JPH0263206B2 - - Google Patents

Info

Publication number
JPH0263206B2
JPH0263206B2 JP58110726A JP11072683A JPH0263206B2 JP H0263206 B2 JPH0263206 B2 JP H0263206B2 JP 58110726 A JP58110726 A JP 58110726A JP 11072683 A JP11072683 A JP 11072683A JP H0263206 B2 JPH0263206 B2 JP H0263206B2
Authority
JP
Japan
Prior art keywords
observation optical
optical system
surgical
surgical microscope
position information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58110726A
Other languages
Japanese (ja)
Other versions
JPS602913A (en
Inventor
Nobuaki Kitajima
Shinichi Nishimura
Susumu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
Original Assignee
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Optical Co Ltd filed Critical Tokyo Optical Co Ltd
Priority to JP58110726A priority Critical patent/JPS602913A/en
Priority to US06/621,505 priority patent/US4609814A/en
Publication of JPS602913A publication Critical patent/JPS602913A/en
Publication of JPH0263206B2 publication Critical patent/JPH0263206B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0012Surgical microscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • B23Q15/24Control or regulation of position of tool or workpiece of linear position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/20Surgical microscopes characterised by non-optical aspects

Description

【発明の詳細な説明】 本発明は、被手術部と観察光学系との相対的な
位置ズレや合焦関係のズレを自動的に補正する手
術用顕微鏡とその制御システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surgical microscope and its control system that automatically corrects relative positional deviations and focus-related deviations between a surgical site and an observation optical system.

眼科や耳鼻咽喉科では、その対象器管が極めて
微細な生体組織であるため、その手術には古くか
ら手術用顕微鏡が利用されている。従来、例えば
眼科手術においては術中、患者にはその眼の回り
のみの局部麻酔がなされるのが普通であり、その
ために術中に患者が動いたり、あるいは手術用顕
微鏡のアーム類の微動などにより、被手術部が観
察光学系部の視野からはずれたり、合焦状態が維
持されなくなる等の問題があつた。このため従来
の手術用顕微鏡では、その観察光学系部を観察光
軸と略垂直な面内でX−Y方向に自由に移動でき
る微動支持装置が開発されていた。この微動支持
装置は、合焦機構の駆動と同様に、フツトスイツ
チによりその操作をコントロール出来るようにな
つている。
BACKGROUND ART In ophthalmology and otorhinolaryngology, surgical microscopes have been used for a long time in surgeries because the target organs are extremely minute living tissue. Conventionally, for example, in ophthalmological surgery, it was common for patients to be given local anesthesia only around their eyes, and as a result, the patient may move during the surgery, or the arms of the surgical microscope may move slightly. There have been problems such as the surgical site being removed from the field of view of the observation optical system and the in-focus state not being maintained. For this reason, in conventional surgical microscopes, a fine movement support device has been developed that allows the observation optical system to be moved freely in the X-Y directions within a plane substantially perpendicular to the observation optical axis. The operation of this fine movement support device can be controlled by a foot switch in the same way as driving the focusing mechanism.

しかしながら、近年の直接・関接に使用する手
術機械器具類の発達及び術式の高度化にともな
い、術者が手術中に操作しなければならないフツ
トスイツチ類は10〜20種にもおよび、その配置を
記憶するのも困難な状態で、ミス操作を起こす恐
れが出ている。
However, in recent years, with the development of surgical instruments used directly and jointly, and the sophistication of surgical techniques, there are now 10 to 20 types of foot switches that the surgeon must operate during surgery, and their arrangement. It is difficult to memorize the information, and there is a risk of making mistakes.

本発明は係る従来の手術用顕微鏡の欠点を解消
するためになされたもので、その第1の目的は、
患者の動き等により観察光学系部の合焦状態が維
持されなくなつた時に、それを自動的に補正でき
る新規の手術用顕微鏡を提供することにある。
The present invention was made in order to eliminate the drawbacks of the conventional surgical microscope, and its first purpose is to
To provide a new surgical microscope capable of automatically correcting the in-focus state of an observation optical system when it is no longer maintained due to movement of a patient or the like.

本発明の第2の目的は、手術用顕微鏡と手術用
ベツドからなる手術装置群において上述した従来
の欠点を解消しうる新規の手術用顕微鏡の合焦制
御システムを提供することにある。
A second object of the present invention is to provide a novel focusing control system for a surgical microscope that can overcome the above-mentioned conventional drawbacks in a group of surgical instruments consisting of a surgical microscope and a surgical bed.

