JPS6232401A - Production of synthetic resin spherical lens - Google Patents

Production of synthetic resin spherical lens

Info

Publication number
JPS6232401A
JPS6232401A JP17212685A JP17212685A JPS6232401A JP S6232401 A JPS6232401 A JP S6232401A JP 17212685 A JP17212685 A JP 17212685A JP 17212685 A JP17212685 A JP 17212685A JP S6232401 A JPS6232401 A JP S6232401A
Authority
JP
Japan
Prior art keywords
refractive index
gel particles
monomer
particles
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17212685A
Other languages
Japanese (ja)
Other versions
JPH0652323B2 (en
Inventor
Yasuji Otsuka
大塚 保治
Yasuhiro Koike
康博 小池
Koichi Maeda
浩一 前田
Akio Takigawa
滝川 章雄
Yuichi Aoki
裕一 青木
Ikuo Tago
田子 育良
Shoji Mase
間瀬 昇次
Motoaki Yoshida
元昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP17212685A priority Critical patent/JPH0652323B2/en
Publication of JPS6232401A publication Critical patent/JPS6232401A/en
Publication of JPH0652323B2 publication Critical patent/JPH0652323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To form transparent spherical gel particles to be used as a base material for a graded index type spherical lens made of a synthetic resin so as to have a specified grain size by dropping the sols formed by a preliminary polymn. of a monomer by each drop and charging the sols in the stage of producing the above-mentioned particles by a suspension polymn. CONSTITUTION:The thoroughly spherical gel particles can be obtd. and the production in a large amt. at one time is possible if the suspension polymn. is adopted as a process for producing the transparent spherical gel particles. The coalescence and detachment of the particles during the suspension polymn. can be largely prevented if the preliminarily polymerized sols are charged in place of the monomer; therefore, the grain size fractions of the resultant gel particles can be substantially diminished. The sols are dropped by each drop in this stage and if the volume of one drop is uniform, the coalescence, detachment, etc. of the particles do not arise at all and the grain size of the resultant transparent gel particles is thoroughly constant. The synthetic resin spherical lenses each having the refractive index in which the refractive indices change in the normal direction from the center of the sphere toward the periphery are thus mass-produced by the subsequent diffusion and heat treatment stages.

Description

【発明の詳細な説明】 !−/  産業上の利用分野 本発明は球の中心から周辺に向けて法線方向に屈折率が
変化する屈折率分布を有する合成樹脂製球レンズを製造
する方法に関する。
[Detailed description of the invention]! -/ Industrial Application Field The present invention relates to a method for manufacturing a synthetic resin ball lens having a refractive index distribution in which the refractive index changes in the normal direction from the center to the periphery of the sphere.

3−2 従来技術の説明 屈折率分布を有するレンズとして、半径方向に中心軸か
らの距離の2乗にほぼ比例して減少する屈折率の分布を
有する透明棒状体が知られている。
3-2 Description of the Prior Art As a lens having a refractive index distribution, a transparent rod-shaped body having a refractive index distribution that decreases in the radial direction approximately in proportion to the square of the distance from the central axis is known.

この透明棒状体は凸レンズ作用を有し、またその屈折率
分布は(1)式で近似される。
This transparent rod-shaped body has a convex lens effect, and its refractive index distribution is approximated by equation (1).

n (r)=n□ (/   //、2 Ar2ン  
  (1)式中、n (r)は中心軸からの距離rの点
における屈折率、n□は中心軸における屈折率、人は正
の定数を各々表わす。
n (r)=n□ (/ //, 2 Ar2
In the formula (1), n (r) represents a refractive index at a point at a distance r from the central axis, n□ represents a refractive index at the central axis, and n represents a positive constant.

このような透明棒状体中を光束は蛇行して伝播し、その
周期りは(2)式で表わされる。
A light beam propagates in a meandering manner in such a transparent rod-shaped body, and its periodicity is expressed by equation (2).

L−コπ/V丁           (2)また(3
)式で近似されるように、中心軸からの距離の2乗にほ
ぼ比例して増大する屈折率分布を有する場合には透明棒
状体は凹レンズ作用を有する光伝送体となる。
L-coπ/V-cho (2) Also (3
) If it has a refractive index distribution that increases approximately in proportion to the square of the distance from the central axis, the transparent rod-like body becomes a light transmitting body having a concave lens effect.

n (r) =no (/+ //2 Br2)   
   (3)式中n (r)及びn。は前記に同じであ
り、Bは正の定数である。
n (r) = no (/+ //2 Br2)
(3) where n (r) and n. is the same as above, and B is a positive constant.

