JPH026296B2 - - Google Patents

Info

Publication number
JPH026296B2
JPH026296B2 JP12570683A JP12570683A JPH026296B2 JP H026296 B2 JPH026296 B2 JP H026296B2 JP 12570683 A JP12570683 A JP 12570683A JP 12570683 A JP12570683 A JP 12570683A JP H026296 B2 JPH026296 B2 JP H026296B2
Authority
JP
Japan
Prior art keywords
output
bearing
value
mentioned
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12570683A
Other languages
Japanese (ja)
Other versions
JPS6020751A (en
Inventor
Akishi Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58125706A priority Critical patent/JPS6020751A/en
Publication of JPS6020751A publication Critical patent/JPS6020751A/en
Publication of JPH026296B2 publication Critical patent/JPH026296B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/24Protection against failure of cooling arrangements, e.g. due to loss of cooling medium or due to interruption of the circulation of cooling medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

【発明の詳細な説明】 この発明は、発電機の軸受メタルの状態を監視
して異常が検出された時はその保護動作を起動す
る発電機軸受監視保護装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a generator bearing monitoring and protection device that monitors the condition of a bearing metal of a generator and starts a protective operation when an abnormality is detected.

従来、この種の装置として第1図に示すものが
あつた。図において1は発電機、2はその発電機
の回転軸、3はその回転軸の軸受、4はその軸受
の軸受メタル、5は軸受3を冷却するための冷却
水管、6は軸受メタル4の温度を検出する検出
器、7は温度計の出力を電気信号に変換する変換
器、8は比較器、9は比較器8の基準電圧源、1
0は保護回路であり、7aは変換器7の出力、9
aは基準電圧値、8aは比較器8の出力で、7a
<9aのとき8は論理「0」、7a9aのとき
8aは論理「1」となるとし、8aが論理「1」
となると保護回路10が動作する。
Conventionally, there has been a device of this type as shown in FIG. In the figure, 1 is the generator, 2 is the rotating shaft of the generator, 3 is the bearing of the rotating shaft, 4 is the bearing metal of the bearing, 5 is the cooling water pipe for cooling the bearing 3, and 6 is the bearing metal 4. a detector for detecting temperature; 7 a converter for converting the output of the thermometer into an electrical signal; 8 a comparator; 9 a reference voltage source for the comparator 8;
0 is a protection circuit, 7a is the output of converter 7, 9
a is the reference voltage value, 8a is the output of comparator 8, and 7a
When <9a, 8 becomes logic "0", and when 7a9a, 8a becomes logic "1", and 8a becomes logic "1".
In this case, the protection circuit 10 operates.

従来の装置は以上のように構成されているの
で、基準電圧値9aは固定的に定められ、従つて
軸受の最高許容温度が固定的に定められることに
なり、軸受に関連する其他の条件によつて軸受の
最高許容温度を最も適当な値に設定することがで
きず、基準電圧値9aを高めに設定しておくと、
軸受の異常検出が遅れ、一方、基準電圧値9aを
低めに設定しておくと軸受に異常が無いのに保護
回路10を誤動作させることがあるという欠点が
あつた。
Since the conventional device is configured as described above, the reference voltage value 9a is fixedly determined, and therefore the maximum allowable temperature of the bearing is fixedly determined, and other conditions related to the bearing are Therefore, if the maximum allowable temperature of the bearing cannot be set to the most appropriate value, and the reference voltage value 9a is set to a high value,
There is a drawback that detection of abnormality in the bearing is delayed, and on the other hand, if the reference voltage value 9a is set to a low value, the protection circuit 10 may malfunction even though there is no abnormality in the bearing.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、軸受の冷却水の温
度及び流量ならびに軸の回転数等軸受の温度に影
響を及ぼす物理的諸量をそれぞれ検出し、これら
物理的諸量及び軸受の温度の時間に対する一次端
分値及び二次端分値を算出し、これら一次微分値
から軸受温度の最高許容値を決定し、かつこれら
二次微分値から軸受温度上昇率の最高許容値を決
定し、軸受温度及びその温度上昇率が共にそれぞ
れの最高許容値を超した場合に保護回路を動作さ
せることにより、信頼性の高い監視保護装置を提
供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it detects various physical quantities that affect the temperature of the bearing, such as the temperature and flow rate of the bearing cooling water and the rotation speed of the shaft. , calculate the primary and secondary end values of these physical quantities and bearing temperature over time, determine the maximum permissible bearing temperature from these first derivatives, and determine the bearing temperature from these second derivatives. To provide a highly reliable monitoring protection device by determining the maximum permissible value of the temperature rise rate and activating the protection circuit when both the bearing temperature and the temperature rise rate exceed the respective maximum permissible values. The purpose is

