JPH02154205A - Polarizing element - Google Patents

Polarizing element

Info

Publication number
JPH02154205A
JPH02154205A JP30861188A JP30861188A JPH02154205A JP H02154205 A JPH02154205 A JP H02154205A JP 30861188 A JP30861188 A JP 30861188A JP 30861188 A JP30861188 A JP 30861188A JP H02154205 A JPH02154205 A JP H02154205A
Authority
JP
Japan
Prior art keywords
lens
refractive index
birefringerant
light
polarizing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30861188A
Other languages
Japanese (ja)
Inventor
Norihisa Okamoto
岡本 則久
Yoshitaka Ito
嘉高 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP30861188A priority Critical patent/JPH02154205A/en
Publication of JPH02154205A publication Critical patent/JPH02154205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the bright, compact and inexpensive polarizing element which has substantially no absorption by arranging units each consisting of a birefringerant lens contacting an isotropic medium and a rotary polarizing layer having opening parts selectively in the vicinity of one focal line of the birefringerant lens on the same plane. CONSTITUTION:The units each consisting of the birefringerant lens 101 which has negative curvature in a plane perpendicular to the optical main axis of the surface of an optical uniaxial material, has a larger refractive index than that of the optical uniaxial material to ordinary light, and contacts the isotropic medium and the rotary polarizing layer 105 which has opening parts 104 selectively in the vicinity of one focal line of the birefringerant lens 101 are arranged on the same plane. Consequently, the same brightness is obtained by a light source whose light quantity is a half as large as before and the compact, large- area polarizing element which is small in heat generation due to absorption is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野J 本発明は表示体、光検出器等に有用な光の透過率の高い
偏光素子の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to the structure of a polarizing element with high light transmittance useful for displays, photodetectors, etc.

[従来の技術] 従来の偏光素子は例えば、光学的測定(飯田修−他lj
A集、朝倉書店)P414に記載の如く、グラントムソ
ンプリズム等複屈折性結晶プリズムを組合わせた物、叉
は光吸収の二色性を利用した延伸配向フィルムが代表的
であった。
[Prior Art] Conventional polarizing elements are used, for example, in optical measurements (Osamu Iida et al.
As described in Vol. A, Asakura Shoten) P414, typical examples include a combination of birefringent crystal prisms such as a Glan-Thompson prism, or a stretched oriented film that utilizes the dichroism of light absorption.

〔発明が解決しようとする課題] しかし、上記配向フィルムタイプは、本質的に光吸収の
二色性を利用しているために、偏光度の高いものは絶対
通過車が低く、高精細な液晶表示体や、高感度な偏光検
出器に用いる場合には、1、大出力の光源が必要となる
、2.偏光素子が発熱により破壊する等の課組を有して
いた。叉結晶プリズムタイプは受光面の大きさとほぼ等
しいか叉はそれ以上の奥行きを要し、3.配置上扱いに
くい、40組み込んだシステムが重い、5゜価格が高い
等の課題を有していた。
[Problems to be Solved by the Invention] However, since the above-mentioned oriented film type essentially utilizes dichroism of light absorption, those with a high degree of polarization have a low absolute passing vehicle, making it difficult to use for high-definition liquid crystal display. When used in displays or highly sensitive polarization detectors, 1. A high output light source is required; 2. There were issues such as polarizing elements breaking down due to heat generation. 3. The cross-crystal prism type requires a depth that is approximately equal to or greater than the size of the light-receiving surface. It had problems such as being difficult to handle in terms of layout, the system incorporating 40° being heavy, and 5° being expensive.

本発明の目的はかかる課題を解決すべく吸収が本質的に
なく明るく、コンパクトで、安価な偏光素子を提供する
点にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a bright, compact, and inexpensive polarizing element that is essentially free from absorption in order to solve this problem.