このような屈折率分布を有する合成鴛脂光伝送体の製造
方法は、特公昭!2−3!!;7号公報、特開昭!;/
−/639グ号公報、特開昭!;t!−//9939号
公報などに記載されている。
A method for manufacturing a synthetic resin optical transmitter having such a refractive index distribution was developed by Tokkosho! 2-3! ! ; Publication No. 7, JP-A-Sho! ;/
-/639g publication, JP-A-Sho! ;t! -//9939, etc.

3−3 発明が解決しようとする問題点上記のように、
半径方向に屈折率分布を有する円柱状のロッドレンズは
オプトエレクトロニクス分野において集光、結像素子と
して注目されている。しかし、ロッドレンズの光軸が光
学系の光軸とわずかにずれた場合、スキュー光線により
大きな収差を生じ現在、これが間頭となっている。
3-3 Problems to be solved by the invention As mentioned above,
A cylindrical rod lens having a refractive index distribution in the radial direction is attracting attention as a light condensing and imaging element in the field of optoelectronics. However, if the optical axis of the rod lens is slightly shifted from the optical axis of the optical system, large aberrations occur due to skewed rays, which is currently a problem.

しかし、球レンズではこのようなレンズの光軸が存在し
ないため軸ずれによるスキュー光線は、存在しない。屈
折率が中心点から外周に向けてほぼ二乗分布で減少して
いる球レンズを適当な屈折率を有する媒体中に埋め込ん
だもの、あるいは、このような球レンズの周囲に屈折率
均一なりラッドをつけたものを集光素子として使用すれ
ばほぼ轍収差の集光を実現できる。
However, in the case of a spherical lens, there is no optical axis of the lens, so there is no skewed ray due to axis misalignment. A ball lens whose refractive index decreases from the center point to the outer periphery in an approximately square law distribution is embedded in a medium with an appropriate refractive index, or a rad with a uniform refractive index is placed around such a ball lens. If you use the attached one as a condensing element, it is possible to condense light with almost no rutting aberration.

しかし、従来技術では球状に屈折率分布を制御すること
は極めて憚しく、このような球レンズは未だ得られてい
ない。屈折率勾配を有する合成樹脂製球レンズを製造す
るには、まず球状の母材を得ることが必要であるが、母
材として重合が完結したものを使用すると後の屈折率の
異なる単量体を拡散する工程において母材の中心まで拡
散させることが非常に困難となる。そこで母材として、
一部重合した球状の透明ゲル粒子を使用するのであるが
、塊状重合によって、この球状の透明ゲル粒子を得よう
としても、完全な球を得るのは難しく、また一度に大量
のゲル粒子を安定に得ることも不可能であるため、大量
生産にも向いていない。
However, in the prior art, it is extremely difficult to control the refractive index distribution spherically, and such a spherical lens has not yet been obtained. In order to manufacture a synthetic resin ball lens with a refractive index gradient, it is first necessary to obtain a spherical base material, but if the polymerized base material is used as the base material, monomers with different refractive indexes will be formed later. In the process of diffusing the metal, it is extremely difficult to diffuse it to the center of the base material. Therefore, as a base material,
Partially polymerized spherical transparent gel particles are used, but even if one attempts to obtain spherical transparent gel particles by bulk polymerization, it is difficult to obtain perfect spheres, and a large number of gel particles can be stabilized at once. It is also not suitable for mass production, as it is impossible to obtain it.

そこで、完全な球状の透明ゲル粒子を一度に大量に製造
する方法として特願昭60−μを乙2弘には単量体を仕
込んで懸濁重合に上りで透明ゲル粒子を得る方法が述べ
られている。しかし、上記出頭に開示された方法ではゲ
ル粒子の粒径分散がかなり大きいという開閉が残されて
いた。
Therefore, as a method for producing completely spherical transparent gel particles in large quantities at once, in a patent application filed in 1983, Otsuji Hiroshi described a method for obtaining transparent gel particles by charging monomers and carrying out suspension polymerization. It is being However, in the method disclosed in the above-mentioned publication, the problem remains that the particle size dispersion of gel particles is quite large.

