JPH0263575A - Spin coater - Google Patents

Spin coater

Info

Publication number
JPH0263575A
JPH0263575A JP21568288A JP21568288A JPH0263575A JP H0263575 A JPH0263575 A JP H0263575A JP 21568288 A JP21568288 A JP 21568288A JP 21568288 A JP21568288 A JP 21568288A JP H0263575 A JPH0263575 A JP H0263575A
Authority
JP
Japan
Prior art keywords
rotation
main shaft
coating
transmission means
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21568288A
Other languages
Japanese (ja)
Other versions
JPH0741194B2 (en
Inventor
Yoshinori Hoshino
由典 星埜
Taro Oyama
大山 太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP21568288A priority Critical patent/JPH0741194B2/en
Publication of JPH0263575A publication Critical patent/JPH0263575A/en
Publication of JPH0741194B2 publication Critical patent/JPH0741194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To allow switching and combining of rotation and revolution and to easily uniformize the thickness of coated films by a revolving member which is fixed to the upper part of a main shaft, many stages of driving power transmission means which transmit the rotation of the main shaft to a jack shaft and the driven shafts fixed with coating containers and driving power intermitting mechanism which is provided on the main shaft. CONSTITUTION:The revolving member (rotary disk) 4 is fixed to the upper part of the main shaft 1 which is rotated by driving of a driving source. The driving power intermitting mechanism 15 is provided on the main shaft 1. The driving power transmission means 5 to 7 which transmit the rotation of the main shaft 1 to the jack shaft 2 and many stages of the driving power transmission means 8 to 10, 11 to 13, 11' to 13' which transmit the rotation of the jack shaft to the driven shafts 3, 3' fixed with the coating containers 14, 14' are successively provided around the main shaft. The driving power is not transmitted to the rotary disk 4 in the upper part of the main shaft by the driving power intermitting mechanism 15 and only the rotation of the driven shafts 3, 3' and the containers 14, 14' is executed right after dropping of paints onto substrates 17, 17' in this constitution. The spin coating by the combination of the revolution and rotation is executed upon lapse of the prescribed time for the purpose of uniformizing the coated film thickness.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は平板状の被塗装基板の表面に塗料を塗装する
場合に使用する回転式塗装装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotary coating device used for coating the surface of a flat substrate to be coated with a paint.

[従来の技術] 電子打釘に関連する産業分野では、半導体基板へのフォ
トレジスト等の粘性流体の塗装方法として回転式塗装方
法が広く普及している。この回転塗装方法は、いわゆる
ニュートニアン粘性流動を呈する粘性流体に適用した場
合には、回転数及び回転時間を設定することにより任意
の厚さの塗装層が被塗装基板全面に亘って均一に得られ
る。特に、この均一性は乾燥後の塗装層表面の平滑性と
も関連することで、更に装置上の工夫により容易に塵あ
い等に原因する塗装層の欠陥の発生を防止できることは
、他の塗装方法に類を見ない特徴である。
[Prior Art] In the industrial field related to electronic nail driving, rotary coating methods are widely used as a method for coating semiconductor substrates with viscous fluids such as photoresists. When applied to a viscous fluid exhibiting so-called Newtonian viscous flow, this rotary coating method can uniformly obtain a coating layer of any thickness over the entire surface of the substrate by setting the rotation speed and rotation time. It will be done. In particular, this uniformity is also related to the smoothness of the surface of the paint layer after drying, and furthermore, it is possible to easily prevent defects in the paint layer caused by dust, etc. by improving the equipment, compared to other painting methods. This is a unique feature.

回転式塗装方法は、電子材料分野を中心として利用、開
発が進められてきたが、最近では、一般塗料分野におい
ても、塗装層の耐食性や物理的性質の評価に際して、均
一かつ無欠陥の塗装層の作製への要望が高まり、その一
つの方法として、回転式塗装方法が利用されはじめた。
The rotary coating method has been used and developed mainly in the electronic materials field, but recently it has also been used in the general paint field to evaluate the corrosion resistance and physical properties of the paint layer. With the increasing demand for the production of such materials, rotary coating methods have begun to be used as one method.

図1は従来の回転式塗装方法及び装置を説明するための
側面図である。すなわち、塗料(101)を被塗装基板
の中心に滴下し、所定の回転数−時間のスケジュールを
もって回転式塗装を行なうことにより回転台(102)
上に均一な塗装層が得られる。
FIG. 1 is a side view illustrating a conventional rotary coating method and apparatus. That is, by dropping the paint (101) onto the center of the substrate to be coated and performing rotary coating with a predetermined rotation speed/time schedule, the rotary table (102)
A uniform coating layer is obtained on top.