[課題を解決するための手段〕 本発明の偏光素子は、光学的一軸性材料の表面を、その
光学主軸に垂直な面内に於て凹形の曲面を持って該光学
的一軸材料の常光の屈折率よりも大きい屈折率を有する
等方性媒体と接する構成よりなる複屈折レンズ、及び該
複屈折レンズの一方の焦線近傍に選択的に開口部を設け
た旋光層、から成る単位を、同一面内に複数配置したこ
とを特徴とする。
[Means for Solving the Problems] The polarizing element of the present invention has a surface of an optically uniaxial material having a concave curved surface in a plane perpendicular to its principal optical axis, so that the ordinary light of the optically uniaxial material is A unit consisting of a birefringent lens configured to be in contact with an isotropic medium having a refractive index larger than the refractive index of , is characterized in that a plurality of them are arranged in the same plane.

[作用] −Inにランプ等のインコヒーレントな光源からの光は
任意の偏光面からなる自然偏光で、直交する二つの成分
(例えばPx、Py)に等価的に分けることができる。
[Operation] Light from an incoherent light source such as a lamp is naturally polarized light having an arbitrary plane of polarization, and can be equivalently divided into two orthogonal components (for example, Px and Py).

Px酸成分利用する場合、Pyを吸収により除去するか
、偏光ビームスプリッタ−等によりPyを光路より分離
してやることが必要であり、このままでは光強度は1/
2以下になってしまう。そこで、本質的に光減少の少な
い偏光素子は、−度光束を複屈折レンズにより分離した
後、一方のみを選択的に位相差を与えて90度旋回し、
両者を再度空間的に合成することで得られる。その際、
該複屈折レンズと旋光層の単位を複数配置することによ
り、小型で均一性のよいシステムが得られる。
When using the Px acid component, it is necessary to remove Py by absorption or separate it from the optical path using a polarizing beam splitter, etc., and if this is done, the light intensity will be reduced to 1/2.
It becomes 2 or less. Therefore, a polarizing element with essentially less light attenuation separates the -degree luminous flux using a birefringent lens, and then selectively imparts a phase difference to only one side and rotates it by 90 degrees.
It can be obtained by spatially combining the two again. that time,
By arranging a plurality of units of the birefringent lens and optical rotation layer, a compact system with good uniformity can be obtained.

第1図は本発明の詳細な説明する為の原理図で、本発明
と等価な、その異常光の屈折率よりも小さな屈折率を有
する媒体中に於かれた凸形曲面を持つ複屈折レンズを基
に説明する。X方向に一軸配向させ、その光学主軸(こ
垂直な面内に曲率を持たせた複屈折レンズ101へZ方
向に入射した自然光102は等価的にX、  Y方向に
偏光した平面波Px(破III)、Py(実線)の集り
とみなせる。
Fig. 1 is a principle diagram for explaining the present invention in detail, and is equivalent to the present invention, and is a birefringent lens with a convex curved surface placed in a medium having a refractive index smaller than the refractive index of the extraordinary light. I will explain based on. Natural light 102 incident in the Z direction on a birefringent lens 101 uniaxially aligned in the ), Py (solid line).

上記複屈折レンズ内に於いては、各々に対し異なる屈折
率nx、nyが存在し、界面103により異なる屈折を
受ける。該複屈折レンズが凸レンズの場合、レンズの外
側の媒体が空気等のレンズ媒体より屈折率の小さなもの
で、且つny<nxの場合にはPxの方が大きな屈折を
受けることになる。一般にレンズの像側有効焦点距H1
:  f”は、オプトロニクス1983.  N o、
  10.  P 80に記載の如く、例えば屈折率n
”の媒体中に置かれた平凸レンズの場合次式で与えられ
る。
In the above-mentioned birefringent lens, different refractive indices nx and ny exist, and the lenses undergo different refraction due to the interface 103. When the birefringent lens is a convex lens, if the medium outside the lens has a smaller refractive index than the lens medium, such as air, and ny<nx, Px will undergo greater refraction. In general, the effective focal length on the image side of the lens H1
: f” is Optronics 1983.No,
10. For example, the refractive index n
For a plano-convex lens placed in a medium, it is given by the following equation.