以上の目的を達成するための本願発明の手術用
顕微鏡の構成上の特徴は被手術部近傍と観察光学
系部側のいずれか一方に配置された指標手段と、
該指標手段配置側とは別側の該被手術部近傍と該
観察光学系部側のいずれか一方に設置され前記指
標手段の像を受像してその受像位置情報を出力す
る検出手段と、前記観察光学系部の合焦手段と前
記観察光学系部の初期合焦状態における前記検出
手段からの初期受像位置情報を記憶する記憶手段
と、 前記観察光学系部が該初期合焦状態からはずれ
た状態の前記検出手段からの受像位置情報と前記
初期受像位置情報とから合焦補正量を演算する演
算手段とを有し、該演算手段の演算結果をもと
に、前記合焦手段を作動させ、前記観察光学系部
の非合焦状態を補正することにある。
The structural features of the surgical microscope of the present invention to achieve the above object include an index means disposed either near the surgical site or on the observation optical system side;
a detection means installed either near the surgical site or on the observation optical system side on a side different from the index means arrangement side, and receives an image of the index means and outputs image reception position information; a focusing means of an observation optical system section and a storage means for storing initial image receiving position information from the detection means in an initial focus state of the observation optical system section; and a calculation means for calculating a focusing correction amount from the image receiving position information from the state detection means and the initial image receiving position information, and actuating the focusing means based on the calculation result of the calculation means. The object of the present invention is to correct an out-of-focus state of the observation optical system section.

また、その手術用顕微鏡の合焦制御システムの
構成上の特徴は、被手術部を少なくとも観察する
観察光学系部を有する手術用顕微鏡と、該被手術
部を該観察光学系部の観察光軸と平行な方向に移
動するための移動手段を有する該被手術部の支持
手段と、前記被手術部近傍と、前記観察光学系部
側のいずれか一方に配置された指標手段と、前記
指標手段配置側とは別側の前記被手術部近傍と前
記観察光学系部側のいずれか一方に設置され前記
指標手段の像を受像してその受像位置情報を出力
する検出手段と、前記観察光学系部の初期合焦状
態における前記検出手段からの初期受像位置情報
を記憶する記憶手段と、前記観察光学系部が該初
期合焦状態からはずれたときの前記検出手段から
の受像位置情報と前記初期受像位置情報から合焦
補正量を演算する演算手段とを有し、該演算手段
の演算結果により、前記移動手段を作動させ、前
記観察光学系部の非合焦状態を補正することにあ
る。
In addition, the structural features of the focusing control system of the surgical microscope include a surgical microscope having an observation optical system section for observing at least the surgical site, and an observation optical axis of the observation optical system section that observes the surgical site. a support means for the surgical site having a moving means for moving in a direction parallel to the surgical site; an index means disposed near the surgical site or on the observation optical system side; and an index means for the surgical site. a detection means that is installed near the surgical site on a side other than the placement side or on the observation optical system side, and receives an image of the index means and outputs image reception position information; and the observation optical system. storage means for storing initial image receiving position information from the detecting means in an initial focused state of the observation optical system; and image receiving position information from the detecting means when the observation optical system section is out of the initial focused state; and a calculation means for calculating a focus correction amount from the image receiving position information, and according to the calculation result of the calculation means, the moving means is operated to correct the out-of-focus state of the observation optical system section.

本発明によれば、患者の動きやアーム類の移動
により観察光学系部の視野と被手術部の位置ズレ
や非合焦状態が発生しても、そのズレ量を顕微鏡
側で検出し、観察光学系部が手術ベツド等を自動
的に移動し、そのズレ量を自動的に補正出来る。
従つて、術者は従来のように微動支持装置や合焦
用フツトスイツチ類を頻繁に操作する必要がまつ
たくなくなり、手術に専念出来る理想的な手術顕
微鏡を提供することができる。本発明は、さら
に、従来の手術用顕微鏡を利用して上記手術顕微
鏡と同一の手動制御が可能な制御システムを提供
することができる。
According to the present invention, even if a positional shift or out-of-focus state occurs between the field of view of the observation optical system and the surgical site due to movement of the patient or movement of arms, the amount of shift is detected on the microscope side and the observation is performed. The optical system automatically moves around the surgical bed, etc., and the amount of deviation can be automatically corrected.
Therefore, it is no longer necessary for the operator to frequently operate the fine movement support device and focusing switches as in the past, and it is possible to provide an ideal surgical microscope that allows the operator to concentrate on the surgery. The present invention can further provide a control system that allows the same manual control as the surgical microscope described above using a conventional surgical microscope.

以下本発明の実施例を図をもとに説明する。な
お以下の説明は眼科用の手術用顕微鏡を例に説明
するが、本願発明はこの臨床科にのみ利用できる
ものでなく脳外科用や耳鼻咽喉科用などの他科用
の手術用顕微鏡にも利用出来るものである。
Embodiments of the present invention will be described below with reference to the drawings. The following explanation will be made using an ophthalmological surgical microscope as an example, but the present invention can be used not only in this clinical department, but also in other medical surgical microscopes such as neurosurgery and otorhinolaryngology. It is possible.