更に単量体の代わりに予備重合したゾルを仕込んで懸濁
重合によって透明ゲル粒子を得る方法も検討されており
、この方法によるとゲル粒子の粒径分散をかなり小さく
することができるが、ある程度はやはり存在し、粒径を
一定にすることはできない。
Furthermore, a method of obtaining transparent gel particles by suspension polymerization by charging a prepolymerized sol instead of monomers is also being considered.This method makes it possible to considerably reduce the particle size dispersion of gel particles; still exist, and the particle size cannot be made constant.

3−グ 従来の問題点を解決する手段 合成靭脂製屈折率勾配型球1/ンズの母材となる球状の
透明ゲル粒子を懸濁重合によって製造する際に、単量体
を予備重合したゾルを一滴ずつ滴下して仕込む。
3-G Means for solving the conventional problems When producing spherical transparent gel particles, which are the base material of the synthetic basin refractive index gradient sphere 1/ns, by suspension polymerization, the monomers were prepolymerized. Add the sol one drop at a time.

3−5 発明の作用効果 球状の透明ゲル粒子を製造する方法として、懸濁重合を
採■すれば、完全に球状のゲル粒子を得ることができ、
しかも一度に大量に製造することができる。そして、単
量体の代わりに予備重合したゾルを仕込むと懸濁重合中
における粒子の合着、離反を大きく抑制することができ
る為、得られるゲル粒子の粒径分数をかなり小さくする
ことができる。
3-5 Effects of the invention If suspension polymerization is adopted as a method for producing spherical transparent gel particles, completely spherical gel particles can be obtained.
Moreover, it can be manufactured in large quantities at once. If a prepolymerized sol is used instead of the monomer, coalescence and separation of particles during suspension polymerization can be greatly suppressed, so the particle size fraction of the resulting gel particles can be significantly reduced. .

ここでゾルを一滴ずつ滴下して、かつ−滴の体積が均一
であるならば、粒子の合着、離反等が全く起こらないの
で、得られる透明ゲル粒子の粒径は完全に一定となる。
If the sol is added drop by drop and the volume of each drop is uniform, no coalescence or separation of the particles will occur, and the diameter of the resulting transparent gel particles will be completely constant.

尚、粒子の最大値はゾルの表面張力、粘度(すなわち転
化率)によって主に決定される。
Note that the maximum particle size is mainly determined by the surface tension and viscosity (ie, conversion rate) of the sol.

従って、その後に続く拡散及び熱処理工程を経て、一度
に一定の性能を有する前述のように球の中心から周辺に
向けて法線方向に屈折率が変化する屈折率分布を有する
合成樹脂製球レンズを大量生産することができる。
Therefore, through the subsequent diffusion and heat treatment process, a synthetic resin ball lens with a refractive index distribution in which the refractive index changes in the normal direction from the center to the periphery, as described above, has a constant performance at once. can be mass produced.

3−6 実施例 以下本発明に係る合成鉗脂製球レンズの製造方法を実施
例に基づき説明する。
3-6 Examples Hereinafter, the method for manufacturing a synthetic spheroid ball lens according to the present invention will be explained based on examples.

まず、屈折率Naの網状重合体(共重合体を含む)Pa
を形成する単量体(単量体混合物を含む)〜1aを所定
の温度102時間toにおいて予備重合し、ゲル化以前
の流動性を有しているゾルを製造する。この時ゾルは、
メタノールに不溶な成分(線形重合体)を3〜30%含
んでいる状態が望ましい。
First, a reticular polymer (including copolymer) with a refractive index of Na, Pa
The monomers (including a monomer mixture) to 1a forming the sol are prepolymerized at a predetermined temperature for 102 hours to produce a sol having fluidity prior to gelation. At this time, Sol
A state containing 3 to 30% of methanol-insoluble components (linear polymers) is desirable.

この単量体Maから成るゾルを、マイクロシリンジ、微
匿定】ポンプ等を用いて一滴ずつ、溶媒及び分散剤等が
入っている所定の容器中に滴下して仕込み、所定の温度
Tl″C1時間t1及び攪拌回転数r1(rpm)にお
いて懸濁重合を行ない、一部重合させて球状の透明ゲル
粒子を一度に大量に製造する。このときゲル粒子が溶剤
に不溶な成分(網状重合体)を2o〜ワ0重量%を含ん
でいる重合未完の状態としておく。
This sol consisting of the monomer Ma is dropped drop by drop into a predetermined container containing a solvent, a dispersant, etc. using a microsyringe, a micropump, etc., and the sol is charged at a predetermined temperature Tl''C1. Suspension polymerization is carried out at time t1 and stirring rotation speed r1 (rpm) to partially polymerize and produce a large amount of spherical transparent gel particles at once.At this time, the gel particles are a component insoluble in the solvent (reticular polymer). The polymerization is left in an uncompleted state containing 20 to 0% by weight of .