また、機構的には回転軸(103)により回転台が回転
しその回転中心と塗装基板の中心はほぼ一致するような
配置が取られる。
Further, mechanically, the rotary table is rotated by a rotary shaft (103), and the rotary table is arranged so that the center of rotation and the center of the coated substrate substantially coincide with each other.

上述の回転式塗装方法及び装置は従来の主流をなすもの
で、回転式塗装方法及び装置の基本とも言えるものであ
るが、塵あいゃ気泡に起因する塗装層の欠陥あるいは被
塗装基板上の凹凸にともなう塗装層の不均一分布の解決
手段として特開昭59−41788号公報及び特開昭6
1−24690号公報に示される自転と公転を組み合わ
せた回転式塗装方法および装置が提案されている。
The above-mentioned rotary coating method and device are the mainstream of conventional methods and can be said to be the basics of rotary coating methods and devices, but defects in the coating layer due to dust or air bubbles or irregularities on the substrate to be coated may occur. As a solution to the non-uniform distribution of the coating layer caused by
A rotary coating method and apparatus that combines rotation and revolution have been proposed in Japanese Patent No. 1-24690.

[発明が解決しようとする問題点] 上記塗装層の形成に際し、従来の回転式塗装方法及び装
置では、ALFRED G、 EMSLIE等の理論(
ALFRED G、 EMSLIE、 FRANCIS
 T、 BONNERAND LESLIEG、 PE
CK : JOURNAL OF APPLIED P
HYSIC3VOL、29858〜862(1958)
参照〕に基づき均一厚さの塗装層が形成されるが、この
理論の適用はニュートニアン粘性流動を呈する塗料に限
られるもので、事実、非ニュートニアン粘性流動を示す
塗料においては、塗装層は回転中心からの距離によって
厚さの異なる分布を呈する。その−例として、チクソト
ロピー粘性流動を呈する塗料を例にとって図2に示す。
[Problems to be Solved by the Invention] When forming the above-mentioned coating layer, conventional rotary coating methods and apparatuses do not meet the theories of ALFRED G, EMSLIE, etc.
ALFRED G, EMSLIE, FRANCIS
T, BONNERAND LESLIEG, P.E.
CK: JOURNAL OF APPLIED P
HYSIC3VOL, 29858-862 (1958)
A coating layer of uniform thickness is formed based on the theory (Reference), but the application of this theory is limited to paints that exhibit Newtonian viscous flow; in fact, for paints that exhibit non-Newtonian viscous flow, the coating layer is The thickness varies depending on the distance from the center of rotation. As an example, a paint exhibiting thixotropic viscous flow is shown in FIG.

上述の非ニュートニアン粘性流動を示す塗料の塗装層厚
さの均−化並びに塵あいゃ気泡に起因する塗装層の欠陥
の防止、更”にまた被塗装基板上の凹凸による塗装層厚
さの不均一性の是正に前記特開昭61−246990号
公報に提案された方法及び装置は有効と考えられるが、
かかる方法及び装置は電子材才ミ[への適用を目的とし
たもので、−般塗斜分野を対象とした均一な塗装層作製
への適用には、対応しえない面を有する。その具体的事
項として、次のような問題点が上げられる。
It is possible to equalize the coating layer thickness of the paint exhibiting non-Newtonian viscous flow as described above, to prevent defects in the coating layer caused by dust and air bubbles, and to reduce the coating layer thickness due to irregularities on the substrate to be coated. Although the method and apparatus proposed in JP-A-61-246990 are considered effective for correcting non-uniformity,
Such methods and devices are intended for application to electronic materials, and cannot be applied to the production of uniform coating layers in the general coating field. Specific issues include the following:

それは、公転と自転を組み合わせた方法においては、自
転の回転数が公転の回転数よりも低いことが必要である
が、(自転の回転数)バ公転の回転数)の比率(以後自
公転比率と呼ぶ)が大きいと自転の遠心力の影習力が大
きく、本発明におけるように非ニュートニアン粘性流動
を示す塗料の塗装を行なった場合には、被塗装基板上に
形成される塗装層の厚さ分布は、自転の遠心力に起因す
る分布を呈することとなる。
In the method of combining revolution and rotation, it is necessary that the rotation speed of rotation is lower than the rotation speed of revolution, but the ratio of (rotation speed of rotation) ) is large, the effect of centrifugal force due to rotation is large, and when coating with a paint that exhibits non-Newtonian viscous flow as in the present invention, the coating layer formed on the substrate to be coated is The thickness distribution exhibits a distribution caused by the centrifugal force of rotation.