f”=r2/ (1−n/n” )      (1)
(但しr2はレンズ面の曲率半径で、nはレンズのg!
折車を示す、) Pxの焦点Fxの近傍には、微小な開口部104を有す
る1/2波長板よりなる旋光層105がその光学主軸を
XY面内に於てX(叉はY)軸より45度傾けて設置し
である。Px酸成分開口部に集光されるため偏光面は保
持されるが、py成分は上記開口部を透過する微小量を
除き、大半の成分は1/2波長の位相差を受け90°の
旋回によりPx酸成分変換される。レンズ形状がシリン
ドリカルな場合、レンズ径2d、開口(12aとすると
、旋光層105の後方に於けるPx、Py両酸成分強度
割合Qx、Qyは次式で与えられる。
f”=r2/ (1-n/n”) (1)
(However, r2 is the radius of curvature of the lens surface, and n is g! of the lens.
In the vicinity of the focal point Fx of Px (showing a folding wheel), an optical rotation layer 105 made of a half-wave plate having a minute opening 104 has its optical principal axis aligned with the X (or Y) axis in the XY plane. It is installed at an angle of 45 degrees. The plane of polarization is maintained because the light is focused on the Px acid component aperture, but most of the py components, except for a small amount that passes through the aperture, are rotated by 90° due to a phase difference of 1/2 wavelength. The Px acid component is converted by When the lens shape is cylindrical, assuming a lens diameter of 2d and an aperture (12a), the intensity ratios Qx and Qy of both the Px and Py acid components behind the optical rotation layer 105 are given by the following equations.

Qy=50* (a/d)      (2)Qx=5
0* (2−a/d)    (3)例えば、a/d=
0. 1に於いて、Qxは95という大きな値となる。
Qy=50* (a/d) (2) Qx=5
0* (2-a/d) (3) For example, a/d=
0. 1, Qx has a large value of 95.

一方第2図は第1・図に記載のレンズ101と旋光層1
05の単位を多数アレイ状に並べた場合の全体構成を示
す。各単位からの光束は重なりあってほとんど−様なP
x偏向が得られる。l個光度を高める為に後方にPx偏
光を透過する通常の偏光板、叉は偏光素子201を設置
すると効果的である。以上の原理はそのまま本発明の常
光の屈折率よりも大きな屈折率を有する媒体中にある凹
形の曲面を有する複屈折レンズに等価的に適応できる。
On the other hand, Fig. 2 shows the lens 101 and optical rotation layer 1 shown in Fig. 1.
The overall configuration is shown when a large number of 05 units are arranged in an array. The luminous flux from each unit overlaps and almost -like P
x deflection is obtained. In order to increase the luminous intensity by 1, it is effective to install a normal polarizing plate or polarizing element 201 that transmits Px polarized light at the rear. The above principle can be equivalently applied to the birefringent lens of the present invention having a concave curved surface in a medium having a refractive index greater than the refractive index of ordinary light.

以下実施例に基ずき本発明の偏光素子を説明する。The polarizing element of the present invention will be described below based on Examples.

[実施例] 実施例1 第三図は本発明の一実施例である複屈折レン
ズとしてネマチック液晶層を用い、 [作用]で説明を
した凸形複屈折レンズの効果を発現するために液晶の常
光に対する屈折率より大きな屈折率を有する凸面の基板
を一方に用いて一軸的に配向させた場合の構成の斜視図
である。透明基板301と、シリンドリカルな凸面アレ
イ302を有する透明基板303の間にネマチック液晶
304をY方向に一軸配向させて挟持した複屈折しンズ
アレイと、該複屈折レンズアレイの光軸上焦線近傍にポ
リカーボネイト(pc)製1/2波長板105を透明支
持基板305にレンズアレイと平行にストライプ状に1
Qfflした旋光層より成る。
[Example] Example 1 Figure 3 shows an example of the present invention in which a nematic liquid crystal layer is used as a birefringent lens, and the liquid crystal layer is used to achieve the effect of the convex birefringent lens explained in [Operation]. FIG. 2 is a perspective view of a configuration in which a convex substrate having a refractive index larger than the refractive index for ordinary light is used on one side and uniaxially aligned. A birefringent lens array in which a nematic liquid crystal 304 is uniaxially aligned in the Y direction is sandwiched between a transparent substrate 301 and a transparent substrate 303 having a cylindrical convex array 302; A half-wave plate 105 made of polycarbonate (PC) is arranged in stripes on a transparent support substrate 305 parallel to the lens array.
It consists of a Qffl optical rotation layer.