以下この発明の実施例を図面について説明す
る。第2図はこの発明の一実施例を示すブロツク
図で、第1図と同一符号は同一又は相当部分を示
し、11は回転数検出器、12は冷却水の温度検
出器、13は冷却水の流量検出器、14,15,
16,17はそれぞれ検出器11,6,12,1
3の出力を電気信号に変換する変換器であり、こ
の明細書では、検出器6と変換器15の組合せを
仮に軸受温度変換器と称し、11と14、12と
16、13と17の各組合せを仮に各変換器と称
することにする。18,19,20,21,2
2,23,24,25はそれぞれ微分回路、26
は第1の演算回路、27は第2の演算回路、28
は第1の比較器、29は第2の比較器、30はア
ンドゲートである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram showing an embodiment of the present invention, in which the same reference numerals as in FIG. flow rate detector, 14, 15,
16 and 17 are detectors 11, 6, 12, and 1, respectively.
In this specification, the combination of the detector 6 and the converter 15 is temporarily referred to as a bearing temperature converter, and each of the outputs of 11 and 14, 12 and 16, and 13 and 17 is The combination will be temporarily referred to as each converter. 18, 19, 20, 21, 2
2, 23, 24, 25 are differentiating circuits, 26
is the first arithmetic circuit, 27 is the second arithmetic circuit, 28
is a first comparator, 29 is a second comparator, and 30 is an AND gate.

変換器14,15,16,17の出力をそれぞ
れX1,X2,X3,X4とすれば、微分回路、18,
19,20,21,22,23,24,25の出
力はそれぞれX〓1,X〓2,X〓3,X〓4,X¨1,X¨2,X
¨3
4とする。但しXi(i=1、2、3、4)は変数
Xの時間に関する一次微分を、Xi(i=1、2、
3、4)は変数Xi(i=1、2、3、4)の時間
に関する二次微分を表す。
If the outputs of converters 14, 15, 16, and 17 are respectively X 1 , X 2 , X 3 , and
The outputs of 19, 20, 21, 22, 23, 24, and 25 are X 1 , X 2 , X 3 , X 4 , X 1 , X 2 , X
¨3 ,
Let X¨4 . However, X i (i=1, 2, 3, 4) is the first derivative of variable X with respect to time, and X i (i=1, 2,
3, 4) represent the second-order differential with respect to time of the variable X i (i=1, 2, 3, 4).

第1の演算回路26は Y=4i=1 CliX〓i+C10…(1) の演算を行い、演算結果のYを第1の基準値とし
て出力する。但しYがX2naxを超した場合はX2nax
をYの値として出力する。ここに、X2naxはX2
最大許容値としてあらかじめ定める値であり、
C1iはX〓iが軸受温度の変化に影響を及ぼす度合に
より、あらかじめ定められる係数であり、C10
軸受温度の現在値に余裕値であらかじめ定められ
る数値である。
The first arithmetic circuit 26 performs the calculation Y= 4〓 i=1 C li X〓 i +C 10 (1) and outputs the calculation result Y as the first reference value. However, if Y exceeds X 2nax , X 2nax
is output as the value of Y. Here, X 2nax is a value predetermined as the maximum allowable value of X 2 ,
C 1i is a coefficient determined in advance depending on the degree to which X〓 i influences changes in bearing temperature, and C 10 is a numerical value determined in advance as a margin value for the current value of bearing temperature.

第2の回路27は Z=4i=1 C2ii+C20…(2) の演算を行い、演算結果のZを第2の基準値とし
て出力する。但しZがX〓2naxを超した場合はX〓2nax
をZの値として出力する。ここに、X〓2naxはX〓2
最大許容値としてあらかじめ定める値であり、
C2iはX¨iがX〓2(軸受温度の変化率)に影響を及ぼす
度合により、あらかじめ定められる係数であり、
C20は軸受温度の変化率の現在値に余裕値であら
かじめ定められる数値である。Y及びZの値は△
Tの周期ごとに演算して次回の演算までその値を
保持する。
The second circuit 27 performs the calculation Z= 4i=1 C 2i X ¨ i +C 20 (2) and outputs the calculation result Z as the second reference value. However, if Z exceeds X〓 2nax, then X〓 2nax
is output as the Z value. Here, X〓 2nax is a value predetermined as the maximum allowable value of X〓 2 ,
C 2i is a coefficient determined in advance depending on the degree to which X ¨ i influences X 〓 2 (rate of change in bearing temperature),
C 20 is a value predetermined as a margin value for the current value of the rate of change of bearing temperature. The values of Y and Z are △
The calculation is performed every cycle of T and the value is held until the next calculation.