このことを避けるためには、自公転比率をおにそ0.1
以下、望ましくはおよそ0.01以下で、かつ塗装時間
内に自転が一回以上行なわれることが望ましいが、従来
装置における駆動機構では、単一の駆動源で自転と公転
を組み合わせた動きを被塗装基板に与えようとした場合
、駆動の伝達を担う歯車あるいはプーリー等の幾何学的
位置関係から自公転比率の微小化には自ずと限界がある
To avoid this, the rotation and revolution ratio should be set to 0.1.
Desirably, the ratio is approximately 0.01 or less, and it is desirable that the rotation be performed at least once during the coating time. However, in the drive mechanism of conventional equipment, a single drive source performs a combination of rotation and revolution. When trying to apply it to a painted substrate, there is a limit to miniaturizing the rotation-revolution ratio due to the geometrical positional relationship of gears, pulleys, etc. that are responsible for transmitting the drive.

また、自公転比率の微小化の実現の方法として公転の駆
動源とは別に自転の駆動源を装着することも考えられる
が、この場合、公転による遠心力が自転の駆動源に加わ
り公転の回転数の上限に制限が生じ、更に自転の駆動源
の故障の原因ともなることが予見される。また、自転と
公転とでそれぞれ別の駆動源を設置した場合には、公転
と自転との同期性にも支障を来たすことも軽視できない
問題点である。
In addition, as a way to minimize the rotation-revolution ratio, it may be possible to install a drive source for rotation separately from the drive source for revolution, but in this case, the centrifugal force due to the revolution will be added to the drive source for rotation, causing rotation of the revolution. It is foreseen that there will be a limit to the number, and that it will also cause a failure of the rotational drive source. Furthermore, if separate drive sources are installed for rotation and revolution, the synchronization between revolution and revolution will be impaired, which is a problem that cannot be ignored.

第二の問題点として上げられるのは、被塗装基板上に滴
下された塗料の基板上での広がりの問題である。公転と
自転を組み合わせた方法では塗料を被塗装基板上で広げ
る駆動力となるのは公転による遠心力であって、その中
心は被塗装基板上にはない。従って、滴下した塗tトは
被塗装基板全面に行きわたることができず無塗装部が生
じる。それを避けるためには過剰の塗料を滴下し回転の
作動前に既に塗料が被塗装基板全面に供給されているこ
とが必要である。しかしながら、この様な対応は塗t[
の歩留りを著しく低下せしめ好ましい方法とは言えない
。しかるに、この被塗装基板上での塗料の広がりを効率
良く行なうためには、自転と公転を組み合わせた方法に
おいても塗斜滴下後の被塗装基板上での塗t[の広がり
過程では遠心力の中心が被塗装基板の中心に位置するこ
とが望ましい。このことは、自転と公転を組み合わせた
方法においても塗装の初期過程に位置する塗t1の広が
り過程で自転の遠心力を主体とした力が塗t[に作用す
るような駆動系を具備する必要があることを特徴として
いる。
The second problem is that the paint dropped onto the substrate to be coated spreads on the substrate. In the method that combines revolution and rotation, the driving force that spreads the paint on the substrate to be coated is the centrifugal force due to the revolution, and its center is not on the substrate to be coated. Therefore, the dropped coating cannot be spread over the entire surface of the substrate to be coated, resulting in uncoated areas. In order to avoid this, it is necessary to drip excess paint and supply the paint to the entire surface of the substrate to be coated before the rotation starts. However, this kind of response is unsuitable.
This is not a preferable method as it significantly reduces the yield. However, in order to efficiently spread the paint on the substrate to be coated, even in a method that combines rotation and revolution, centrifugal force must be applied during the process of spreading the coating on the substrate after the diagonal dripping. It is desirable that the center be located at the center of the substrate to be coated. This means that even in a method that combines rotation and revolution, it is necessary to provide a drive system in which the centrifugal force of the rotation acts on the coating t during the spreading process of the coating t1 located in the initial coating process. It is characterized by having.

