JPH0264098A - Method for growth of si thin film - Google Patents

Method for growth of si thin film

Info

Publication number
JPH0264098A
JPH0264098A JP21553688A JP21553688A JPH0264098A JP H0264098 A JPH0264098 A JP H0264098A JP 21553688 A JP21553688 A JP 21553688A JP 21553688 A JP21553688 A JP 21553688A JP H0264098 A JPH0264098 A JP H0264098A
Authority
JP
Japan
Prior art keywords
film
layer
epitaxial growth
silicide
silicide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21553688A
Other languages
Japanese (ja)
Inventor
Yuuki Fujimoto
裕希 藤本
Akihiko Ishitani
石谷 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21553688A priority Critical patent/JPH0264098A/en
Publication of JPH0264098A publication Critical patent/JPH0264098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To efficiently grow an Si thin film by growing an Si layer on an opening part of a dielectric insulation film layer on a semiconductor base, depositing an silicide layer on the grown film and insulation film layers heat treating the silicide layer, separating and growing Si out of the silicide layer. CONSTITUTION:A dielectric insulation film layer 12 (e.g., oxide film) is formed on a semiconductor base 11 (e.g., Si base) and an opening part 13 is formed at the prescribed part of the insulation film layer 12. An epitaxial growth of an Si layer 14 is then carried out selectively on the opening part 13 and a silicide layer 15 (e.g., tungsten silicide film) is then deposited on the insulation film layer 12 and the Si epitaxial growth film 14. The silicide layer 15 is subsequently subjected to heat treatment to separate Si 16 out of the silicide layer 15. The separated Si 16 is subjected to solid phase epitaxial growth from the part in contact with the Si epitaxial growth film 14 in the horizontal direction, thus obtaining the objective Si thin film 17.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体膜の形成方法に係わり、詳しくはSiエ
ピタキシャルラテラルオーバーグロースに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a semiconductor film, and more particularly to Si epitaxial lateral overgrowth.

(従来の技術) 誘電体絶縁膜上にSi単結晶膜を形成する方法として、
多結晶Siを酸化膜上に堆積し、種となる部分から熱処
理を行なうことによってSi単結晶を酸化膜上に横方向
へ成長させる方法が知られている。(応用物理学関係連
合講演会予稿集昭和63年春季第2分Np、 5822
8p−M−2:CVD Si膜の固相エピタキシャル成
長[工・]) (発明が解決しようとする問題点) 従来の技術では、多結晶Siを固相エピタキシャル成長
させるとき、誘電体絶縁膜上の多結晶シリコンが同時期
に核成長をはじめるため、種となる部分から横に伸びる
エピタキシャル成長層と核成長した部分が接した時点で
横方向の固相エピタキシャル成長は停止してしまう。
(Prior art) As a method of forming a Si single crystal film on a dielectric insulating film,
A method is known in which polycrystalline Si is deposited on an oxide film and a heat treatment is performed from the seed portion to grow a Si single crystal laterally on the oxide film. (Applied Physics Association Lecture Proceedings 1988 Spring 2nd Minute Np, 5822
8p-M-2: Solid-phase epitaxial growth of CVD Si film [Engineering]) (Problem to be solved by the invention) In the conventional technology, when growing polycrystalline Si by solid-phase epitaxial growth, it is difficult to grow polycrystalline Si on a dielectric insulating film. Since the crystalline silicon begins to grow nuclei at the same time, the lateral solid-phase epitaxial growth stops when the epitaxial growth layer that extends laterally from the seed part contacts the part where the nuclei have grown.

本発明の目的はこの問題を解決したSi薄膜の成長方法
を提供することにある。
An object of the present invention is to provide a method for growing a Si thin film that solves this problem.