第3図は発電機動作中各変換器の出力の時間的
変化を示す図であり、Tは運転開始後の適宜の時
点を示す。第4図はX2及びYの時間的変化とX〓2
及びZの時間的変化を示す図でTは第3図のTと
同じく、T時間のX2及びX〓2によつて式(1)のC10
式(2)のC20を定め、T+△TからT+2△Tの間
使用する基準値Y、Zが決定されることを示して
いる。
FIG. 3 is a diagram showing temporal changes in the output of each converter during operation of the generator, and T indicates an appropriate time point after the start of operation. Figure 4 shows the temporal changes in X 2 and Y and X〓 2
In this figure, T is the same as T in Fig. 3, and C 10 in equation (1) is expressed by X 2 and X〓 2 of T time.
This shows that C 20 in equation (2) is determined, and the reference values Y and Z to be used from T+ΔT to T+2ΔT are determined.

第5図は従来の監視保護装置とこの発明の装置
の動作の相違を示す図で、T1とT1+△Tの間で
発電機軸受温度がなんらかの異常により急峻に上
昇T1+△TではX2Y、X〓2Zとなつて比較器
28,29の出力が論理「1」となり、アンドゲ
ート30の出力が論理「1」となり保護回路10
が動作するが、従来の装置では(7a=X2
9aとなり保護回路10が動作するのはT1+△
Tよりも後であり、その間に軸受を損傷すること
があり、又これを避けようとして9aを低く設定
すれば正常状態における軸受の温度上昇によつて
保護回路10が誤動作するおそれがある。
FIG. 5 is a diagram showing the difference in operation between the conventional monitoring and protection device and the device of the present invention. Between T 1 and T 1 +△T, the generator bearing temperature suddenly rises due to some abnormality T 1 +△T Then, X 2 Y, X〓 2 Z, the outputs of the comparators 28 and 29 become logic "1", and the output of the AND gate 30 becomes logic "1", and the protection circuit 10
works, but in the conventional device (7a=X 2 )
9a and the protection circuit 10 operates at T 1 +△
This is later than T, and the bearing may be damaged during that time.If 9a is set low to avoid this, there is a risk that the protection circuit 10 will malfunction due to the temperature rise of the bearing under normal conditions.

なお、上記実施例では、発電機軸受の温度に影
響を及ぼす物理的諸量として、発電機の回転数及
び冷却水の流量及び水温を用いたが、其他の物理
的諸量を用いてもよく、また監視の対象を軸受温
度の代りに軸受の振動振幅、圧力等を用いること
もできる。
In addition, in the above embodiment, the rotation speed of the generator, the flow rate of the cooling water, and the water temperature are used as the physical quantities that affect the temperature of the generator bearing, but other physical quantities may be used. Furthermore, instead of the bearing temperature, the vibration amplitude, pressure, etc. of the bearing can be used as the monitoring target.

