JPH0263005A - Polarizing element - Google Patents

Polarizing element

Info

Publication number
JPH0263005A
JPH0263005A JP21538488A JP21538488A JPH0263005A JP H0263005 A JPH0263005 A JP H0263005A JP 21538488 A JP21538488 A JP 21538488A JP 21538488 A JP21538488 A JP 21538488A JP H0263005 A JPH0263005 A JP H0263005A
Authority
JP
Japan
Prior art keywords
birefringent lens
polarizing element
liquid crystal
lens
birefringent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21538488A
Other languages
Japanese (ja)
Inventor
Norihisa Okamoto
岡本 則久
Yoshitaka Ito
嘉高 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP21538488A priority Critical patent/JPH0263005A/en
Publication of JPH0263005A publication Critical patent/JPH0263005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PURPOSE:To obtain a small-sized system of good uniformity by arranging units each consisting of a specific birefringent lens and a rotatory polarization layer provided selectively nearby one focal line of the birefringent lens in the same plane. CONSTITUTION:This polarizing element consists of the birefringent lens array formed by orienting nematic liquid crystal 304 uniaxially in an X direction and sandwiching the liquid crystal between a transparent substrate 301 and a transparent substrate 303 which has a cylindrical concave array 302 and the rotary polarization layer formed by installing 1/2-wavelength layers 105 made of polycarbonate on the transparent support substrate 305 in stripes nearby the focal line on the optical axis of the birefringent lens array in parallel to the lens array. Units each consisting of the birefringent lens and rotatory polarization layer are arranged in the same plane. Consequently, the bright, compact, and inexpensive polarizing element which provides substantially no absorption is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は表示体、光検出器等に有用な光の透過率の高い
偏光素子の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the structure of a polarizing element with high light transmittance useful for displays, photodetectors, etc.

[従来の技術] 従来の偏光素子は例えば、光学的測定(飯田修−他編集
、朝食書店)P414に記載の如く、グラントムソンプ
リズム等複屈折性結晶プリズムを組合わせた物、叉は光
吸収の二色性を利用した延伸配向フィルムが代表的であ
った。
[Prior art] Conventional polarizing elements include, for example, those that combine birefringent crystal prisms such as Glan-Thompson prisms, or those that combine birefringent crystal prisms such as Glan-Thompson prisms, or optical absorption A typical example was a stretched oriented film that utilized the dichroism of .

[発明が解決しようとする課題] ルかし、上記配向フィルムタイプは、本質的に光吸収の
二色性を利用しているために、偏光度の高いものは絶対
透過率が低く、高精細な液晶表示体や、高感度な偏光検
出器に用いる場合、には、1、大出力の光源が必要とな
る、2.偏光素子が発熱により破壊する等の課題を有し
ていた。叉結晶プリズムタイプは受光面の大きさとほぼ
等しいか叉はそれ以上の奥行きを要し、3.配置上扱い
にくい、40組み込んだシステムが重い、5゜価格が高
い等の課題を有していた。
[Problem to be solved by the invention] However, since the above-mentioned oriented film type essentially utilizes dichroism of light absorption, those with a high degree of polarization have low absolute transmittance, making it difficult to achieve high definition. When used in liquid crystal displays or highly sensitive polarization detectors, 1. a high output light source is required; 2. There were problems such as the polarizing element breaking down due to heat generation. 3. The cross-crystal prism type requires a depth that is approximately equal to or greater than the size of the light-receiving surface. It had problems such as being difficult to handle in terms of layout, the system incorporating 40° being heavy, and 5° being expensive.

本発明の目的はかかる課題を解決すべく吸収が本質的に
なく明るく、コンパクトで、安価な偏光素子を提供する
点にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a bright, compact, and inexpensive polarizing element that is essentially free from absorption in order to solve this problem.

[課題を解決するための手段] 本発明の偏光素子は、光学的一軸性材料の表面を、その
光学主軸に垂直な面内に曲率を持たせた複屈折レンズ、
及び該複屈折レンズの一方の焦線近傍に選択的に設けた
旋光層、から成る単位を同一面内に複数配置した事を特
徴とする。
[Means for Solving the Problems] The polarizing element of the present invention comprises a birefringent lens in which the surface of an optically uniaxial material has a curvature in a plane perpendicular to its principal optical axis;
and an optical rotation layer selectively provided near one focal line of the birefringent lens.