手術用顕微鏡の観察光学系部10は、支持アー
ム20により支持されるとともに観察光軸Oと垂
直な平面内X−Y方向に自由に移動できるように
支持アーム20は微動支持装置30に支持されて
いる。この微動支持装置30は、図示しないスタ
ンド部に旋回可能に取付けられた多関節アーム4
0に取付けられ、被手術部OB例えば患者眼を常
時高倍率で観察出来るように被手術部OB上に保
持される。
The observation optical system section 10 of the surgical microscope is supported by a support arm 20, and the support arm 20 is supported by a fine movement support device 30 so that it can move freely in the X-Y direction in a plane perpendicular to the observation optical axis O. ing. This fine movement support device 30 includes a multi-joint arm 4 rotatably attached to a stand (not shown).
0 and is held on the surgical site OB so that the surgical site OB, for example, the patient's eye, can be observed at high magnification at all times.

観察光学系部10は、第2図に示すように、対
物レンズ11と、この対物レンズ11の光軸Oと
平行な双眼の変倍光学系12a,12bと、その
後方に配置された正方プリズム13a,13b、
焦点板14a,14b、及び接眼レンズ15a,
15bからなる双眼の観察光学系16a,16b
を有している。また、観察光学系部10には、第
3図に示すように、双眼観察光学系16a,16
bを含む面と垂直な面内に照明光学系17と検出
光学系18とを有している。照明光学系17は光
源170、絞り171及び投光レンズ172とか
ら構成され、光源170からの光を被手術部OB
に投光し被手術部を照明する。
As shown in FIG. 2, the observation optical system unit 10 includes an objective lens 11, binocular variable magnification optical systems 12a and 12b parallel to the optical axis O of the objective lens 11, and a square prism disposed behind the objective lens 11. 13a, 13b,
Focus plates 14a, 14b, and eyepiece 15a,
Binocular observation optical system 16a, 16b consisting of 15b
have. The observation optical system section 10 also includes binocular observation optical systems 16a and 16, as shown in FIG.
It has an illumination optical system 17 and a detection optical system 18 in a plane perpendicular to the plane including b. The illumination optical system 17 is composed of a light source 170, an aperture 171, and a projection lens 172, and directs the light from the light source 170 to the surgical area OB.
The area to be operated on is illuminated.

一方、検出光学系18は、フイルター180、
結像レンズ181、この結像レンズ181の前側
焦点位置に配置された絞り183及び面積型セン
サアレイ182とから構成されている。このよう
な構成からなる観察光学系部10は、支持アーム
20に内蔵された合焦機構部50と結合されてお
り、観察光学系部10はこの合焦機構部の駆動に
より観察光軸Oにそつて上下動し、被手術部を合
焦することができる。
On the other hand, the detection optical system 18 includes a filter 180,
It is composed of an imaging lens 181, an aperture 183 placed at the front focal position of the imaging lens 181, and an area type sensor array 182. The observation optical system section 10 having such a configuration is coupled to a focusing mechanism section 50 built into the support arm 20, and the observation optical system section 10 is aligned with the observation optical axis O by driving this focusing mechanism section. It can then be moved up and down to focus on the area to be operated on.

さらに、被手術部OB例えば眼の近傍には、視
野の位置ズレ及び合焦制御用の指標となる、2つ
の赤外発光ダイオード101,102が配置され
ている。この赤外発光ダイオード101,102
を2つ配置するのは、後述するように、合焦制御
をするためであり、もし視野の位置ズレ補正のみ
を必要とする場合は指標を1個配置するだけでよ
い。赤外発光ダイオード101,102の患眼近
傍への配置方法は、例えば第4図に示すように、
発光ダイオード101,102を開瞼器103に
取り付け、これを手術時に使用すればよい。
Furthermore, two infrared light-emitting diodes 101 and 102 are arranged near the operated part OB, for example, the eyes, which serve as indicators for positional deviation of the visual field and focus control. These infrared light emitting diodes 101, 102
The reason for arranging two indicators is to perform focus control, as will be described later.If only positional deviation correction of the visual field is required, it is sufficient to arrange only one indicator. For example, as shown in FIG. 4, the infrared light emitting diodes 101 and 102 can be placed near the affected eye.
The light emitting diodes 101 and 102 may be attached to the eyelid opening device 103 and used during surgery.