この発明は上記の如き事情に鑑みてなされたものであっ
て、一般塗料全般にわたって、特に、非ニュートニアン
粘性流動を示す塗F[にあっても、厚さが均一な塗装層
を容易に得ることができ、回転式塗装装置を提供するこ
とを目的とするものである。
This invention was made in view of the above circumstances, and it is possible to easily obtain a coating layer with a uniform thickness over general paints in general, and especially in coating F which exhibits non-Newtonian viscous flow. The purpose of the present invention is to provide a rotary coating device that can be used.

[問題点を解決するための手段] この目的に対応して、この発明の回転式塗装装置は、動
力源によって回転する主軸(1)と、該主軸(1)に固
定された公転部材(4)と、該主軸(1)の回転を伝達
する動力伝達手段(5)、(6)、(7)と、該動力伝
達手段(5)、(6)、(7)により回転する副軸(2
)と、該副軸(2)の回転を伝達する動力伝達手段(8
)、(9)、(10)と、該動力伝達手段(8)、(9
)、(10)により回転し、上記主軸(1)の回りに回
転自在に配置され、該動力伝達手段(10)と連結され
た動力伝達手段(11)、(11”)と、該動力伝達手
段(11)、(11’ )の回転を伝達する動力伝達手
段(12)、(12’ )(13)、(13’)と、該
動力伝達手段(12)、(12′)、(13)、(13
’)により回転し、上記動力伝達手段(11)、(11
’)に対して対称となるように配置され、上記公転部材
(4)に回転自在に固定された従動軸(3)、(3′)
と該従動軸(3)、(3’ ”)に固定された塗装容器
(14) 、(14’ )と、上記主軸(1)の上記動
力伝達手段(5)、(6)、(7)と上記動力伝達手段
(8)、(9)、(10)との間に動力断続機構(15
)とを設けてなることを特徴とする回転式塗装装置であ
る。
[Means for Solving the Problem] Corresponding to this purpose, the rotary coating device of the present invention has a main shaft (1) rotated by a power source, and a revolving member (4) fixed to the main shaft (1). ), power transmission means (5), (6), (7) for transmitting the rotation of the main shaft (1), and a subshaft () rotated by the power transmission means (5), (6), (7). 2
), and a power transmission means (8) for transmitting the rotation of the subshaft (2).
), (9), (10) and the power transmission means (8), (9
), (10), are rotatably arranged around the main shaft (1), and are connected to the power transmission means (10); power transmission means (12), (12'), (13), (13') for transmitting the rotation of the means (11), (11'); ), (13
'), and the power transmission means (11), (11
Driven shafts (3), (3') arranged symmetrically with respect to the revolving member (4) and rotatably fixed to the revolving member (4)
and the coating containers (14), (14') fixed to the driven shafts (3), (3'''), and the power transmission means (5), (6), (7) of the main shaft (1). A power intermittent mechanism (15) is provided between the power transmitting means (8), (9), and (10).
) is a rotary coating device.

上記手段によって、非ニュートニアン粘性流動を示す塗
料を被塗装基板に塗装し、得られた塗装層の厚さ分布を
従来の自転のみを作用力とする回転式塗装方法によって
得た塗装層の場合と比較して第3図に示した。この結果
から、この発明の回転式塗装装置を使用することにより
非ニュートニアン粘性流動を示す塗料を含む一般塗料の
均一な塗装層が得られることが明白である。
In the case of a coating layer obtained by applying a coating material exhibiting non-Newtonian viscous flow to a substrate to be coated by the above method, and using the conventional rotary coating method using rotation as the only acting force, the thickness distribution of the obtained coating layer is changed. A comparison is shown in Figure 3. From this result, it is clear that by using the rotary coating apparatus of the present invention, a uniform coating layer of general paints including paints exhibiting non-Newtonian viscous flow can be obtained.

[実施例] この発明の一実施例を第4図に示す縦断面図を用いて説
明する。
[Example] An example of the present invention will be described using a longitudinal cross-sectional view shown in FIG.