一般にランプ等のインコヒーレントな光源からの光は任
意の偏光面からなる自然偏光で、直交する二つの成分(
例えばPx、Py)に等測的に分けることができる。P
x酸成分利用する場合、Pyを吸収により除去するか、
偏光ビームスプリッタ−等によりpyを光路より分離し
てやることが必要であり、このままでは光強度は1/2
以下になってしまう。そこで、本質的に光減少の少ない
偏光素子は、−度光束を複屈折レンズにより分離した後
、一方のみを選択的に位相差を与えて90度旋回し、両
者を再度空間的に合成することで得られる。その際、該
複屈折レンズと旋光層の単位を複数配置することにより
、小型で均一性のよいシステムが得られる。
In general, light from an incoherent light source such as a lamp is naturally polarized light with an arbitrary polarization plane, and has two orthogonal components (
For example, it can be divided isometrically into Px, Py). P
When using x acid component, remove Py by absorption or
It is necessary to separate the py from the optical path using a polarizing beam splitter, etc., and the light intensity will be reduced to 1/2 as it is.
It becomes below. Therefore, a polarizing element with essentially little light attenuation separates the -degree light beam using a birefringent lens, then selectively imparts a phase difference to only one side, rotates it 90 degrees, and spatially combines the two again. It can be obtained with In this case, by arranging a plurality of units of the birefringent lens and the optical rotation layer, a compact system with good uniformity can be obtained.

[作用] 第一図は本発明の詳細な説明する為の原理図である。X
方向に一軸配向させ、その光学主軸に垂直な面内に曲率
を持たせた複屈折レンズ101へY方向に入射した自然
光102は等測的にX、Z方向に偏光した平面波Px(
実線)、Pz(破wA)の集りとみなせる。上記複屈折
レンズ内に於いては、各々に対し異なる屈折率Nx、N
zが存在し、界面103により異なる屈折を受ける。該
複屈折レンズが凸レンズの場合、レンズの外側の媒体が
空気等のレンズ媒体より屈折率の小さなもので、且つN
、x>Nzの場合にはPxの方が大きな屈折を受けるこ
とになる。一般にレンズの像側有効焦点距離:f゛は、
オプトロニクス1983.No。
[Operation] Figure 1 is a principle diagram for explaining the present invention in detail. X
Natural light 102 incident in the Y direction on a birefringent lens 101, which is uniaxially oriented in the direction and has a curvature in a plane perpendicular to its principal optical axis, is isometrically polarized in the X and Z directions as a plane wave Px (
solid line) and Pz (broken wA). In the above-mentioned birefringent lens, different refractive indexes Nx and N
z exists and undergoes different refraction due to the interface 103. When the birefringent lens is a convex lens, the medium outside the lens has a smaller refractive index than the lens medium such as air, and N
, x>Nz, Px will undergo greater refraction. In general, the image-side effective focal length of a lens: f゛ is
Optronics 1983. No.

10、P2Oに記載の如く、例えば空気中に置かれた平
凸レンズの場合次式で与えられる。
10, P2O, for example, in the case of a plano-convex lens placed in air, it is given by the following equation.

f”=r2/(1−n)      (1)(但しr2
は凸面の曲率半径、nはレンズの屈折率を示す。) Pxの焦点Fxの近傍には、1/2波長板よりなる旋光
層105がその光学主軸をX7面内に於てX(叉はZ)
軸より45度傾けて集光スポット径より大きな径で設置
しである。このためPz酸成分1/2波長の位相差を受
けその偏光面は90°の旋回によりPx酸成分変換され
る。一方Pz成分は小量の1/2波長板の層を透過する
成分を除き大半は偏光面の旋回を受けずに透過するため
全体として入射光の大半がPz偏光にその偏光面を揃え
ることが可能となる。レンズ形状がシリンドリカルな場
合、レンズ径2d、旋光層の幅2aとすると、旋光層1
05の後方に於けるPx、P22成分の強度割合QXI
  QZは次式で与えられる。
f”=r2/(1-n) (1) (However, r2
is the radius of curvature of the convex surface, and n is the refractive index of the lens. ) Near the focal point Fx of Px, an optical rotation layer 105 made of a 1/2 wavelength plate has its optical principal axis aligned with X (or Z) in the X7 plane.
It is installed at an angle of 45 degrees from the axis with a diameter larger than the focal spot diameter. Therefore, the Pz acid component receives a phase difference of 1/2 wavelength, and its polarization plane is converted into a Px acid component by rotating by 90 degrees. On the other hand, most of the Pz component, except for a small amount of the component that passes through the 1/2 wavelength plate layer, is transmitted without undergoing rotation of the plane of polarization, so that the majority of the incident light as a whole can align its plane of polarization with Pz polarization. It becomes possible. When the lens shape is cylindrical, if the lens diameter is 2d and the width of the optical rotation layer is 2a, then the optical rotation layer 1
Intensity ratio QXI of Px and P22 components behind 05
QZ is given by the following formula.