液晶層の最大厚みは約19μ、液晶には複屈折性の大き
なシアノビフェニルfh混合物を用いた。叉凸面アレイ
のピッチは0.5mm、  凸面の曲率半径は約14.
3mmである。シリンドリカルアレイの基板には軟化点
が低く屈折率の大きい鉛珪酸ガラスをプレス成形して用
いた。  第4図は前記構成の1単位に、X、  Y方
向に偏光した平面波Px、Pyを垂直入射させた場合の
代表的光線の軌u ヲ示to  実tm106,6fP
x、  破III 107 カP yを示す、液晶層に
入射したPx、Pyは各々ネマチック液晶層の異常光、
常光の屈折率nx、nyを感じる。凸状界面302に於
いて、入射角θi。
The maximum thickness of the liquid crystal layer was about 19 μm, and a cyanobiphenyl fh mixture with high birefringence was used as the liquid crystal. The pitch of the prong-convex array is 0.5 mm, and the radius of curvature of the convex surface is approximately 14 mm.
It is 3mm. For the substrate of the cylindrical array, press-molded lead silicate glass, which has a low softening point and a high refractive index, was used. Figure 4 shows the trajectory of a typical light beam when plane waves Px and Py polarized in the X and Y directions are vertically incident on one unit of the above configuration.Actual tm106,6fP
Px and Py incident on the liquid crystal layer are respectively extraordinary light of the nematic liquid crystal layer,
Feel the refractive index nx, ny of ordinary light. At the convex interface 302, the incident angle θi.

出射角θ0は5nellの法則により互いに関係づけら
れ、結果として(1)式に基ずく焦点距離の差による影
響を受ける。ここで本実施例に用いた材料の589nm
での屈折率の値を表1に示す。
The exit angles θ0 are related to each other according to the 5nell's law, and as a result are affected by the difference in focal length based on equation (1). Here, 589 nm of the material used in this example
Table 1 shows the refractive index values at .

表1から明かな如く(1)式のパラメータに対し次の関
係がある。
As is clear from Table 1, the following relationship exists for the parameters of equation (1).

ny/n”<  nx/n” 〜 1  (4)このた
めPy107が手前に集光され旋光層105の置かれた
面内ではPxとpyは空間的に分離される。旋光層の位
置は素子の厚み等からpyにあわせである。選択的旋光
層105はPCをガラス基板に接着又は圧着後、幅50
μのストライプ状104にドライエツチング叉はレーザ
ー加工等により形成した。この結果、直線偏光板2・0
1の後方401でPy、Pxに対する透過率を測定した
ところ、各々5%、70%であった。叉液晶層の厚みの
制御をうまくすることにより100mmサイズの物は比
較的容易に作ることが可能であった。
ny/n"<nx/n" ~ 1 (4) Therefore, Py107 is focused in the front, and Px and py are spatially separated within the plane where the optical rotation layer 105 is placed. The position of the optical rotation layer is determined according to the py based on the thickness of the element and the like. The selective optical rotation layer 105 has a width of 50 mm after bonding or pressing the PC to the glass substrate.
A stripe shape 104 of .mu. is formed by dry etching, laser processing, or the like. As a result, linear polarizing plate 2.0
When the transmittance for Py and Px was measured at the rear 401 of 1, it was 5% and 70%, respectively. By skillfully controlling the thickness of the liquid crystal layer, a 100 mm size product could be produced relatively easily.