第4図において、1は主軸、2は副軸、3.3は従動軸
、4は公転部材、5.7.8.13.13′は各軸に固
定されたタイミングプーリー 10.11.11’は主
軸の回りに回転自在に配置され、かつ互いに連結したタ
イミングプーリー 6.9.12.12’はタイミング
ベルト、14.1/1’は塗装容器、15は動力断続機
構、16.16′は塗装容器の蓋、17.17′は被塗
装基板、18.19.20.21.21′はベアリング
軸受、22は国体の一部である。
In Fig. 4, 1 is the main shaft, 2 is the sub-shaft, 3.3 is the driven shaft, 4 is the revolving member, and 5.7.8.13.13' is the timing pulley fixed to each shaft. ' is a timing pulley arranged rotatably around the main shaft and connected to each other; 6.9.12.12' is a timing belt; 14.1/1' is a coating container; 15 is a power intermittent mechanism; 16.16' 17, 17' is the coating container lid, 18, 19, 20, 21, and 21' are the bearings, and 22 is a part of the national body.

かかる構成からなる回転式塗装装置において、タイミン
グプーリー(5)は主軸(1)に固定され、タイミング
プーリー(7)、(8)は互いに副軸(2)の両端に連
結固定され、副軸(2)はスリーブを通り、かつベアリ
ング軸受に保持されている。タイミングプーリー(10
)、(11)、(11”)は互いに連結され、主軸(1
)にベアリング軸受を経て保持されている。
In the rotary coating apparatus having such a configuration, the timing pulley (5) is fixed to the main shaft (1), the timing pulleys (7) and (8) are connected and fixed to both ends of the subshaft (2), and the timing pulley (5) is fixed to the main shaft (1). 2) passes through the sleeve and is held in the bearing bearing. Timing pulley (10
), (11), (11”) are connected to each other, and the main shaft (1
) is held through a bearing.

タイミングプーリー(13)、(13’ )は従動軸(
3)、(3′)の下端に固定されている。従動軸(3)
と従動軸(3′)は主軸(1)の上端に固定された回転
部材(4)に主軸(1)に関し対称の位置にそれぞれベ
アリング軸受を経て保持されている。
The timing pulleys (13) and (13') are connected to the driven shaft (
3), fixed to the lower end of (3'). Driven shaft (3)
The driven shaft (3') and the driven shaft (3') are held by a rotating member (4) fixed to the upper end of the main shaft (1) at symmetrical positions with respect to the main shaft (1) through bearings, respectively.

動力伝達を担うタイミングベルトはタイミングプーリー
(5)とタイミングプーリー(7)の間、タイミングプ
ーリー(8)とタイミングプーリー(10)の間、タイ
ミングプーリー(11)とタイミングプーリー(13)
の間、タイミングプーリー(11’)とタイミングプー
リー(13’)の間にそれぞれ掛けられている。
The timing belt responsible for power transmission is located between timing pulley (5) and timing pulley (7), between timing pulley (8) and timing pulley (10), and between timing pulley (11) and timing pulley (13).
between the timing pulley (11') and the timing pulley (13').

上記構成の駆動機構を有する回転式塗装装置によれば、
モーター等の班力源の駆動により主軸(1)が回転し、
その回転は主軸(1)に固定されたタイミングプーリー
(5)からタイミングベルト(6)にJ:リタイミング
プーリー(7)に伝わり、更に、タイミングプーリー(
8)を経てタイミングベルト(9)によってタイミング
プーリー(10)に回転が伝達される。タイミングプー
リー(10)の回転はこれに連結されたタイミングプー
リー(ll)、(11′)を経て、タイミングベルト(
12)、(12”)によってそれぞれタイミングプーリ
ー(13)、(13’ )に伝達される。
According to the rotary coating device having the drive mechanism configured as described above,
The main shaft (1) is rotated by the drive of a power source such as a motor,
The rotation is transmitted from the timing pulley (5) fixed to the main shaft (1) to the timing belt (6) to the retiming pulley (7), and then to the timing pulley (7).
The rotation is transmitted to the timing pulley (10) by the timing belt (9) via the timing belt (9). The rotation of the timing pulley (10) passes through the timing pulleys (ll) and (11') connected to it, and then the timing belt (
12) and (12'') to the timing pulleys (13) and (13'), respectively.