Qx=50*  (a/d)       (2)Qz
=50*  (2−a/d)     (3)例えば、
a/d=0.1に於いて、Qzは95%という大きな値
となる。
Qx=50* (a/d) (2) Qz
=50* (2-a/d) (3) For example,
When a/d=0.1, Qz takes a large value of 95%.

一方第二図は第一図に記載のレンズ101と旋光層10
5の単位を多数アレイ状に並べた場合の全体構成を示す
。各単位からの光束は重なりあってほとんど−様なPz
偏向が得られる。叉偏光度を高める為に後方にPz偏光
を透過する通常の偏光板、叉は偏光素子201を設置す
ると効果的である。以下実施例に基ずき本発明の偏光素
子を説明する。
On the other hand, FIG. 2 shows the lens 101 and optical rotation layer 10 shown in FIG.
The overall configuration is shown when a large number of units of 5 are arranged in an array. The luminous flux from each unit overlaps and almost -like Pz
Deflection is obtained. In order to increase the degree of polarization, it is effective to install a normal polarizing plate or polarizing element 201 that transmits Pz polarized light at the rear. The polarizing element of the present invention will be described below based on Examples.

[実施例] 実施例1 第三図は本発明の一実施例である複屈折レンズとしてネ
マチック液晶層セルを用いた場合の構成の斜視図である
。透明基板301と、シリンドリカルな凹面アレイ30
2を有する透明基板303の間にネマチック液晶304
をX方向に一軸配向させて挟持した複屈折レンズアレイ
と、該複屈折レンズアレイの光軸上焦線近傍にポリカー
ボネイト(pc)製1/2波長層105を透明支持基板
305にレンズアレイと平行にストライプ状に設置した
旋光層より成る。液晶層の最大厚みは約19μ、液晶に
は複屈折性の大きなシアノビフェニル系混合物を用いた
。叉凹面アレイのピッチは0.5mm、  凹面の曲率
半径は約14.3mmである。シリンドリカルアレイの
基板には加工性がよく、屈折率が小さいアクリルを用い
た。
[Example] Example 1 Figure 3 is a perspective view of a structure in which a nematic liquid crystal layer cell is used as a birefringent lens according to an example of the present invention. Transparent substrate 301 and cylindrical concave array 30
Nematic liquid crystal 304 between transparent substrates 303 having 2
A birefringent lens array sandwiching a birefringent lens array uniaxially aligned in the It consists of an optically active layer arranged in stripes. The maximum thickness of the liquid crystal layer was approximately 19 μm, and a cyanobiphenyl mixture with high birefringence was used as the liquid crystal. The pitch of the concave array is 0.5 mm, and the radius of curvature of the concave surface is approximately 14.3 mm. Acrylic, which has good processability and a low refractive index, was used for the substrate of the cylindrical array.

第四図は前記構成の1単位に、X、Z方向に偏光した平
面波Px、Pzを垂直入射させた場合の代表的光線の軌
跡を示す。実線106がPx、破線107がPzを示す
。液晶層に入射したPx。
FIG. 4 shows the trajectory of a typical light ray when plane waves Px and Pz polarized in the X and Z directions are perpendicularly incident on one unit of the above structure. A solid line 106 indicates Px, and a broken line 107 indicates Pz. Px incident on the liquid crystal layer.

Pzは各々ネマチック液晶層の常光、異常光の屈折率N
x、Nzを感じる。凹状界面302に於いて、入射角θ
i、出射角θ0は5nellの法則により互いに関係づ
けられる。Px、Pzに対する出射角θOX、  θo
zは次式で与えられる。
Pz is the refractive index N of the ordinary light and extraordinary light of the nematic liquid crystal layer, respectively.
I feel x, Nz. At the concave interface 302, the incident angle θ
i and the output angle θ0 are related to each other according to the 5nell's law. Output angle θOX, θo with respect to Px, Pz
z is given by the following formula.

