記の表1に示す。
The numbers in FIG. 1 indicate different hydrochloric acid contents in the immersion liquid, and the respective contents are shown in Table 1 below.

糞土  浸漬液の組成 サンプル磁5は、その屈折率分布曲線が2次曲線に近く
、ロッドレンズの特性値であるg値Cn (rl−n 
o (1−−g 2r 2)、no:中心の屈折率、n
(r):半径rの位置での屈折率]を求めると、g=0
.114であった。
Composition of soil immersion liquid Sample magnet 5 has a refractive index distribution curve close to a quadratic curve, and has a g value Cn (rl-n
o (1--g 2r 2), no: center refractive index, n
(r): refractive index at radius r], g=0
.. It was 114.

実施例2 実施例1と同じ方法で、内径4wmのテフロンチューブ
を用いてゲルロッドを得た。該ゲルロッドを実施例1の
サンプル磁5と同じ組成を有する浸漬液に時間を変えて
浸漬し、屈折率分布を形成させた。実施例1と同様に室
温で乾燥後、250℃で1時間熱処理後、インターフア
コで屈折率分布を測定した。結果を表2および第2図に
示す。この方法により、直径3龍以上のGjlINレン
ズを得ることが出来た。
Example 2 A gel rod was obtained in the same manner as in Example 1 using a Teflon tube with an inner diameter of 4 wm. The gel rod was immersed in an immersion liquid having the same composition as Sample Magnet 5 of Example 1 for different times to form a refractive index distribution. As in Example 1, after drying at room temperature and heat treatment at 250° C. for 1 hour, the refractive index distribution was measured using an interfaco. The results are shown in Table 2 and FIG. By this method, it was possible to obtain a GjlIN lens with a diameter of 3 or more.

、表−」−, table-”-

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ、実施例1および2の
方法で製造された本発明の透明円柱状組成物の屈折率分
布を測定した結果を示すグラフである。 第 図 ケ3 シン 国
FIG. 1 and FIG. 2 are graphs showing the results of measuring the refractive index distribution of the transparent cylindrical compositions of the present invention produced by the methods of Examples 1 and 2, respectively. Figure 3. Singh

Claims (1)

【特許請求の範囲】[Claims] 1、金属アルコキシドと末端シラノール基含有ポリシロ
キサンとを反応させて得られる、中心軸に対して対称に
半径方向に屈折率の分布を有する透明円柱状組成物。
1. A transparent cylindrical composition obtained by reacting a metal alkoxide with a polysiloxane containing terminal silanol groups and having a refractive index distribution in the radial direction symmetrically with respect to the central axis.
JP63214949A 1988-08-31 1988-08-31 Transparent cylindrical composition Pending JPH0264131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63214949A JPH0264131A (en) 1988-08-31 1988-08-31 Transparent cylindrical composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214949A JPH0264131A (en) 1988-08-31 1988-08-31 Transparent cylindrical composition

Publications (1)

Publication Number Publication Date
JPH0264131A true JPH0264131A (en) 1990-03-05

Family

ID=16664230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214949A Pending JPH0264131A (en) 1988-08-31 1988-08-31 Transparent cylindrical composition

Country Status (1)

Country Link
JP (1) JPH0264131A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015901A1 (en) * 1991-03-01 1992-09-17 Mitsubishi Rayon Co., Ltd. Optical transmitter made of graded index type plastic, and method of producing the same
FR2682389A1 (en) * 1991-10-10 1993-04-16 Rhone Poulenc Chimie Process for the preparation of particles of small particle size and use of these particles for obtaining optical polymers
JP2003183399A (en) * 2001-12-25 2003-07-03 Nippon Electric Glass Co Ltd Inorganic organic hybrid material and its production method
WO2006082625A1 (en) * 2005-02-01 2006-08-10 Toyo Glass Co., Ltd. Optical fiber coupling component and process for producing the same
JP2008231403A (en) * 2007-02-20 2008-10-02 Suzuka Fuji Xerox Co Ltd Two-part type thermosetting resin composition and method for producing heat-resistant transparent resin molded article
WO2009139414A1 (en) * 2008-05-13 2009-11-19 住友電気工業株式会社 Photoelectric conversion unit
JP2013049834A (en) * 2011-08-02 2013-03-14 Ishizuka Glass Co Ltd Sealing material for led

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992015901A1 (en) * 1991-03-01 1992-09-17 Mitsubishi Rayon Co., Ltd. Optical transmitter made of graded index type plastic, and method of producing the same
US5287222A (en) * 1991-03-01 1994-02-15 Mitsubishi Rayon Co., Ltd. Graded index type plastic optical transmission mediums and the manufacturing method thereof
FR2682389A1 (en) * 1991-10-10 1993-04-16 Rhone Poulenc Chimie Process for the preparation of particles of small particle size and use of these particles for obtaining optical polymers
JP2003183399A (en) * 2001-12-25 2003-07-03 Nippon Electric Glass Co Ltd Inorganic organic hybrid material and its production method
WO2006082625A1 (en) * 2005-02-01 2006-08-10 Toyo Glass Co., Ltd. Optical fiber coupling component and process for producing the same
US7603008B2 (en) 2005-02-01 2009-10-13 Toyo Glass Co., Ltd. Optical fiber coupling part and manufacturing method thereof
JP2008231403A (en) * 2007-02-20 2008-10-02 Suzuka Fuji Xerox Co Ltd Two-part type thermosetting resin composition and method for producing heat-resistant transparent resin molded article
WO2009139414A1 (en) * 2008-05-13 2009-11-19 住友電気工業株式会社 Photoelectric conversion unit
CN102084278A (en) * 2008-05-13 2011-06-01 住友电气工业株式会社 Photoelectric conversion unit
JPWO2009139414A1 (en) * 2008-05-13 2011-09-22 住友電気工業株式会社 Photoelectric conversion unit
JP2013049834A (en) * 2011-08-02 2013-03-14 Ishizuka Glass Co Ltd Sealing material for led

Similar Documents

Publication Publication Date Title
US4765818A (en) Porous glass monoliths
Wei et al. Synthesis, characterization, and properties of new polystyrene-SiO2 hybrid sol-gel materials
US4810674A (en) Porous glass monoliths
JPH01301686A (en) Silyl 2-amidoacetate and silyl 3- amidopropionate-containing composition
JPH0264131A (en) Transparent cylindrical composition
JPH0247721B2 (en)
JP3131240B2 (en) Optical molded articles produced from silicon nitride and methods for producing them
US4765713A (en) Plastic-clad light-transmitting fiber
JP3206997B2 (en) Refractive index distribution type silicate glass
MATSUDA et al. Thermal softening behavior of poly (phenylsilsesquioxane) and poly (benzylsilsesquioxane) particles
JPS6247605A (en) Clad material for optical transmission fiber
US5919280A (en) Method for fabricating silica glass
JPS63100405A (en) Manufacture of optical fiber
JPH07306301A (en) Optical element and its production
KR910001501B1 (en) Image-transmitting synthetic resin rod andf process for producing the same
CA2246153C (en) Method for fabricating silica glass
JPH0820572B2 (en) Plastic cladding optical fiber
JPH02199033A (en) Production of optical glass
US7305851B2 (en) Method for fabricating silica glass containing Bi and Ti using a sol-gel process
JPS60249103A (en) Preparation of light divergent synthetic resin body
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
JPH0355801B2 (en)
JPH04108626A (en) Manufacture of distributed index optical element
Uhlmann et al. Synthesis and Processing of Organically Modified Oxides for Optical and Electrical Applications.
JPS6232401A (en) Production of synthetic resin spherical lens