(問題点を解決するための手段) 半導体基板上に誘電体絶縁層を形成する工程と、誘電体
絶縁層の所定の部分に開口部を形成する工程と、前記開
口部に選択的にSi層をエピタキシャル成長する工程と
、誘電体絶縁膜縁層及びSiエピタキシャル成長上にシ
リサイド層を堆積する工程と、シリサイド層に熱処理を
加えることによってシリサイド層からSiを前記Siエ
ピタキシャル成長と接した部分からエピタキシャル成長
させることを特徴としたSi薄膜の成長方法を提供する
ものである。
(Means for Solving the Problems) A step of forming a dielectric insulating layer on a semiconductor substrate, a step of forming an opening in a predetermined portion of the dielectric insulating layer, and a step of forming a Si layer selectively in the opening. a step of epitaxially growing a silicide layer, a step of depositing a silicide layer on the dielectric insulating film edge layer and the Si epitaxial growth, and a step of applying heat treatment to the silicide layer to epitaxially grow Si from the silicide layer from a portion in contact with the Si epitaxial growth. This invention provides a method for growing a distinctive Si thin film.

(作用) スパッタ法や蒸着法の物理的成長方法では、−般に化学
量論的組成からずれた組成をもった化合物の成膜を行な
うことができる。このようにして成膜した膜は、その後
の熱処理によって、熱力学的安定に化学量的組成を持つ
平衡層と、′残りの析出相とに相分離する。この時化学
量論的な組成からずれた組成を持った膜に含まれている
析出物となるべき物質の量が、特定の熱処理温度におい
て固相三次元核発生するよりは低いが、固相エピタキシ
ャル成長するには充分な量であるとき、所定の部分にの
みエピタキシャルオーバーグロースさせることかできる
ことを見い出し本発明に至った。すなわち本発明ではS
iリッチの組成を持つシリサイドを形成させ、その後こ
のシリサイドを熱処理することにより、Siを析出させ
る。この析出しなSiを利用してエピタキシャルオーバ
ーグロースさせるものである。
(Function) Physical growth methods such as sputtering and vapor deposition generally allow the formation of a film of a compound having a composition that deviates from the stoichiometric composition. The film thus formed undergoes phase separation through subsequent heat treatment into an equilibrium layer having a thermodynamically stable stoichiometric composition and the remaining precipitated phase. At this time, the amount of substances that are to become precipitates contained in the film with a composition that deviates from the stoichiometric composition is lower than that which would result in solid phase three-dimensional nucleation at a specific heat treatment temperature, but the solid phase The inventors have discovered that when the amount is sufficient for epitaxial growth, it is possible to cause epitaxial overgrowth only in a predetermined portion, leading to the present invention. That is, in the present invention, S
A silicide having an i-rich composition is formed, and then this silicide is heat-treated to precipitate Si. This precipitated Si is used to cause epitaxial overgrowth.

(実施例) [実施例月 p型5i(100)基板11を950°Cで熱酸化、酸
化膜層12を500OA形成した。ホトリソグラフィ技
術によって酸化膜層12の所定の部分に基板Siが露出
した開口部13を形成した。つぎに選択エピタキシャル
成長を850°C5圧 力30Torr、 H2120
1/min、 5iH2C12300cc/min、 
HCI 300cc/minの条件で酸化膜層12とほ
ぼ同じ高さにまでSiエピタキシャル成長膜14を形成
した。第1図(a)にそのときの断面模式図を示す。つ
づいてタングステンシリサイド膜15をスパッタ法によ
って、膜厚〜lpmで堆積した。このときの断面模式図
を第1図(b)に示す。このスパッタ法による成膜にお
いて、ターゲットの組成は WiSi=1:x(2<x≦4)とした。Xの値が化学
量論的組成比である2に近ければ析出するSiの量が少
なくなるので、後続する熱処理によって行なうエピタキ
シャルラテラルオーバーグロースにおいて大きな成長速
度の縦横比は得られなかった逆にXの値が4を越えると
、後続する熱処理においてタングステンシリサイド膜か
らSiが三次元核発生し、同様にエピタキシャルラテラ
ルオーバーグロースにおける大きな成長速度の縦横比は
得られなかった。また、スパッタ法による成膜時の基板
温度は、室温から300°Cの範囲で成膜を行なった。
(Example) [Example] A p-type 5i (100) substrate 11 was thermally oxidized at 950°C to form an oxide film layer 12 of 500 OA. An opening 13 exposing the substrate Si was formed in a predetermined portion of the oxide film layer 12 by photolithography. Next, selective epitaxial growth was performed at 850°C, 5 pressures, 30 Torr, and H2120.
1/min, 5iH2C12300cc/min,
The Si epitaxial growth film 14 was formed to almost the same height as the oxide film layer 12 under the condition of HCI 300 cc/min. FIG. 1(a) shows a schematic cross-sectional view at that time. Subsequently, a tungsten silicide film 15 was deposited to a thickness of ~lpm by sputtering. A schematic cross-sectional view at this time is shown in FIG. 1(b). In film formation by this sputtering method, the composition of the target was WiSi=1:x (2<x≦4). If the value of When the value exceeds 4, three-dimensional nucleation of Si occurs from the tungsten silicide film in the subsequent heat treatment, and similarly, a large aspect ratio with a large growth rate in epitaxial lateral overgrowth cannot be obtained. Furthermore, the substrate temperature during film formation by sputtering was in the range of room temperature to 300°C.