このタイミングプーリー(13)、(13′)の回転は
従動軸(3)=(3’ )に伝わり、更に、従動軸(3
)、(3’ )の上部に固定された塗装容器(14)、
(14”)の自転が行なわれる。そして該塗装容器(1
4)、(14’ )内に装着された被塗装基板上に塗料
が必要量滴下され、上述の駆動機構に基づき公転及び自
転の組み合わされた回転式塗装が行なわれる。
The rotation of the timing pulleys (13) and (13') is transmitted to the driven shaft (3) = (3'), and further, the driven shaft (3) is transmitted to the driven shaft (3) = (3').
), a paint container (14) fixed to the top of (3'),
(14”) is rotated on its axis.Then, the coating container (14”) is rotated on its axis.
4) The necessary amount of paint is dropped onto the substrate to be painted mounted in (14'), and the rotary painting is performed by combining revolution and rotation based on the above-mentioned drive mechanism.

上述・の一連の回転駆動伝達において、タイミングプー
リ−(5)の歯数をa、タイミングプーリー(7)の歯
数をb、タイミングプーリー(8)の歯数をC、タイミ
ングプーリー(10)のfir数をd、タイミングプー
リー(11)、(11’ ”)の歯数をe、タイミング
プーリー(13)、(13’ )の歯数を[とすると、
自公転比率(R)(自転の回転数[従動軸(3)、(3
= )の回転数]/公転の回転数[主軸(1)の回転数
])は次式よって与えられる。
In the series of rotational drive transmission described above, the number of teeth on the timing pulley (5) is a, the number of teeth on the timing pulley (7) is b, the number of teeth on the timing pulley (8) is C, and the number of teeth on the timing pulley (10) is If the number of firs is d, the number of teeth of timing pulleys (11) and (11''') is e, and the number of teeth of timing pulleys (13) and (13') is [,
Rotation ratio (R) (rotation speed [driven shaft (3), (3
= ) rotation speed]/revolution rotation speed [rotation speed of main shaft (1)]) is given by the following formula.

R= (ac/bd−1)d/f ただし、Rhoのとき、自転の回転方向は公転の回転方
向と同じ、Rhoのとき、自転の回転方向は公転の回転
方向と逆、R=Oのとき、公転のみとなる。
R= (ac/bd-1)d/f However, when Rho, the direction of rotation is the same as the direction of revolution, when Rho, the direction of rotation is opposite to the direction of revolution, and R=O. When, it only revolves.

従って、軸の直径、軸間距離等の幾何学的条件を考慮し
てa −fの5変数を設定してタイミングプーリーの歯
数とすることによりR値を任意の値にすることができる
。このことにより、前述の自公転比率が0.1以下で、
かつ塗装時間内に自転が一回以上行なわれると言う要件
を満たすことができ、非ニュートニアン粘性流動を示す
塗料における均一で無欠陥の塗装層の形成を実現できる
Therefore, the R value can be set to an arbitrary value by setting the five variables a - f to determine the number of teeth of the timing pulley in consideration of geometrical conditions such as the diameter of the shaft and the distance between the shafts. As a result, the above-mentioned rotation-revolution ratio is 0.1 or less,
Moreover, it is possible to satisfy the requirement that rotation is performed at least once during the coating time, and it is possible to form a uniform and defect-free coating layer in a coating material exhibiting non-Newtonian viscous flow.

この発明の回転式塗装装置は、単一の動力源によって、
自公転比率を任意に選択できることを特徴とするもので
1、単一の動力源で上述のような回転運動をさせること
は、従来の技術では到底成し得ないことである。更に、
単一の動力源によることの特徴は、公転と自転の同期性
に優れていることである。
The rotary coating device of this invention uses a single power source to
It is characterized by the ability to arbitrarily select the rotation-revolution ratio. 1. It is impossible to achieve the above-mentioned rotational movement with a single power source using conventional technology. Furthermore,
The unique feature of having a single power source is that it has excellent synchronization between revolution and rotation.

この発明の回転式塗装方法では、被塗装基板」二に滴下
された塗料が効率よく被塗装基板全面にゆきわたるため
に第4図に示す動力断続機構(15)が設置されている
。この動力断続機構(15)の作動により以下のような
塗装スケジュールが実施される。
In the rotary coating method of the present invention, a power intermittent mechanism (15) shown in FIG. 4 is installed in order to efficiently spread the paint dropped onto the substrate to be coated over the entire surface of the substrate to be coated. The following painting schedule is implemented by the operation of this power intermittent mechanism (15).