sinθox=Nx/No*sinθj  (4)si
nθOZ:N7/Nc)ksinθi  (5)(但し
NOは第二の透明基板の屈折率である。)一方θiは凹
面の曲率半径:r2、レンズの口径= 2dとすると次
式で与えられる。
sinθox=Nx/No*sinθj (4) si
nθOZ:N7/Nc)ksinθi (5) (However, NO is the refractive index of the second transparent substrate.) On the other hand, θi is given by the following equation, assuming that the radius of curvature of the concave surface is r2 and the aperture of the lens is 2d.

sin  θi=d/r2       (6)シアノ
ビフェニル系液晶ではNx>Nzであり(4)、  (
5)式からθoz>θozとなり、Px106が手前に
集光され旋光層105の置かれた面内ではPxとPzは
空間的に分離される。旋光層の位置はPzの焦線面でも
よいが、素子の厚み等から手前のPxにあわせる方が好
ましい。
sin θi=d/r2 (6) For cyanobiphenyl liquid crystals, Nx>Nz (4), (
From equation 5), θoz>θoz, and Px and Pz are spatially separated in the plane where Px 106 is focused in the front and the optical rotation layer 105 is placed. Although the position of the optical rotation layer may be on the focal line plane of Pz, it is preferable to align it with the front Px in view of the thickness of the element.

旋光層105はPCをガラス基板に接着叉は圧着後、幅
50μのストライブ状に加熱除去、叉は選択溶出等によ
り形成した。この結果、直線偏光板201の後方401
でPx、Pyに対する透過率を測定したところ、各々5
%、70%であった。
The optical rotation layer 105 was formed by adhering or pressing PC to a glass substrate, and then removing it by heating or selectively eluating it into stripes having a width of 50 μm. As a result, the rear 401 of the linear polarizing plate 201
When the transmittance of Px and Py was measured at
%, 70%.

叉液晶層の厚みの制御をうまくすることにより100m
mサイズの物は比較的容易に作ることが可能であった。
100m by skillfully controlling the thickness of the liquid crystal layer.
It was possible to make a m-sized one relatively easily.

本実施例に用いた材料の589nmに於ける屈折率の値
を表1に示す。
Table 1 shows the refractive index values at 589 nm of the materials used in this example.

表1゜ 実施例2 複屈折レンズとしてPC叉はポリビニルアルコール(P
VA)に可視部に吸収の無い電子分極のおおきな分子を
分散等により含有させたポリマーを、射出等によりレン
チキュラー状に成形後一軸的に延伸した物を用いた。構
造は第一図と同じである。この場合複屈折の値はPCで
0.001、PVAで0.1程度と小さく、光束の分離
度が悪いがPzに対し実施例1と同様の効果が認められ
た。
Table 1゜Example 2 PC or polyvinyl alcohol (P
A polymer obtained by dispersing or otherwise dispersing molecules with large electronic polarization that does not absorb in the visible region in VA) was molded into a lenticular shape by injection or the like, and then uniaxially stretched. The structure is the same as in Figure 1. In this case, the birefringence value was as small as 0.001 for PC and about 0.1 for PVA, and the degree of separation of light beams was poor, but the same effect as in Example 1 was observed for Pz.

上記実施例では光学的一軸性材料としてネマッチク液晶
、PC,PVAを用いたが、その他配向性の高い材料と
して液晶ポリマー等も有用であることは自明である。
In the above embodiments, nematic liquid crystal, PC, and PVA were used as optically uniaxial materials, but it is obvious that liquid crystal polymers and the like are also useful as materials with high orientation.

[発明の効果] 以上実施例からも明らかなように本発明によれば、光学
的一軸性材料の表面を、その光学主軸に垂直な面内に曲
率を持たせた複屈折レンズ、及び該複屈折レンズの一方
の焦線近傍に選択的設けた旋光層、から成る単位を、同
一面内に複数配置したことにより、従来の約1/2の光
量の光源で同じ明るさが得られ、且つコンパクトで、吸
収による発熱も少なく、大面積の偏光素子の提供が可能
となる。これにより従来、暗く見にくかった液晶デイス
プレィや、感度が問題であったアレイ状の偏光検出器等
の発展に大きく寄与するものと確信する。
[Effects of the Invention] As is clear from the above embodiments, the present invention provides a birefringent lens in which the surface of an optically uniaxial material has a curvature in a plane perpendicular to its optical principal axis, and By arranging a plurality of units consisting of an optical rotation layer selectively provided near one focal line of a refractive lens in the same plane, the same brightness can be obtained with a light source with approximately 1/2 the amount of light of a conventional one, and It is possible to provide a polarizing element that is compact, generates little heat due to absorption, and has a large area. We are confident that this will greatly contribute to the development of liquid crystal displays, which were previously dark and difficult to see, and array-shaped polarization detectors, which had sensitivity issues.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の偏光素子の作用を説明する原理図。 第2図は本発明の偏光素子の全体図。 第3図は本発明の液晶を用いた構成の斜視図。 第4図は本発明の偏光素子に於ける代表的光線の軌跡図
。 101 複屈折レンズ 1/2波長板 直線偏光板 シリンドリカルア ネマチック液晶 透明支持基板 レイ基板 出願人 セイコーエプソン株式会社 代理人 弁理士 上柳雅誉 他1名
FIG. 1 is a principle diagram explaining the operation of the polarizing element of the present invention. FIG. 2 is an overall view of the polarizing element of the present invention. FIG. 3 is a perspective view of a configuration using the liquid crystal of the present invention. FIG. 4 is a trajectory diagram of typical light rays in the polarizing element of the present invention. 101 Birefringent lens 1/2 wavelength plate Linear polarizing plate Cylindrical anematic liquid crystal transparent support substrate Ray substrate Applicant Seiko Epson Corporation agent Patent attorney Masayoshi Kamiyanagi and 1 other person