次に本実施例の制御系をその作用とともに説明
する。術者は、多関節アーム40を旋回すること
により観察光学系部10を被手術部OB上にセツ
トする。続いて、第3図に示すように、初期値セ
ツトスイツチ200をONすると、発振器201
が作動しある一定周期で赤外発光ダイオード10
1,102を交互に点燈させる。赤外発光ダイオ
ード101,102からの光は、対物レンズ11
を通過後、フイルター180によりその発光波長
である赤外域の光のみを透過させ、発光ダイオー
ド101,102の像をレンズ181で面積型セ
ンサアレイ182上に結像する。初期値セツトス
イツチ200のONによりゲート回路202も開
かれるので、センサアレイ182からの検出出力
はゲート回路202を通つてメモリー回路203
に記憶される。このメモリー回路203には、発
光ダイオード101,102の点燈により、まず
発光ダイオード101のセンサアレイ182上へ
の結像位置情報が、次に発光ダイオード102の
センサアレイ182上への結像位置情報がそれぞ
れx−y座標値としてメモリーされる。
Next, the control system of this embodiment will be explained along with its operation. The operator sets the observation optical system section 10 on the surgical site OB by rotating the multi-joint arm 40. Next, as shown in FIG. 3, when the initial value set switch 200 is turned on, the oscillator 201
operates and the infrared light emitting diode 10 is activated at a certain period.
1 and 102 are turned on alternately. The light from the infrared light emitting diodes 101 and 102 passes through the objective lens 11.
After passing through, a filter 180 allows only light in the infrared region, which is the emission wavelength thereof, to pass therethrough, and images of the light emitting diodes 101 and 102 are formed on an area sensor array 182 by a lens 181. Since the gate circuit 202 is also opened when the initial value set switch 200 is turned ON, the detection output from the sensor array 182 is sent to the memory circuit 203 through the gate circuit 202.
is memorized. When the light emitting diodes 101 and 102 are turned on, this memory circuit 203 stores information on the image formation position of the light emitting diode 101 on the sensor array 182, and then information on the image formation position on the sensor array 182 of the light emitting diode 102. are respectively stored as x-y coordinate values.

手術中に患者が動いたりアーム類の移動等で視
野の移動や非合焦状態が発生した場合には、補正
スイツチ204をONする。この補正スイツチ2
04の作動によりゲート回路205が開かれる
(このときゲート回路202は閉じている。)と同
時に発振器201が再び発振され、発光ダイオー
ド101,102は交互に発光する。この発光ダ
イオード101,102のセンサアレイ182上
への投影位置情報は、順次ゲート回路205を通
して演算回路207へ送られる。この演算回路2
07には、補正スイツチ204のON動作と同時
に開かれた呼び出しゲート回路206から、メモ
リー回路203内に記憶されていた初期値データ
が入力される。
If the field of view shifts or becomes out of focus due to movement of the patient or movement of arms during surgery, the correction switch 204 is turned on. This correction switch 2
04 opens the gate circuit 205 (at this time, the gate circuit 202 is closed), and at the same time, the oscillator 201 oscillates again, and the light emitting diodes 101 and 102 alternately emit light. Information on the projection positions of the light emitting diodes 101 and 102 onto the sensor array 182 is sequentially sent to the arithmetic circuit 207 through the gate circuit 205. This calculation circuit 2
07, the initial value data stored in the memory circuit 203 is input from the call gate circuit 206 which is opened at the same time as the ON operation of the correction switch 204.

発光ダイオード101のセンサアレイ上への初
期投影位置座標を(x0,y0)、発光ダイオード1
02の初期投影位置座標を(x0′,y0′)とし、補
正スイツチ204をONしたときのセンサアレイ
182からのそれぞれの検出座標値を(x1,y1),
(x1′,y1′)とすれば、演算回路207は、第5図
に示すように δx≡(x1−x0)β-1 δy≡(y1−y0)β-1 及び δ≡{√(00′)2+(00′)2 −√(11′)2+(11′)2} δz≡f/β2・δ/L ここで f1は対物レンズ11の焦点距離 Lは発光ダイオード101,102の間隔 f2はレンズ181の焦点距離 fは対物レンズ11とレンズ181の合成焦点
距離 β=f2/f1 の演算をし、演算結果δx,δyを微動支持装置3
0に出力し、観察光学系部10の位置ズレを補正
する。また、演算結果δzを合焦機構部50に入力
し、その値に応じてパルスモーター501を駆動
させ観察光学系部10を上下動させ焦点ズレを補
正する。
The initial projection position coordinates of the light emitting diode 101 onto the sensor array are (x 0 , y 0 ), and the light emitting diode 1
Let the initial projected position coordinates of 02 be (x 0 ′, y 0 ′), and the detected coordinate values from the sensor array 182 when the correction switch 204 is turned on are (x 1 , y 1 ),
(x 1 ′, y 1 ′), the arithmetic circuit 207 calculates δ x ≡ (x 1 − x 0 ) β −1 δ y ≡ (y 1 − y 0 ) β as shown in FIG. 1 and δ≡{√( 00 ′) 2 + ( 00 ′) 2 −√ ( 11 ′) 2 + ( 11 ′) 2} δ z ≡f/β 2・δ/L where f 1 is the focal length of the objective lens 11 L is the distance between the light emitting diodes 101 and 102 f 2 is the focal length of the lens 181 f is the combined focal length of the objective lens 11 and the lens 181 Calculate β = f 2 / f 1 , The calculation results δx, δy are sent to the fine movement support device 3.
0 to correct the positional deviation of the observation optical system section 10. Further, the calculation result δz is input to the focusing mechanism section 50, and the pulse motor 501 is driven according to the value to move the observation optical system section 10 up and down to correct the focal shift.