上記のように製造した球状の透明ゲル粒子は所定の容器
中の重合系に分散しているので、この重合系を吸引濾過
して、透明ゲル粒子を分離する。
Since the spherical transparent gel particles produced as described above are dispersed in the polymerization system in a predetermined container, the polymerization system is suction-filtered to separate the transparent gel particles.

次に分離された上記粒子を前記Naとは異なる屈折率N
bを有する重合体(共重合体を含む)Pbを形成する単
量体(単量体混合物を含む)Mbが入っている溶器中に
加え、所定の温度T2°C1時間t2にて、球の表面か
ら中心に向けて単量体Mbを拡散させると共に重合させ
、屈折率が球の中心から周辺に向かって法線方向に連続
的に変化する屈折率分布を、前記透明ゲル粒子中に形成
する。
Next, the separated particles are treated with a refractive index N different from that of the Na.
A polymer (including a copolymer) having Pb is added to a melter containing a monomer (including a monomer mixture) Mb, and the sphere is heated at a predetermined temperature T2°C for 1 hour t2. The monomer Mb is diffused and polymerized from the surface of the sphere toward the center, and a refractive index distribution in which the refractive index changes continuously in the normal direction from the center to the periphery of the sphere is formed in the transparent gel particles. do.

その後、拡散後の透明ゲル粒子を前記単量体Mbから分
離する為、再び吸引濾過する。そして最終的に重合を完
結するために、今度は所定の容器中で所定の温度T3°
Cに加熱されている水中に分散させ、所定の時間t3及
び攪拌回転fl r3 (rpm)において熱処理を行
なう。
Thereafter, in order to separate the transparent gel particles after diffusion from the monomer Mb, suction filtration is performed again. Then, in order to finally complete the polymerization, the temperature is set to T3° in a predetermined container.
The mixture is dispersed in water heated to C and heat-treated at a predetermined time t3 and stirring rotation fl r3 (rpm).

このようにして一度に大量に得られた合成樹脂製球レン
ズにはすべて中心から周辺に向けて法線方向に連続的に
変化する屈折率分布が形成されてオリ、しかも、粒径が
一定であるので、一定の性能を有する球レンズを一度に
大量に得ることができる。
All synthetic resin ball lenses obtained in large quantities in this way have a refractive index distribution that continuously changes in the normal direction from the center to the periphery, and the particle size is constant. Therefore, it is possible to obtain a large amount of ball lenses with a certain level of performance at once.

これらのレンズは通常の屈折率一様の球面レンズと比較
すると、球面収差のみならずコマ収差も補正されている
When compared with ordinary spherical lenses with a uniform refractive index, these lenses correct not only spherical aberration but also comatic aberration.

上述の実施例におけるレンズ母材としての透明ゲル物体
の原料となるべき単量体Maとしては、アリル基、アク
リル酸基、メタクリル酸基またはビニル基のうちの2種
類以上の基を有する単量体を用いることができる。次に
単量体Maの具体例を挙げる。
The monomer Ma to be the raw material of the transparent gel object as the lens base material in the above embodiments is a monomer having two or more types of groups among allyl group, acrylic acid group, methacrylic acid group, or vinyl group. You can use your body. Next, specific examples of monomer Ma will be given.

(1)  アリル化合物 フタル酸ジアリル、イソフタル酸ジアリル、テレフタル
酸ジアリル、ジエチレングリコールビスアリルカーボネ
ート等のジアリルエステル;トリメリド酸トリアリル、
リン酸トリアリル、亜リン酸トリアリル等のトリアリル
エステル;メタクリル酸アリル、アクリル酸アリル等の
不飽和酸アリルエステル。
(1) Allyl compounds Diallyl esters such as diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diethylene glycol bisallyl carbonate; triallyl trimellidate;
Triallyl esters such as triallyl phosphate and triallyl phosphite; unsaturated acid allyl esters such as allyl methacrylate and allyl acrylate.

(2)  几1−R2−13で表わされる化合物R1及
びR3がいずれもビニル基、アクリル基。
(2) Compound R1 and R3 represented by 几1-R2-13 are both vinyl groups and acrylic groups.