形成された膜の結晶性を電子線で評価した結果、基板温
度が100°C以下では非晶質のタングステンシリサイ
ドが、100°Cを越える基板温度では多結晶タングス
テンシリサイドが形成されていた。基板温度が300°
C以上では、Siの析出層が見出され、既に相分離が進
行していた。このようなスパッタ法で形成したタングス
テンシリサイド膜を熱処理すると、既にあるSi粒子を
核として粒成長がおき、エピタキシャルオーバグロース
の妨げとなる。従って、基板温度を室温から300°C
の範囲で行なった。スパッタガスはArとし、圧力5X
10−”Torrで成膜を行なった。
As a result of evaluating the crystallinity of the formed film using an electron beam, it was found that amorphous tungsten silicide was formed when the substrate temperature was below 100°C, and polycrystalline tungsten silicide was formed when the substrate temperature exceeded 100°C. Substrate temperature is 300°
Above C, a precipitated layer of Si was found, and phase separation had already progressed. When a tungsten silicide film formed by such a sputtering method is heat-treated, grain growth occurs using existing Si particles as nuclei, which hinders epitaxial overgrowth. Therefore, the substrate temperature should be increased from room temperature to 300°C.
This was done within the range of The sputtering gas is Ar, and the pressure is 5X.
Film formation was performed at 10-'' Torr.

以上の用にして形成したタングステンシリサイド膜を有
する基板を熱処理条件としてN2雰囲気、600°C1
30分行なうことによりSiとタングステンシリサイド
膜15の界面にSiの析出16を形成し、つづいて温度
を80000に上げ5時間熱処理を行なうと〜3000
人の横方向にエピタキシャル成長膜17が得られた。こ
のときの断面模式図を第1図(C,)に示す。
The substrate with the tungsten silicide film formed as described above was heat-treated under N2 atmosphere at 600°C.
By performing the heat treatment for 30 minutes, a Si precipitate 16 is formed at the interface between the Si and the tungsten silicide film 15, and then the temperature is raised to 80,000°C and heat treatment is performed for 5 hours, resulting in ~3,000°C.
An epitaxially grown film 17 was obtained in the lateral direction of the person. A schematic cross-sectional view at this time is shown in FIG. 1(C,).