第6図は、本発明の第2の実施例を示すもの
で、検出部を観察光学系部と独立させた例であ
る。術者が合焦機構部50を駆動して観察光学系
部10を上下させ、深度(高さ)の異なる被手術
部OB1,OB2,OB3のいずれかに合焦させたとす
る。検出部300は公知の合焦機構を作動させ指
標101を合焦するように観察光学系部10上を
独立に上下動させて合焦状態を作り、指標101
の位置情報を記憶する。次に、患者の動き等によ
り視野のズレや非合焦状態が発生すると、検出部
300はその状態を検知し、ズレや非合焦が補正
されるまで駆動機構部50と微動支持装置30を
駆動して自動的に補正する。
FIG. 6 shows a second embodiment of the present invention, in which the detection section is made independent of the observation optical system section. Assume that the operator drives the focusing mechanism section 50 to move the observation optical system section 10 up and down to focus on any one of the operated parts OB 1 , OB 2 , and OB 3 having different depths (heights). The detection unit 300 operates a known focusing mechanism to independently move up and down on the observation optical system unit 10 to focus on the index 101 to create a focused state.
Store location information. Next, when a shift in the field of view or an out-of-focus state occurs due to patient movement, etc., the detection unit 300 detects the state and operates the drive mechanism unit 50 and fine movement support device 30 until the shift or out-of-focus state is corrected. Drive and automatically correct.

第7図は、上記第1,第2の実施例の検出部の
他の実施例を示すものである。この実施例では1
個の発光ダイオード101を利用するだけで視野
のズレと非合焦を補正することができる検出装置
を示し、発光ダイオード101からの光は結像レ
ンズ181a、ミラー402aからなる第1光路
と、結像レンズ181b、ミラー402bからな
る第2光路に分けられ、それぞれの光路はモータ
ー401により回転させる回転チヨーパー400
によつて二者択一的に選択され、発光ダイオード
101の像を面積型センサアレイ183上に交互
に結像する。
FIG. 7 shows another embodiment of the detection section of the first and second embodiments. In this example, 1
This shows a detection device that can correct deviations in the field of view and out-of-focus simply by using two light-emitting diodes 101, and the light from the light-emitting diodes 101 passes through a first optical path consisting of an imaging lens 181a and a mirror 402a, and a first optical path consisting of an imaging lens 181a and a mirror 402a. It is divided into a second optical path consisting of an image lens 181b and a mirror 402b, and each optical path is connected to a rotating chopper 400 rotated by a motor 401.
is alternatively selected by , and images of the light emitting diodes 101 are alternately formed on the area type sensor array 183.

第8図は、検出部のさらに他の実施例を示すも
のである。この実施例は、指標側に特殊パターン
投影系をもうけ、このパターンを1次元のリニア
センサアレイで検出して観察光学系部の視野のズ
レと非合焦を検出するものである。検出系は、第
8A図に示すように、投影部601、投影レンズ
602及びリニアセンサアレイ603とから構成
され、第3図や第6図に示したように、この検出
部は観察光学系部10内に内蔵されるか、又は外
部に取り付けられる。
FIG. 8 shows still another embodiment of the detection section. In this embodiment, a special pattern projection system is provided on the index side, and this pattern is detected by a one-dimensional linear sensor array to detect deviations and out-of-focus of the field of view of the observation optical system. As shown in FIG. 8A, the detection system includes a projection section 601, a projection lens 602, and a linear sensor array 603, and as shown in FIGS. 3 and 6, this detection section includes an observation optical system section. 10 or externally attached.

投影部601は光源604と、この光源により
照明される第8B図に示すようなパターンを有す
る投影指標プレート605とから構成されてい
る。指標プレート605のパターンは互いに配置
方向を逆とする楔パターン606,607と、2
本の平行は直線パターン608,609とからな
り、かつ一方の直線パターン609には合焦位置
を変えるためにガラス板610がはり合せてあ
る。
The projection unit 601 includes a light source 604 and a projection index plate 605 illuminated by the light source and having a pattern as shown in FIG. 8B. The patterns of the index plate 605 include wedge patterns 606 and 607 whose arrangement directions are opposite to each other, and two patterns.
The parallel book consists of straight line patterns 608 and 609, and a glass plate 610 is attached to one of the straight line patterns 609 in order to change the focusing position.

第8C図のイは、初期セツト時におけるリニア
センサ603上への指標パターンの投影パターン
を示している。投影パターン606′のリニアセ
ンサ603による検出幅はS1として検出される。
以下同様に投影パターン607′はS2と、60
8′はS3と、609′はS4とにそれぞれ検出され、
かつ投影パターン606′と607′の中心位置は
センサのM1番目の素子とM2番目の素子に位置し
ていると検出されるものとする。
8C shows the projection pattern of the index pattern onto the linear sensor 603 at the time of initial setting. The detection width of the projection pattern 606' by the linear sensor 603 is detected as S1 .
Similarly, the projection pattern 607' is S 2 and 60
8′ is detected in S 3 and 609′ is detected in S 4 , respectively.
It is also assumed that the center positions of the projection patterns 606' and 607' are detected to be located at the M1th element and the M2nd element of the sensor.