ビニルエステル基、またはメタクリル基である化合物;
 I’Ll及びn3のいずれか一方がビニル基、アクリ
へ基、メタクリル基及びビニルエステル基の参つの基の
うちのいずれかであり、他方が残りの3つの基のうちの
いずれかである化合物。ここでR2は以下に示されコ価
の基のうちから選択でき一〇 − OH3 −(OH20H20) m−0H20H2−Cm−0〜
2の−(CH2)P−(P−,3〜15) (OI(2)iH −CH2−Q−OH2−(i、j = /〜3)(O)
+2 入1 H ■( (3)上記(1)と(2)の単量体の混合物、またはモ
ノビニル化合物、ヒニルエステル類、アクリル酸エステ
ル類及びメタクリル酸エステル類の!;@のうちの少な
くとも7種と上記(1)または(2)の単量体(または
その混合物)との混合物。
A compound that is a vinyl ester group or a methacrylic group;
A compound in which either I'Ll or n3 is one of the three groups vinyl group, acrylic group, methacrylic group, and vinyl ester group, and the other is one of the remaining three groups . Here, R2 can be selected from the covalent groups shown below.
2-(CH2)P-(P-, 3~15) (OI(2)iH -CH2-Q-OH2-(i, j = /~3) (O)
+2 Contains 1 H ■( (3) A mixture of the monomers (1) and (2) above, or at least 7 of monovinyl compounds, hinyl esters, acrylic esters, and methacrylic esters!;@ and the monomer (or mixture thereof) of (1) or (2) above.

また単量体Mbとしては、次のようなものが挙げられる
Furthermore, examples of the monomer Mb include the following.

(4)  CH2−C−C!OOYで表される化合物た
だし、式中Xは水素原子またはメチル基、−(CH2)
lH(l−y〜l)、1−プロピル基、1−ブチル基、
S−ブチル基、t−ブチル基。
(4) CH2-C-C! A compound represented by OOY, where X is a hydrogen atom or a methyl group, -(CH2)
lH (ly~l), 1-propyl group, 1-butyl group,
S-butyl group, t-butyl group.

及び−(OH20H20) p  01(20H3(1
) −/−4)から成る群から選ばれた基、または−(
CF’2 )a −F’(a−7〜乙)  、  −0
H2(OF2)b H(b−/〜、r)  。
and -(OH20H20) p 01(20H3(1
) -/-4), or -(
CF'2)a -F'(a-7~Otsu), -0
H2(OF2)bH(b-/~,r).

−0H20H20−OH20F3 、− (OH20H
20) C0F20F2H(c= /〜II ) 、 
−0H20H20・OH2(OF2) aF(a−/−
6) 、 −0H2(OF2) dO(OF2) l 
F (d−/〜j 。
-0H20H20-OH20F3, - (OH20H
20) C0F20F2H (c= /~II),
-0H20H20・OH2(OF2) aF(a-/-
6) , -0H2(OF2) dO(OF2) l
F (d-/~j.

1−/S−り及び−s 1(002H,、)3  から
成る群より選ばれた基を表す。
Represents a group selected from the group consisting of 1-/S-ri and -s 1 (002H,,)3.

(5)  OH2=OHOO−R4で表される化合物た
だし、式中R4は−(OHM) f  OH3(f−0
〜2 ) 。
(5) A compound represented by OH2=OHOO-R4, where R4 is -(OHM) f OH3(f-0
~2).

詳より選ばれた基を表す。Represents a group selected from the details.

(6)  (4>及び(5)の単量体の混合物。(6) A mixture of the monomers (4> and (5)).

単量体Maとして上記(1)〜(3)、単】体Mbとし
て(4)〜(6)のいずれも組み合わせることができる
Any of the above (1) to (3) as the monomer Ma and (4) to (6) as the monomer Mb can be combined.

また上記透明ゲル物体のゲル化状態を11節するには、
(3)項に挙げたように架橋性単量体Maに不泡和基を
一つ有する単量体を添加する方法及び0Br4 、0O
14、メルカプタン類等の連鎖移動剤を添加する方法、
または両者を併用する方法が有効である。
In addition, in order to explain the gelation state of the above transparent gel object in Section 11,
As mentioned in section (3), the method of adding a monomer having one non-foaming group to the crosslinkable monomer Ma, and 0Br4, 0O
14. A method of adding a chain transfer agent such as mercaptans,
Alternatively, a method of using both together is effective.