表  1゜ 実施例2 第5図は本発明の別の実施例で、選択的旋光
層を焦線近傍に形成した場合の構成を示す。実施例1と
同様ガラス基板305上に延伸フィルムを圧着後、ドラ
イエツチングにより焦線近傍部501のみ旋光層を残し
てなる。
Table 1 Example 2 FIG. 5 shows another example of the present invention, in which a selective optical rotation layer is formed near the focal line. As in Example 1, a stretched film is pressure bonded onto a glass substrate 305 and then dry etched to leave the optical rotation layer only in the focal line vicinity portion 501.

この場合py酸成分06は集光後90°の位相差を受は
大半がPx酸成分旋回されるのに対し、Py成分107
は大半がそのまま通過し実施例1と逆の偏光成分が得ら
れた。
In this case, the py acid component 06 receives a phase difference of 90° after convergence, and most of the Px acid component is rotated, whereas the Py component 107
Most of the light passed through as is, and a polarized component opposite to that of Example 1 was obtained.

上記実施例では光学的一軸性材料としてネマッチク液晶
、を用いたが、その他配向性の高い材料として液晶ポリ
マー等を配向成形した後、屈折率の高い材料でコーティ
ングをした物も有効であることは自明である。
In the above example, nematic liquid crystal was used as the optically uniaxial material, but other materials with high orientation properties, such as liquid crystal polymers, which are formed by alignment molding and then coated with a material with a high refractive index, may also be effective. It's self-evident.

[発明の効果] 以上実施例からも明らかなように本発明によれば、光学
的一軸性材料の表面を、その光学主軸に垂直な面内に於
て負の自車を持って該光学的一軸材料の常光の屈折率よ
りも大きい屈折率を有する等方性媒体と接する構成より
なる複屈折レンズ、及び該複屈折レンズの一方の焦線近
傍に選択的に開口部を設けた旋光層、から成る単位を、
同一面内にPi数配置したことにより、従来の約1/2
の光量の光源で同じ明るさが得られ、且つコンパクトで
、吸収による発熱も少なく、大面積の偏光素子の提供が
可能となる。これにより従来、暗く見にくかった液晶デ
イスプレィや、感度が間頭であったアレイ状の偏光検出
器等の発展に大きく寄与するものと確信する。
[Effects of the Invention] As is clear from the above embodiments, according to the present invention, the surface of an optically uniaxial material is held in a plane perpendicular to its optical principal axis with a negative self-vehicle, and the surface of the optically uniaxial material is A birefringent lens configured to be in contact with an isotropic medium having a refractive index larger than the refractive index of ordinary light of a uniaxial material, and an optical rotation layer having an opening selectively provided near one focal line of the birefringent lens; A unit consisting of
By arranging the number of Pi in the same plane, it is about 1/2 of the conventional
The same brightness can be obtained with a light source with a light amount of , and it is possible to provide a polarizing element that is compact, generates little heat due to absorption, and has a large area. We are confident that this will greatly contribute to the development of liquid crystal displays, which were previously dark and hard to see, and array-type polarization detectors, which had mediocre sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の偏光素子の作用を説明する原理図。 第2図は本発明の偏光素子の全体図。 第3図は本発明の液晶を用いた構成の斜視図。 第4図は本発明の偏光素子に於ける代表的光線の軌跡図
。 第5図は本発明の選択的に旋光層形成した場合の構成図
。 101 複屈折レンズ 104 開口部 105 旋光層 106 X偏光 107 Y偏光 201 直線偏光板 303 シリンドリカルアレイ基板 304 ネマチック液晶 501 部分的旋光層 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上柳雅誉 (他1名)第3図 第4図 X「之 第 図 第2図
FIG. 1 is a principle diagram explaining the operation of the polarizing element of the present invention. FIG. 2 is an overall view of the polarizing element of the present invention. FIG. 3 is a perspective view of a configuration using the liquid crystal of the present invention. FIG. 4 is a trajectory diagram of typical light rays in the polarizing element of the present invention. FIG. 5 is a diagram showing the structure of the present invention in which an optical rotation layer is selectively formed. 101 Birefringent lens 104 Aperture 105 Optical rotation layer 106 X polarized light 107 Y polarized light 201 Linear polarizing plate 303 Cylindrical array substrate 304 Nematic liquid crystal 501 Partial optical rotation layer or above Applicant Seiko Epson Corporation agent Patent attorney Masayoshi Kamiyanagi (1 other person) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 光学的一軸性材料の表面を、その光学主軸に垂直な面内
に於て凹形の曲面を持って該光学的一軸材料の常光の屈
折率よりも大きい屈折率を有する等方性媒体と接する構
成よりなる複屈折レンズ、及び該複屈折レンズの一方の
焦線近傍に選択的に設けた旋光層、から成る単位を、同
一面内に複数配置したことを特徴とする偏光素子。
The surface of an optically uniaxial material is brought into contact with an isotropic medium having a concave curved surface in a plane perpendicular to its principal optical axis and having a refractive index larger than the refractive index of the ordinary light of the optically uniaxial material. What is claimed is: 1. A polarizing element comprising a plurality of units arranged in the same plane, each consisting of a birefringent lens having the above structure and an optical rotation layer selectively provided near one focal line of the birefringent lens.
JP30861188A 1988-12-06 1988-12-06 Polarizing element Pending JPH02154205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30861188A JPH02154205A (en) 1988-12-06 1988-12-06 Polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30861188A JPH02154205A (en) 1988-12-06 1988-12-06 Polarizing element