すなわち、被塗装基板上に塗料が滴下された直後は動力
断続機構(15)によって動力源の駆動力は主軸上部に
取り付けられた回転ディスク(4)には伝達されず、従
動軸(2)及び(2′)のみの回転に使われる。従って
、被塗装基板の保持された回転容器(14) −(14
’ )は自転のみを行なう。この塗tトの滴下直後の自
転過程を数秒以内に設定し、以後は塗膜厚均一化のため
の公転と自転をtltみ合わせた方法で回転式塗装を行
なう。
That is, immediately after the paint is dripped onto the substrate to be painted, the driving force of the power source is not transmitted to the rotating disk (4) attached to the upper part of the main shaft due to the power intermittent mechanism (15), and the driving force is not transmitted to the driven shaft (2) and the driven shaft (2). It is used to rotate only (2'). Therefore, the rotating container holding the substrate to be coated (14) - (14
' ) performs only rotation. Immediately after the coating is dropped, the rotation process is set within several seconds, and thereafter, rotational coating is performed by combining revolution and rotation in order to make the coating thickness uniform.

上記の塗装スケジュールにおける自転過程では、被塗装
基板の中心部に滴下された塗料は回転の中心が同じく被
塗装基板の中心にあるために周囲に万辺なく広がり、比
較的少量の滴下でも無塗装の発生を防ぐことができる。
During the rotation process in the above painting schedule, the paint dropped at the center of the substrate to be painted spreads all over the surrounding area because the center of rotation is also at the center of the substrate to be painted, and even if a relatively small amount of paint is dropped, no paint will be applied. can be prevented from occurring.

また、自転と公転を組合ねた方法では、二つ以上の被塗
装基板を同時に塗装する場合には、塗装時に発生する塗
料の飛沫が被塗装基板の塗装面に何首する恐れがあるが
、この発明の実施例の様に被塗装基板を蓋付きの回転容
器内に装着することによりこの障害を避けることが゛で
きる。
In addition, when using a method that combines rotation and revolution, when painting two or more substrates at the same time, there is a risk that the paint splashes generated during coating will fall onto the painted surface of the substrates. This problem can be avoided by mounting the substrate to be coated in a rotating container with a lid, as in the embodiment of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回転式塗装装置の基本構成を示す側面図
、第2図は従来の回転式塗装方法によって得られた、非
ニュートニアン粘性流動を示す塗t[の塗膜厚分布の一
例を示すグラフ、第3図は非ニュートニアン粘性流動を
示す塗F)において、この発明の回転式塗装装置を適用
して得られた塗膜厚分布を従来の回転式塗装装置の場合
と比較したグラフ、第4図はこの発明の一実施例に係わ
る回転式塗装装置の縦断面である。 1o1:塗料  102:回転台  103:回転軸 
 104:被塗装基板  105:モーター106:塗
装層の厚さ  107:距離108:回転の中心  1
09:従来の回転式塗装装置による塗装層の厚さ分布 
 110:この発明の回転式塗装装置による塗装層の厚
さ分布時、許出願人 東洋インキ製造株式会社 第1図 第2図
Figure 1 is a side view showing the basic configuration of a conventional rotary coating device, and Figure 2 is an example of the coating thickness distribution of coating t[, which exhibits non-Newtonian viscous flow, obtained by the conventional rotary coating method. Figure 3 is a graph showing the coating film thickness distribution obtained by applying the rotary coating device of the present invention for coating F) showing non-Newtonian viscous flow, compared with that obtained using a conventional rotary coating device. The graph and FIG. 4 are longitudinal sections of a rotary coating apparatus according to an embodiment of the present invention. 1o1: Paint 102: Rotating table 103: Rotating shaft
104: Substrate to be painted 105: Motor 106: Thickness of coating layer 107: Distance 108: Center of rotation 1
09: Thickness distribution of coating layer by conventional rotary coating equipment
110: When the thickness distribution of the coating layer by the rotary coating device of this invention, Applicant Toyo Ink Mfg. Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 動力源によつて回転する主軸(1)と、該主軸(1)に
固定された公転部材(4)と、該主軸(1)の回転を伝
達する動力伝達手段(5)、(6)、(7)と、該動力
伝達手段(5)、(6)、(7)により回転する副軸(
2)と、該副軸(2)の回転を伝達する動力伝達手段(
8)、(9)、(10)と、該動力伝達手段(8)、(
9)、(10)により回転し、上記主軸(1)の回りに
回転自在に配置され、該動力伝達手段(10)と連結さ
れた動力伝達手段(11)、(11′)と、該動力伝達
手段(11)、(11′)の回転を伝達する動力伝達手
段(12)、(12′)、(13)、(13′)と、該
動力伝達手段(12)、(12′)、(13)、(13
′)により回転し、上記動力伝達手段(11)、(11
′)に対して対称となるように配置され、上記公転部材
(4)に回転自在に固定された従動軸(3)、(3′)
と該従動軸(3)、(3′)に固定された塗装容器(1
4)、(14′)と、上記主軸(1)の上記動力伝達手
段(5)、(6)、(7)と上記動力伝達手段(8)、
(9)、(10)との間に動力断続機構(15)とを設
けてなることを特徴とする回転式塗装装置。
A main shaft (1) rotated by a power source, a revolving member (4) fixed to the main shaft (1), and power transmission means (5), (6) for transmitting the rotation of the main shaft (1), (7) and a subshaft (
2), and a power transmission means (
8), (9), (10) and the power transmission means (8), (
9) and (10), power transmission means (11) and (11') rotatably arranged around the main shaft (1) and connected to the power transmission means (10); power transmission means (12), (12'), (13), (13') for transmitting the rotation of the transmission means (11), (11'); (13), (13
'), and the power transmission means (11), (11
Driven shafts (3), (3') arranged symmetrically with respect to the revolving member (4) and rotatably fixed to the above-mentioned revolving member (4).
and the coating container (1) fixed to the driven shafts (3), (3').
4), (14'), the power transmission means (5), (6), (7) of the main shaft (1), and the power transmission means (8),
A rotary coating device characterized in that a power intermittent mechanism (15) is provided between (9) and (10).
JP21568288A 1988-08-30 1988-08-30 Rotary coating equipment Expired - Lifetime JPH0741194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21568288A JPH0741194B2 (en) 1988-08-30 1988-08-30 Rotary coating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21568288A JPH0741194B2 (en) 1988-08-30 1988-08-30 Rotary coating equipment