次に本発明の試験例について説明する。Next, test examples of the present invention will be explained.

試験例1 まず、単量体MaとしてD人I(イソフタル酸ジアリル
) (Na−/、369) 109  に開始剤として
5po(過酸化ベンゾイル)O,コクを加えた後、温度
To−90℃時間to−62分子備重合してゲル化以前
の流動性を有しているゾルを製造した。
Test Example 1 First, 5po (benzoyl peroxide) O and Koku were added as an initiator to D-man I (diallyl isophthalate) (Na-/, 369) 109 as a monomer Ma, and then the temperature was set at To-90°C for an hour. A sol having fluidity prior to gelation was prepared by prepolymerizing to-62 molecules.

このゾルはメタノールに不溶な成分(m彫型合体)20
重量%から成っていた。
This sol contains components insoluble in methanol (m-sculpture combination) 20
It consisted of % by weight.

次に溶媒として水200り、及び分散剤としてPVA(
ポリビニルアルコール)、2りが入っている攪拌装置付
きフラスコ中に上述のゾルをマイクロシリンジを用いて
一滴ずつ滴下して仕込み、温度tl−s時間懸濁重合を
行ない、一部重合した球状の透明ゲル粒子を一度に大量
に製造した。この透明ゲル粒子は、メタノールに不溶な
成分(網状重合体部分及び線形重合体部分)75重量%
、メタノールに可溶な成分(単量体及び低分子量プレポ
リマ一部分)23重量%から成っていた。
Next, water was used as a solvent, and PVA was used as a dispersant (
The above-mentioned sol was added drop by drop using a microsyringe into a flask equipped with a stirrer containing polyvinyl alcohol), and suspension polymerization was carried out at a temperature of tl-s for a time of tl-s, resulting in partially polymerized spherical transparent particles. Gel particles were produced in large quantities at once. These transparent gel particles contain 75% by weight of methanol-insoluble components (reticular polymer portion and linear polymer portion).
, 23% by weight of methanol-soluble components (monomers and a portion of low molecular weight prepolymer).

次に、上記により製造した透明ゲル粒子を重合系から分
離するために吸引濾過し、その後、分離された前記粒子
を温度T2−70°Cに加温された容器中にあるj F
MA (メタクリル酸−2,2,2−)リフルオロエチ
ル)(Nb−八!7210)202中に加え、+2−7
時間保持し、JP”MAを前記粒子中に拡散させ同時に
重合させる。
Next, the transparent gel particles produced above are filtered by suction to separate them from the polymerization system, and then the separated particles are placed in a container heated to a temperature T2-70°C.
MA (2,2,2-)lifluoroethyl methacrylate) (Nb-8!7210) added to 202, +2-7
Hold for a period of time to allow JP''MA to diffuse into the particles and simultaneously polymerize.

その後拡散後の前記粒子をjFMAから分離する為再び
吸引濾過する。そして最終的に温度T3−90°Cうこ
加が〜されている容器中にある水200ノ中に0口え、
回転% r3 ”” 3!; Orpm 、時間t3−
 jlJ時間にて重合を完結させ、球の中心から周辺に
向けて法線方向に連続的に屈折率が変化する合成雪脂製
球レンズを得た。
Thereafter, the particles after diffusion are again filtered by suction in order to separate them from jFMA. Finally, pour 0 sip into 200 liters of water in a container that is heated to a temperature of T3 - 90°C.
Rotation% r3 ”” 3! ;Orpm, time t3-
Polymerization was completed in jlJ time to obtain a synthetic snow resin ball lens whose refractive index changed continuously in the normal direction from the center to the periphery of the ball.

得られた球レンズはすべて所望の直径/、!;mm  
に対してコ−0,03mmの範囲内に入っていた。
The resulting spherical lenses all have the desired diameter/,! ;mm
It was within a range of 0.03 mm.

得られた合成樹脂屈折率勾配型球レンズ中に形試験例2 まず単量体〜4aとしてDAI 109.開始剤として
Bl’O□、/り及びDI3PO(ジターシャリ−ブチ
ルパーオキサイド)0.7りを加えた後、温、l To
 −qO°C時間to−70分分子型合してゾルを得た
Shape of the obtained synthetic resin gradient index spherical lens Test Example 2 First, the monomer ~4a had a DAI of 109. After adding 0.7% of Bl'O□ and 0.7% of DI3PO (di-tertiary-butyl peroxide) as an initiator, the mixture was heated to
-qO°C time to -70 minutes The molecular types were combined to obtain a sol.