600°Cの熱処理では過剰のSiの析出が非常に緩や
かにおき、Si原子のタングステンシリサイド膜中での
拡散距離も小さいので、はとんど選択エピタキシャル成
長によって形成した開口部のSi単結晶表面にのみ、エ
ピタキシャル成長が起きる。その結果、開口部周辺のタ
ングステンシリサイド膜中には固溶しているSiの温度
分布が形成される。この温度分布の勾配は熱処理温度と
熱処理時間に依存し、温度が低いほど急であり、熱処理
時間が長いほど広く形成される。600°Cで30分の
場合には、開口部の縦方向にはWSi2とSiに相分離
し、固溶している過剰Siの濃度分布はない。しかし、
開口部から横方向には一次元的に〜1μmの範囲にわた
って過剰Siの濃度変化がSIMS分析によって検出さ
れた。次に、熱処理温度を800°Cに上げるとタング
ステンジノサイド膜中のS曙との拡散が促進され、この
−次元的な温度分布が拡大するとともにエピタキシャル
オーバーグロースした。5時間の熱処理によって、厚さ
3000人、横方向に〜8μmの単結晶膜が酸化膜上に
得られた。
In the heat treatment at 600°C, excess Si precipitates very slowly, and the diffusion distance of Si atoms in the tungsten silicide film is small, so that the Si single crystal surface in the opening formed by selective epitaxial growth is almost always deposited. Only when epitaxial growth occurs. As a result, a temperature distribution of solid solution Si is formed in the tungsten silicide film around the opening. The gradient of this temperature distribution depends on the heat treatment temperature and heat treatment time; the lower the temperature, the steeper the temperature distribution, and the longer the heat treatment time, the wider the formation. In the case of 30 minutes at 600°C, phase separation occurs into WSi2 and Si in the longitudinal direction of the opening, and there is no concentration distribution of excess Si in solid solution. but,
A change in the concentration of excess Si was detected by SIMS analysis over a one-dimensional range of ~1 μm in the lateral direction from the opening. Next, when the heat treatment temperature was raised to 800° C., diffusion of S into the tungsten dinoside film was promoted, and this -dimensional temperature distribution was expanded and epitaxial overgrowth occurred. By heat treatment for 5 hours, a single crystal film with a thickness of 3000 mm and a width of ~8 μm in the lateral direction was obtained on the oxide film.

[実施例2] 実施例1において熱処理の工程を2段階で行なっている
が600°Cから800°Cまでを6°C/minの昇
温速度で30分で800°Cに上げ、その後5時間熱処
理しても同様の効果が得られる。
[Example 2] In Example 1, the heat treatment process was carried out in two stages, but the temperature was increased from 600 °C to 800 °C in 30 minutes at a temperature increase rate of 6 °C/min, and then 5 A similar effect can be obtained by time heat treatment.

[実施例3] 実施例1,2において使用したシリサイドをタングステ
ンシリサイド膜15としたが、シリサイドの形成できる
他の元素(たとえばTi、 Zr、 Hf、 V、 N
b、 Ta。
[Example 3] The silicide used in Examples 1 and 2 was used as the tungsten silicide film 15, but other elements that can form silicide (for example, Ti, Zr, Hf, V, N
b, Ta.

Mo、 Co、 Ni、 Pb、 Pt、 K、 Ca
、 Sc、 Rh、 Cu、 As、 Se、 Br、
 P 。
Mo, Co, Ni, Pb, Pt, K, Ca
, Sc, Rh, Cu, As, Se, Br,
P.

CI、 Rb、 Sr、 Y、 Ba、 La、 Te
、 J、 Ce、 Pr、 Nd、 Sm、 Gd、 
Dy。
CI, Rb, Sr, Y, Ba, La, Te
, J, Ce, Pr, Nd, Sm, Gd,
Dy.

Er、 Yb、 Lu、 Th、 U、 Np、 Pu
)でも同様にエピタキシャルオーバーグロースが可能で
ある。
Er, Yb, Lu, Th, U, Np, Pu
), epitaxial overgrowth is also possible.

(発明の効果) 本発明を適用するならば、Siリッチの組成を持つシリ
サイドから横方向成長を行うのでSi粒子を核とした粒
成長が抑制できる。エピタキシャルラテラルオーバーグ
ロースが核成長により停止することがないので横方向へ
の成長が良好に行える。
(Effects of the Invention) When the present invention is applied, grain growth using Si particles as nuclei can be suppressed since lateral growth is performed from silicide having a Si-rich composition. Since epitaxial lateral overgrowth is not stopped due to nuclear growth, lateral growth can be performed satisfactorily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜CC)は本発明にががる半導体膜の断面
模式図である。 図において
FIGS. 1(a) to 1C) are schematic cross-sectional views of semiconductor films according to the present invention. In the figure