次に、観察光学系部が位置ズレをすると、投影
パターン606′,607′はロに示すように、そ
の幅がS1′,S2′にそれぞれ変化する。さらに、そ
れぞれの中心がM1′番目とM2′番目の素子位置に
変化したとすると、この素子位置と幅の変化によ
り位置ズレ量とその方向を検知することができ
る。また、焦点ズレをしたときはハに示すように
投影パターン608′,609′の幅がS3′,S4′に
変化するので、この変化量から焦点ズレ量を検知
することができる。
Next, when the observation optical system section shifts its position, the widths of the projection patterns 606' and 607' change to S 1 ' and S 2 ', respectively, as shown in FIG. Furthermore, if the respective centers change to the M 1 ′-th and M 2 ′-th element positions, the amount of positional deviation and its direction can be detected based on the changes in the element position and width. Furthermore, when a focus shift occurs, the widths of the projection patterns 608' and 609' change to S 3 ' and S 4 ' as shown in C, so the amount of focus shift can be detected from this amount of change.

第9図は本発明のさらに他の実施例を示すもの
で上述の第3図や第6図の実施例がいずれも手術
用顕微鏡の観察光学系部を上下動したり微動支持
装置を駆動することにより非合焦状態や視野の位
置ズレを補正したが、本実施例は手術用ベツドを
上下左右前後方向に移動させることにより、上記
補正するものである。本実施例は、上述の各実施
例と同様の構成からなる検出部705を有する手
術用顕微鏡701と、指標部703と、前後、上
下、左右に電動駆動可能な手術用ベツド704及
び第3図に示した制御回路702から構成されて
いる。そして視野の位置ズレ及び非合焦に関する
情報はそれぞれ制御回路702から手術ベツド7
04に入力され、手術ベツドが移動して視野の位
置ズレ及び非合焦が補正される。
FIG. 9 shows still another embodiment of the present invention, and both of the embodiments shown in FIGS. 3 and 6 described above move the observation optical system section of a surgical microscope up and down or drive a fine movement support device. The out-of-focus state and the positional deviation of the visual field were corrected by this method, but in this embodiment, the above-mentioned corrections are made by moving the surgical bed in the up, down, left, right, front and rear directions. This embodiment includes a surgical microscope 701 having a detecting section 705 having the same configuration as each of the above-described embodiments, an index section 703, a surgical bed 704 that can be electrically driven forward and backward, up and down, and left and right. It is composed of a control circuit 702 shown in FIG. Information regarding positional deviation and defocusing of the visual field is transmitted from the control circuit 702 to the surgical bed 7.
04, and the surgical bed is moved to correct positional deviation and defocus of the visual field.

本発明は以上説明した実施例に限定されるもの
ではなく、例えば検出手段としての面積型センサ
アレイと指標手段としての赤外発光ダイオードの
それぞれの配置を互に逆にして被手術部の近傍に
検出手段を、観察光学系部側に発光ダイオを配置
してもよい。また、上記検出手段としては上述し
た面積型センサアレイやリニアセンサアレイの他
に、公知の光電的位置検出装置を利用してもよ
い。さらに、上記検出手段は、手術の記録用に利
用される撮像管や撮像素子を指標像の検出手段と
して利用してもよい。
The present invention is not limited to the embodiments described above, and for example, the arrangement of the area-type sensor array as the detection means and the infrared light emitting diode as the indicator means may be reversed to place them near the surgical site. As the detection means, a light emitting diode may be arranged on the observation optical system side. In addition to the area type sensor array and linear sensor array described above, a known photoelectric position detection device may be used as the detection means. Further, the detection means may use an image pickup tube or an image sensor used for recording a surgical operation as a means for detecting a target image.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の手術用顕微鏡の観察光学系部
の構成の説明図、第2図及び第3図は本発明の第
1の実施例を示す光学配置図及びブロツクダイヤ
グラム、第4図は指標部の説明図、第5図は指標
投影像の変位を示す模式図、第6図は本発明の第
2の実施例の構成を示す説明図、第7図は本発明
の検出部の第2の実施例の構成を示す説明図、第
8A図ないし第8C図は本発明の検出部の第3の
実施例の検出原理の説明図、第9図は本発明の第
3の実施例の説明図である。 10……観察光学系部、O……観察光軸、12
a,12b……変倍光学系、18……検出光学
系、20……支持アーム、30……微動支持装
置、40……多関節アーム、50……合焦機構
部、101,102……赤外発光ダイオード、1
82……面積型センサアレイ、200……初期値
セツトスイツチ、183……レンズ181の前側
焦点位置におかれた絞り。
FIG. 1 is an explanatory diagram of the configuration of the observation optical system section of the surgical microscope of the present invention, FIGS. 2 and 3 are optical layout diagrams and block diagrams showing the first embodiment of the present invention, and FIG. 5 is a schematic diagram showing the displacement of the index projection image, FIG. 6 is an explanatory diagram showing the configuration of the second embodiment of the present invention, and FIG. 7 is a diagram showing the configuration of the second embodiment of the present invention. 8A to 8C are explanatory diagrams showing the configuration of the second embodiment of the present invention, FIGS. 8A to 8C are explanatory diagrams of the detection principle of the third embodiment of the detection section of the present invention, and FIG. It is an explanatory diagram. 10...Observation optical system section, O...Observation optical axis, 12
a, 12b... variable magnification optical system, 18... detection optical system, 20... support arm, 30... fine movement support device, 40... multi-joint arm, 50... focusing mechanism section, 101, 102... Infrared light emitting diode, 1
82...area type sensor array, 200...initial value set switch, 183...aperture placed at the front focal position of the lens 181.