このゾルはメタ/−かに不溶な成分(線形重合体)20
重遣%から成っていた。
This sol consists of meta/- crab insoluble component (linear polymer) 20
It consisted of % weightage.

次に溶媒として水2009及び分散剤としてPVA(ポ
リビニルアルコール)/、s9が入っている攪拌装置付
きフラスコ中に上述のゾルを微量定mポンプを用いて一
滴ずつ滴下17て仕込み、)黒度TI −qo℃、回転
数r1−100 rpmにて時間t、l −3時間懸濁
型合を行ない、一部市合1.た球状の4明ゲル粒子を一
度に大量に製造1−た。この透問′−′ル粒子はメタノ
ールに不溶な成分(′@状市合体部分及び線形重合体部
分)75重量%、そj7てメタノールに可溶な成分(単
量体及び低分子量プレポリマ一部分)−5重量%から成
っていた。
Next, the above-mentioned sol was added drop by drop using a minute meter pump into a flask equipped with a stirrer containing water 2009 as a solvent and PVA (polyvinyl alcohol)/s9 as a dispersant. Suspension molding was carried out at -qo°C and rotational speed r1-100 rpm for times t and l-3 hours. A large amount of spherical gel particles were produced at one time. The transparent particles contain 75% by weight of methanol-insoluble components ('@-shaped aggregate portion and linear polymer portion) and methanol-soluble components (monomer and a portion of low molecular weight prepolymer). -5% by weight.

次に上記により製造した透明ゲル粒子を重合系から分離
するために吸引濾過し、その後分離された前記粒子を温
度T、2−70°Cに加温された容器中にある。?FM
A中に加えt2−60分間保持し1.、?FMAを前記
粒子中に拡散させ、同時に重合させた。
The transparent gel particles produced above are then suction filtered to separate them from the polymerization system, and the separated particles are then placed in a container heated to a temperature T of 2-70°C. ? FM
Add to A and hold for 60 minutes 1. ,? FMA was diffused into the particles and simultaneously polymerized.

その後、拡散後の前記粒子を3F〜1.Aから分離する
為に再び吸引濾過する。そして最終的に温度T3−タO
′Cに加熱さねている容器中にあるPVA O,3りを
含む水200り中に加え、回転数r3”JjOrpI!
1時間t3−2t時間量3て重合を完結さ14、球の中
心から周辺に向けて法線方向に連続的に屈折率が変化す
る合成樹脂球レンズを得た。
Thereafter, the particles after diffusion were mixed between 3F and 1. To separate it from A, it is filtered again with suction. And finally the temperature T3-taO
It is added to 200ml of water containing PVA O,3 in a container heated to 'C, and the rotational speed is r3"JjOrpI!
Polymerization was completed in 1 hour t3-2t time 3 to obtain a synthetic resin ball lens whose refractive index changed continuously in the normal direction from the center to the periphery of the sphere.

得られた球レンズは、すべて所望の直径!、’10mm
に対して±0.02 mmの範囲内に入っていた。
The resulting spherical lenses all have the desired diameter! , '10mm
It was within the range of ±0.02 mm.

得られた合成省脂屈折率勾配型球レンズ中に形成された
屈折率分布は、直径の90%以内でほぼ二乗分布であり
、最大屈折率差は0.05であった。
The refractive index distribution formed in the obtained synthetic fat-saving gradient refractive index ball lens was approximately a square distribution within 90% of the diameter, and the maximum refractive index difference was 0.05.

特許出願人  日本板硝子株式会社Patent applicant: Nippon Sheet Glass Co., Ltd.