Publications (2)

Publication Number Publication Date
JPH0263575A true JPH0263575A (en) 1990-03-02
JPH0741194B2 JPH0741194B2 (en) 1995-05-10

Family

ID=16676415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21568288A Expired - Lifetime JPH0741194B2 (en) 1988-08-30 1988-08-30 Rotary coating equipment

Country Status (1)

Country Link
JP (1) JPH0741194B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456808U (en) * 1990-09-25 1992-05-15
JPH07176457A (en) * 1993-12-13 1995-07-14 Nec Corp Method and apparatus for coating semiconductor substrate with chemicals
JP2011212576A (en) * 2010-03-31 2011-10-27 Toyota Motor Corp Method and apparatus for producing electrode catalyst to be used in rotating disk electrode system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456808U (en) * 1990-09-25 1992-05-15
JPH07176457A (en) * 1993-12-13 1995-07-14 Nec Corp Method and apparatus for coating semiconductor substrate with chemicals
JP2011212576A (en) * 2010-03-31 2011-10-27 Toyota Motor Corp Method and apparatus for producing electrode catalyst to be used in rotating disk electrode system

Also Published As

Publication number Publication date
JPH0741194B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
JPS6354725A (en) Method and apparatus for spin coating
CN206168698U (en) Coating device
TW200916203A (en) Cream applying device and method
JPH07273020A (en) Device and method for forming liquid-like film
JPH0263575A (en) Spin coater
US6048400A (en) Substrate processing apparatus
CN107894680B (en) Alignment film coating method and device
JPH01218663A (en) Rotary-type paining apparatus
US20230149971A1 (en) Gravure Coater Test Apparatus and Gravure Coater
JPS6095546A (en) Continuous coating method of drum
JPH01159080A (en) Rotary coating device
JP2707652B2 (en) Thin film coating equipment
JPH05115828A (en) Coating device
JPS6074624A (en) Formation of resist film
KR930002842B1 (en) Coating method and apparatus
JPH0614811Y2 (en) Coating equipment for cylindrical electronic components
JP2883388B2 (en) Roller coating material coating device
JP3358665B2 (en) Resin compound coating apparatus and method for producing resin composition using the apparatus
JPH08332436A (en) Production of sheet coated body and production apparatus therefor
KR960004240Y1 (en) Apparatus for lessening air resistance of spin coating equipments of wafer
JPH0324774B2 (en)
JPH0444215A (en) Manufacture of semiconductor device
JPS62195121A (en) Spin coater
JPS6388824A (en) Applicator for resist
JPH03203721A (en) Production of liquid crystal display panel