Claims (1)

【特許請求の範囲】 1 被手術部近傍と観察光学系部側のいずれか一
方に配置された指標手段と、 該指標手段配置側とは別側の該被手術部近傍と
該観察光学系部側のいずれか一方に設置され、前
記指標手段の像を受像してその受像位置情報を出
力する検出手段と、 前記観察光学系部の合焦手段と、前記観察光学
系部の初期合焦状態における前記検出手段からの
初期受像位置情報を記憶する記憶手段と、 前記観察光学系部が該初期合焦状態からはずれ
た状態の前記検出手段からの受像位置情報と、前
記初期受像位置情報とから合焦補正量を演算する
演算手段とを有し、 該演算手段の演算結果により前記合焦手段を作
動させて前記観察光学系部の非合焦状態を補正す
ることを特徴とする手術用顕微鏡。 2 前記指標手段は被手術部近傍に配置され、前
記検出手段が観察光学系部側に設置されたことを
特徴とする特許請求の範囲第1項記載の手術用顕
微鏡。 3 前記指標手段は少なくとも2つの発光指標で
あり、前記検出手段は少なくとも1つの面積型光
センサアレイから成り、該発光指標からの光の受
光位置を平面座標値に関連した出力信号として出
力できることを特徴とする特許請求の範囲第1項
または第2項記載の手術用顕微鏡。 4 前記発光指標は開瞼器に取付けられた赤外発
光ダイオードであることを特徴とする特許請求の
範囲第3項記載の手術用顕微鏡。 5 前記合焦手段は観察光学系部をその観察光軸
にそつて前後動させる駆動機構部から構成された
ことを特徴とする特許請求の範囲第1項ないし第
4項いずれかに記載の手術用顕微鏡。 6 被手術部を少なくとも観察する観察光学系部
を有する手術用顕微鏡と、 該被手術部を該観察光学系部の観察光軸と平行
な方向に移動するための移動手段を有する該被手
術部の支持手段と、 前記被手術部近傍と前記観察光学系部側のいず
れか一方に配置された指標手段と、 前記指標手段配置側とは別個の前記被手術部近
傍と前記観察光学系部側のいずれか一方に設置さ
れ、前記指標手段の像を受像してその受像位置情
報を出力する検出手段と、 前記観察光学系部の初期合焦状態における前記
検出手段からの初期受像位置情報を記憶する記憶
手段と、 前記観察光学系部が該初期合焦状態からはずれ
たときの前記検出手段からの受像位置情報と前記
初期受像位置情報から合焦補正量を演算する演算
手段とを有し、 該演算手段の演算結果により前記移動手段を作
動させて前記観察光学系部の非合焦状態を補正す
ることを特徴とする手術用顕微鏡の合焦制御シス
テム。 7 前記指標手段は被手術部近傍に配置され、か
つ前記検出手段が観察光学系部側に配置されたこ
とを特徴とする特許請求の範囲第6項記載の手術
用顕微鏡の合焦制御システム。 8 前記指標手段は少なくとも2つの発光指標で
あり、検出手段は少なくとも1つの面積型光セン
サアレイから成り、該発光指標からの光の受光位
置を平面座標値に関連した出力信号として出力で
きることを特徴とする特許請求の範囲第6項また
は第7項記載の手術用顕微鏡の合焦制御システ
ム。 9 前記発光指標は開瞼器に取付けられた赤外発
光ダイオードであることを特徴とする特許請求の
範囲第8項記載の手術用顕微鏡の合焦制御システ
ム。 10 前記支持手段は被手術部を有する人体を保
持する手術用ベツドであることを特徴とする特許
請求の範囲第6項ないし第9項いずれかに記載の
手術用顕微鏡の合焦制御システム。
[Scope of Claims] 1. An index means arranged either near the surgical site or on the observation optical system side; and near the surgical site and the observation optical system section on a side other than the side where the index means is arranged. a detection means installed on either side of the index means for receiving an image of the index means and outputting image reception position information; a focusing means for the observation optical system section; and an initial focusing state of the observation optical system section. storage means for storing initial image receiving position information from the detecting means; and image receiving position information from the detecting means in a state where the observation optical system section is out of the initial focused state, and the initial image receiving position information. A surgical microscope comprising: a calculation means for calculating a focus correction amount, and the focusing means is operated according to the calculation result of the calculation means to correct an out-of-focus state of the observation optical system section. . 2. The surgical microscope according to claim 1, wherein the index means is disposed near the surgical site, and the detection means is disposed on the observation optical system side. 3. The indicator means is at least two light-emitting indicators, and the detection means is comprised of at least one area-type photosensor array, and is capable of outputting a light receiving position from the light-emitting indicators as an output signal related to a plane coordinate value. A surgical microscope according to claim 1 or 2. 4. The surgical microscope according to claim 3, wherein the luminescent indicator is an infrared light emitting diode attached to an eyelid opening device. 5. The surgery according to any one of claims 1 to 4, wherein the focusing means includes a drive mechanism that moves the observation optical system back and forth along its observation optical axis. microscope. 6. A surgical microscope having an observation optical system section for observing at least the part to be operated on, and the part to be operated on having a moving means for moving the part to be operated on in a direction parallel to the observation optical axis of the observation optical system part. supporting means; an index means disposed either near the surgical site or on the observation optical system side; and an indicator disposed near the surgical site and on the observation optical system side that are separate from the index means arrangement side. a detection means installed on either one of the index means and configured to receive the image of the index means and output the image reception position information; and a detection means for storing the initial image reception position information from the detection means in the initial focusing state of the observation optical system section. and a calculation means for calculating a focus correction amount from the image reception position information from the detection means and the initial image reception position information when the observation optical system section is out of the initial focus state, A focusing control system for a surgical microscope, characterized in that the moving means is actuated based on the calculation result of the calculation means to correct an out-of-focus state of the observation optical system section. 7. The focusing control system for a surgical microscope according to claim 6, wherein the index means is disposed near the surgical site, and the detection means is disposed on the observation optical system side. 8. The indicator means is at least two light-emitting indicators, and the detection means is comprised of at least one area-type photosensor array, and is capable of outputting the light reception position from the light-emitting indicators as an output signal related to a plane coordinate value. A focusing control system for a surgical microscope according to claim 6 or 7. 9. The focusing control system for a surgical microscope according to claim 8, wherein the luminescent indicator is an infrared light emitting diode attached to an eyelid opening device. 10. A focusing control system for a surgical microscope according to any one of claims 6 to 9, wherein the support means is a surgical bed that holds a human body having a surgically operated part.
JP58110726A 1983-06-20 1983-06-20 Microscope for surgical operation and its focusing control system Granted JPS602913A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58110726A JPS602913A (en) 1983-06-20 1983-06-20 Microscope for surgical operation and its focusing control system
US06/621,505 US4609814A (en) 1983-06-20 1984-06-18 Control for operation microscopes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110726A JPS602913A (en) 1983-06-20 1983-06-20 Microscope for surgical operation and its focusing control system