Claims (1)

【特許請求の範囲】 1)(A)屈折率Naの網状重合体(共重合体を含む)
Paを形成する単量体(単量体混合物を含む)Maを予
備重合してゲル化以前の流動性を有しているゾルを形成
する工程。 (B)溶媒中に前記Maゾルを一滴ずつ滴下して懸濁重
合することによつて、更に重合させて球状の透明ゲル粒
子を形成する工程。 (C)前記Naとは異なる屈折率Nbを有する重合体(
共重合体を含む)Pbを形成する単量体(単量体混合物
を含む)Mb中に前記球状透明ゲル粒子を加え、球の表
面から中心に向けて単量体Mbを拡散させると共に重合
させ、屈折率が球の中心から周辺に向かって連続的に変
化する屈折率分布を前記透明ゲル粒子中に形成する工程
。 (D)加熱等により重合を完結させて、前記屈折率分布
を固定化する工程 の各工程を備えた合成樹脂屈折率勾配型球レンズを製造
する方法。 2)特許請求の範囲第1項記載の前記ゾルはメタノール
に不溶な成分(線形重合体)を3〜30%を含む合成樹
脂屈折率勾配型球レンズを製造する方法。
[Claims] 1) (A) Network polymer (including copolymer) with a refractive index of Na
A step of prepolymerizing Ma, a monomer (including a monomer mixture) that forms Pa, to form a sol that has fluidity before gelation. (B) A step of adding the Ma sol one drop at a time into a solvent and carrying out suspension polymerization, and further polymerizing to form spherical transparent gel particles. (C) A polymer having a refractive index Nb different from that of Na (
The spherical transparent gel particles are added to a monomer (including a monomer mixture) Mb that forms Pb (including a copolymer), and the monomer Mb is diffused from the surface of the sphere toward the center and polymerized. . Forming in the transparent gel particles a refractive index distribution in which the refractive index continuously changes from the center to the periphery of the sphere. (D) A method for manufacturing a synthetic resin gradient index ball lens, comprising the steps of fixing the refractive index distribution by completing polymerization by heating or the like. 2) A method for manufacturing a synthetic resin gradient refractive index type spherical lens, in which the sol according to claim 1 contains 3 to 30% of a methanol-insoluble component (linear polymer).
JP17212685A 1985-08-05 1985-08-05 Method for manufacturing synthetic resin ball lens Expired - Lifetime JPH0652323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17212685A JPH0652323B2 (en) 1985-08-05 1985-08-05 Method for manufacturing synthetic resin ball lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17212685A JPH0652323B2 (en) 1985-08-05 1985-08-05 Method for manufacturing synthetic resin ball lens

Publications (2)

Publication Number Publication Date
JPS6232401A true JPS6232401A (en) 1987-02-12
JPH0652323B2 JPH0652323B2 (en) 1994-07-06

Family

ID=15936038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17212685A Expired - Lifetime JPH0652323B2 (en) 1985-08-05 1985-08-05 Method for manufacturing synthetic resin ball lens

Country Status (1)

Country Link
JP (1) JPH0652323B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180305A (en) * 1983-03-30 1984-10-13 Nishihara Shokai:Kk Measuring tool for intersection angle of plane polished surface of small body
JP2013100402A (en) * 2011-11-08 2013-05-23 Mitsubishi Rayon Co Ltd Production method of gel particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180305A (en) * 1983-03-30 1984-10-13 Nishihara Shokai:Kk Measuring tool for intersection angle of plane polished surface of small body
JP2013100402A (en) * 2011-11-08 2013-05-23 Mitsubishi Rayon Co Ltd Production method of gel particle

Also Published As

Publication number Publication date
JPH0652323B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
TWI413807B (en) Light diffusing articles
TW200524967A (en) Microstructure-bearing articles of high refractive index
JPS5821201A (en) Plastic lens
US5004785A (en) Light-diffusing methacrylic resin and process for production thereof
CN101248098B (en) Copolymer and polymerizable composition
JPH0215041B2 (en)
JP2006152115A (en) Curable resin composition, light-resistant optical component and optical equipment
JP2667878B2 (en) Light diffusing plastic
JPS6232401A (en) Production of synthetic resin spherical lens
JPS6166706A (en) Polymer for sheath material of optical fiber
JPS6223001A (en) Production of spherical plastic lens
JPS6157908A (en) Optical resin composition
JP2006084927A (en) Light diffusing agent and its manufacturing method
JPH0530845B2 (en)
JPS6232402A (en) Production of synthetic resin spherical lens
JPS62113102A (en) Production of spherical plastic lens
JPH04366115A (en) Optical plastic having low refractive index and enhanced dispersion
JPH01236257A (en) Light-diffusing methacrylic resin and its production
JPS63234032A (en) Optical element made of synthetic resin
JPH0355801B2 (en)
JPS60100105A (en) Manufacture of light transmitting material made of synthetic resin
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
JPS58221801A (en) Plastic lens
JPH06123855A (en) High refractive index ophthalmic lens
JPH0560924A (en) Soft composite light transmitter