Claims (1)

【特許請求の範囲】[Claims] 光学的一軸性材料の表面を、その光学主軸に垂直な面内
に曲率を持たせた複屈折レンズ、及び該複屈折レンズの
一方の焦線近傍に選択的に設けた旋光層、から成る単位
を、同一面内に複数配置したことを特徴とする偏光素子
A unit consisting of a birefringent lens in which the surface of an optically uniaxial material has a curvature in a plane perpendicular to its principal optical axis, and an optical rotation layer selectively provided near one focal line of the birefringent lens. A polarizing element characterized in that a plurality of are arranged in the same plane.
JP21538488A 1988-08-30 1988-08-30 Polarizing element Pending JPH0263005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21538488A JPH0263005A (en) 1988-08-30 1988-08-30 Polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21538488A JPH0263005A (en) 1988-08-30 1988-08-30 Polarizing element

Publications (1)

Publication Number Publication Date
JPH0263005A true JPH0263005A (en) 1990-03-02

Family

ID=16671409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21538488A Pending JPH0263005A (en) 1988-08-30 1988-08-30 Polarizing element

Country Status (1)

Country Link
JP (1) JPH0263005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2398130A (en) * 2003-02-05 2004-08-11 Ocuity Ltd Switchable active lens for display apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2398130A (en) * 2003-02-05 2004-08-11 Ocuity Ltd Switchable active lens for display apparatus
US7532272B2 (en) 2003-02-05 2009-05-12 Au Optronics Corp. Switchable lens
US8004179B2 (en) 2003-02-05 2011-08-23 Au Optronics Corporation Switchable lens
US8004621B2 (en) 2003-02-05 2011-08-23 Au Optronics Corporation Switchable lens

Similar Documents

Publication Publication Date Title
CN100380197C (en) Viewing angle magnification liquid crystal display unit
US8035775B2 (en) Polarization control system and display device
CN100371804C (en) IPS mode liquid crystal display
KR100762399B1 (en) Polarized display with wide-angle illumination
EP0778956B1 (en) Polarizing element
US20060103778A1 (en) Multi-layer diffraction type polarizer and liquid crystal element
KR20140140539A (en) Liquid crystal display device
WO2004036272A1 (en) Polarizing arrangement
JP3719374B2 (en) Manufacturing method of polarizing element
WO2001011399A1 (en) Polarization member and liquid crystal display device
CN109212652A (en) Polarizing plate and display device
KR100641523B1 (en) Optical sheet, polarizer and liquid-crystal display device
KR20040102166A (en) Light converging system and transmission liquid crystal display
JP3331150B2 (en) Display element illumination method and liquid crystal display device
JPH04116521A (en) Prism optical element and polarizing optical element
JP2023516558A (en) Achromatic optical devices based on birefringent materials with positive and negative birefringence dispersion
JP3289386B2 (en) Color liquid crystal display
JP2718057B2 (en) Polarizing element
JP2007225744A (en) Polarization converting element
JPH0263005A (en) Polarizing element
JP2671376B2 (en) Polarizing element
JP2002022947A (en) Scattering type elliptically polarizing plate and liquid crystal display device
JPH02154205A (en) Polarizing element
JP5150992B2 (en) Liquid crystal device and optical attenuator
KR940005967A (en) Magneto-optical scanning device comprising a polarization-sensitive beam splitter, a method of manufacturing the same and a beam splitter