Publications (2)

Publication Number Publication Date
JPS602913A JPS602913A (en) 1985-01-09
JPH0263206B2 true JPH0263206B2 (en) 1990-12-27

Family

ID=14542935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110726A Granted JPS602913A (en) 1983-06-20 1983-06-20 Microscope for surgical operation and its focusing control system

Country Status (1)

Country Link
JP (1) JPS602913A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713455B1 (en) 1993-12-14 1996-02-02 Oreal Device for applying a pasty product, in particular a cosmetic product such as lipstick.
JP4566580B2 (en) * 2004-02-26 2010-10-20 株式会社オプセル measuring device

Also Published As

Publication number Publication date
JPS602913A (en) 1985-01-09

Similar Documents

Publication Publication Date Title
US5162641A (en) System and method for detecting, correcting and measuring depth movement of target tissue in a laser surgical system
JP3709335B2 (en) Ophthalmic equipment
JP3541051B2 (en) Illumination device for operating microscope and operating microscope
EP1736097A1 (en) Ophthalmic apparatus
JPS61172552A (en) Sight automatic following apparatus
EP0765648A2 (en) Ophthalmic surgery apparatus
JP6812724B2 (en) Ophthalmic Surgery System, Ophthalmic Surgery System Control Program, and Ophthalmic Surgical Microscope
JP2000333905A (en) Ophthalmic device
JP2966992B2 (en) Corneal endothelial cell observation and imaging device
JP3028421B2 (en) Surgical microscope
JP4267133B2 (en) Eye refractive power measuring device
JP3939328B2 (en) Surgical microscope
JP2001161638A (en) Microscope for operation
JP2002200043A (en) Ophthalmic instrument and ophthalmic instrument system
JP4633213B2 (en) Surgical microscope
JPH0447802B2 (en)
JPH0263206B2 (en)
JPH07121255B2 (en) Corneal endothelial cell observation and imaging device
JP2580464B2 (en) Corneal endothelial cell imaging system
JP2580500B2 (en) Corneal endothelial cell imaging system
JP3413225B2 (en) Surgical microscope
JP2983236B2 (en) Corneal laser surgery device
JP3675852B2 (en) Ophthalmic surgery equipment
JP2000075213A (en) Microscope for operation
JP3264990B2 (en) Corneal endothelial cell imaging device