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に誘電体絶縁層を形成する工程と、誘電体
絶縁層の所定の部分に開口部を形成する工程と、前記開
口部に選択的にSi層をエピタキシャル成長する工程と
、誘電体絶縁膜縁層及びSiエピタキシャル成長膜上に
シリサイド層を堆積する工程と、前記シリサイド層に熱
処理を加えることによってシリサイド層からSiを、前
記Siエピタキシャル成長膜と接した部分から固相エピ
タキシャル成長させる工程とを含むことを特徴としたS
i薄膜の成長方法。
A step of forming a dielectric insulating layer on a semiconductor substrate, a step of forming an opening in a predetermined portion of the dielectric insulating layer, a step of epitaxially growing a Si layer selectively in the opening, and a step of forming a dielectric insulating film. A step of depositing a silicide layer on the edge layer and the Si epitaxial growth film, and a step of applying heat treatment to the silicide layer to solid-phase epitaxially grow Si from the silicide layer from a portion in contact with the Si epitaxial growth film. Featured S
iThin film growth method.
JP21553688A 1988-08-29 1988-08-29 Method for growth of si thin film Pending JPH0264098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21553688A JPH0264098A (en) 1988-08-29 1988-08-29 Method for growth of si thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21553688A JPH0264098A (en) 1988-08-29 1988-08-29 Method for growth of si thin film

Publications (1)

Publication Number Publication Date
JPH0264098A true JPH0264098A (en) 1990-03-05

Family

ID=16674055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21553688A Pending JPH0264098A (en) 1988-08-29 1988-08-29 Method for growth of si thin film

Country Status (1)

Country Link
JP (1) JPH0264098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090649A1 (en) * 2004-03-23 2005-09-29 Japan Science And Technology Agency Method of solid-phase flux epitaxy growth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090649A1 (en) * 2004-03-23 2005-09-29 Japan Science And Technology Agency Method of solid-phase flux epitaxy growth
KR100781202B1 (en) * 2004-03-23 2007-11-30 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Method of solid-phase flux epitaxy growth
US7507290B2 (en) 2004-03-23 2009-03-24 Japan Science And Technology Agency Flux assisted solid phase epitaxy

Similar Documents

Publication Publication Date Title
US4477308A (en) Heteroepitaxy of multiconstituent material by means of a _template layer
US6022410A (en) Alkaline-earth metal silicides on silicon
EP0962963A1 (en) Silicon carbide substrate, process for producing the same, and semiconductor element containing silicon carbide substrate
TW200818274A (en) Methods of forming carbon-containing silicon epitaxial layers
TW200947522A (en) Semiconductor substrate, method for manufacturing the same and electronic device
US4554045A (en) Method for producing metal silicide-silicon heterostructures
KR100611108B1 (en) Method of manufacturing a thin film layer
JP2002299267A (en) Manufacturing method for semiconductor wafer
Yang et al. Role of As 4 in Ga diffusion on the GaAs (001)-(2× 4) surface: A molecular beam epitaxy-scanning tunneling microscopy study
JPH06232058A (en) Preparation of epitaxial semiconductor structure
JPH0264098A (en) Method for growth of si thin film
JPH04233219A (en) Manufacture of products comprising semiconductor devices
JPS5840820A (en) Formation of silicon single crystal film
US7157111B2 (en) MOCVD selective deposition of C-axis oriented PB5GE3O11 thin films on In2O3 oxides
Zeindl et al. Influence of substrate misorientation and temperature on MBE-grown Si
JPH0476217B2 (en)
JPS5945996A (en) Vapor growth of semiconductor
JPH02130919A (en) Forming method for semiconductor film
JPH08165188A (en) Composite substrate and production of single crystal substrate with the same
JP3954305B2 (en) Semiconductor device and method for manufacturing thin film
JPH02191321A (en) Method of forming crystal
JPS5816335B2 (en) semiconductor equipment
JP5538104B2 (en) Method for producing a single crystal layer on a substrate
JPH1116838A (en) Growth of polycrystalline silicon film and cvd apparatus
JPH03218622A (en) Doping with impurity