Publications (1)

Publication Number Publication Date
JPH02154205A true JPH02154205A (en) 1990-06-13

Family

ID=17983128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30861188A Pending JPH02154205A (en) 1988-12-06 1988-12-06 Polarizing element

Country Status (1)

Country Link
JP (1) JPH02154205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751388A (en) * 1995-04-07 1998-05-12 Honeywell Inc. High efficiency polarized display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751388A (en) * 1995-04-07 1998-05-12 Honeywell Inc. High efficiency polarized display
US5999239A (en) * 1995-04-07 1999-12-07 Honeywell Inc. Method for making a polarization-sensitive optical element
US6310671B1 (en) 1995-04-07 2001-10-30 Honeywell, Inc. Polarization sensitive scattering element

Similar Documents

Publication Publication Date Title
TWI480584B (en) Process for solitting polarizing beam, wide-angle wide band polarizing beam splitter, and heads-up display
EP0778956B1 (en) Polarizing element
EP2053431A2 (en) Polarization control system and display device
JPH02239219A (en) Lighting system for liquid crystal display system
US8867131B1 (en) Hybrid polarizing beam splitter
JP2001166227A (en) Optical imaging assembly
CN109212652A (en) Polarizer and display device
US5440424A (en) Prism optical device and polarizing optical device
JP2002031716A (en) Polarizing element and method for manufacturing the same
KR970022396A (en) Deflection element and projection display device using the same
JP3289386B2 (en) Color liquid crystal display
CA2059553A1 (en) Birefringent polarizing device
JPH02154205A (en) Polarizing element
JPH01265206A (en) Polarizing element
KR20030003687A (en) Lquid crystal projector
JP2671376B2 (en) Polarizing element
JPH04267203A (en) Polarization converting element
JPH0263005A (en) Polarizing element
JP5150992B2 (en) Liquid crystal device and optical attenuator
JP2541014B2 (en) Polarizing prism
JP3077554B2 (en) Optical isolator
US3588219A (en) Polarized light binocular microscope
KR100278696B1 (en) Single Plate HMD
JPS59228610A (en) Polarizing prism
JP2002040254A (en) Polarizing element