以上のようにこの発明によれば、機器の異常が
進行して損害を大きくする以前にその異常を適確
に検出し、所望の保護動作を行うことができる。
As described above, according to the present invention, it is possible to accurately detect an abnormality in a device and perform a desired protective operation before the abnormality progresses and causes greater damage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の装置を示すブロツク図、第2図
はこの発明の一実施例を示すブロツク図、第3図
は軸受の温度及びこの温度に影響を及ぼす物理的
諸量の時間的変化を示す図、第4図は第3図に対
応しX2、Y、X〓2、Zの時間的変化を示す図、第
5図は第2図の装置による異常検出を示す図であ
る。 1……発電機、2……回転軸、3……軸受、5
……冷却水管、6,15……軸受温度変換器、1
1,14……回転数変換器、12,16……冷却
水温度変換器、13,17……冷却水量変換器、
10……保護回路、18,19,20,21……
それぞれ一次微分回路、22,23,24,25
……それぞれ二次微分回路、26……第1の演算
回路、27……第2の演算回路。尚、各図中同一
符号は同一又は相当部分を示す。
Fig. 1 is a block diagram showing a conventional device, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 shows the temperature of a bearing and changes over time in physical quantities that affect this temperature. FIG. 4 corresponds to FIG. 3 and shows temporal changes in X 2 , Y, X〓 2 , and Z, and FIG. 5 shows abnormality detection by the apparatus shown in FIG. 1... Generator, 2... Rotating shaft, 3... Bearing, 5
... Cooling water pipe, 6, 15 ... Bearing temperature converter, 1
1, 14... Rotation speed converter, 12, 16... Cooling water temperature converter, 13, 17... Cooling water amount converter,
10...Protection circuit, 18, 19, 20, 21...
First-order differential circuit, 22, 23, 24, 25, respectively
. . . Second order differential circuit, 26 . . . first arithmetic circuit, and 27 . . . second arithmetic circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 発電機軸受の温度を電気信号に変換する軸受
温度変換器と、上記軸受の冷却水の温度及び流量
ならびに上記発電機の回転数等、上記発電機軸受
の温度に影響を及ぼす物理的諸量をそれぞれ電気
信号に変換する各変換器と、上記軸受温度変換器
の出力及び上記各変換器の出力を時間に関して微
分する各一次微分回路と、この各一次微分回路の
出力をそれぞれ入力してこの入力を更に時間に関
して微分する各二次微分回路と、上記軸受温度変
換器の出力及び上記各一次微分回路の出力を入力
して予め定めた周期ごとに演算を行い、上記軸受
温度変換器の出力に所定の余裕値を加えた数値と
上記各一次微分回路の出力にそれぞれ所定の係数
を乗じた数値との総和を第1基準値として、この
第1基準値か又は第1基準値が軸受温度の許容値
として予め定められる値を超過したときは該許容
値を出力する第1の演算回路と、上記軸受温度変
換器の出力を入力とする一次微分回路の出力及び
上記各二次微分回路の出力を入力して予め定めた
周期ごとに演算を行い、上記一次微分回路の出力
に所定の余裕値を加えた数値と上記各二次微分回
路の出力にそれぞれ所定の係数を乗じた数値との
総和を第2基準値として、この第2基準値か又は
第2基準値が軸受温度の変化率の許容値として予
め定められる値を超過したときは該許容値を出力
する第2の演算回路と、上記軸受温度変換器の出
力が上記第1の演算回路の出力を超過し、かつ上
記軸受温度変換器の出力を入力とする一次微分回
路の出力が上記第2の演算回路の出力を超過した
とき保護動作を起動する手段とを備えた発電機軸
受監視保護装置。
1. A bearing temperature converter that converts the temperature of the generator bearing into an electrical signal, and physical quantities that affect the temperature of the generator bearing, such as the temperature and flow rate of cooling water for the bearing and the rotation speed of the generator. into electrical signals, each first-order differentiation circuit that differentiates the output of the above-mentioned bearing temperature converter and the output of each of the above-mentioned converters with respect to time, and the output of each of these first-order differentiation circuits is inputted. The output of each second-order differentiation circuit that further differentiates the input with respect to time, the output of the above-mentioned bearing temperature converter, and the output of each of the above-mentioned first-order differentiation circuits are inputted, and calculations are performed at predetermined intervals to calculate the output of the above-mentioned bearing temperature converter. The first reference value is the sum of the value obtained by adding a predetermined margin value to the value obtained by multiplying the output of each of the above-mentioned first-order differential circuits by a predetermined coefficient, and the first reference value or the first reference value is the bearing temperature. a first arithmetic circuit that outputs the permissible value when the predetermined permissible value of The output is input and calculations are performed at predetermined intervals, and a value obtained by adding a predetermined margin value to the output of the above-mentioned first-order differentiator circuit and a value obtained by multiplying the output of each of the above-mentioned second-order differentiator circuits by a predetermined coefficient are calculated. a second arithmetic circuit that takes the sum as a second reference value and outputs the permissible value when the second reference value or the second reference value exceeds a predetermined value as a permissible value for the rate of change in the bearing temperature; , the output of the bearing temperature converter exceeds the output of the first arithmetic circuit, and the output of the first-order differential circuit inputting the output of the bearing temperature converter exceeds the output of the second arithmetic circuit. and means for activating a protective operation when the generator bearing is in use.
JP58125706A 1983-07-11 1983-07-11 Monitor and protector for bearing of generator Granted JPS6020751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58125706A JPS6020751A (en) 1983-07-11 1983-07-11 Monitor and protector for bearing of generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58125706A JPS6020751A (en) 1983-07-11 1983-07-11 Monitor and protector for bearing of generator

Publications (2)

Publication Number Publication Date
JPS6020751A JPS6020751A (en) 1985-02-02
JPH026296B2 true JPH026296B2 (en) 1990-02-08

Family

ID=14916709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58125706A Granted JPS6020751A (en) 1983-07-11 1983-07-11 Monitor and protector for bearing of generator

Country Status (1)

Country Link
JP (1) JPS6020751A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912382A (en) * 1988-05-09 1990-03-27 Onan Corporation Fail safe monitoring apparatus and method
RU2510562C2 (en) * 2012-05-23 2014-03-27 Закрытое акционерное общество "Радиотехкомплект" Apparatus for controlling duration of contact of rolling elements of bearing assembly of electrical machine

Also Published As

Publication number Publication date
JPS6020751A (en) 1985-02-02

Similar Documents

Publication Publication Date Title
US4214301A (en) Diagnostic device for use with automatic control systems
EP0030459B2 (en) System for monitoring steam condenser performance
US4046002A (en) Method and apparatus for determining rotor life expended
US4635210A (en) Method of and apparatus for detecting crack condition
JPH026296B2 (en)
US20120141251A1 (en) Method and device for predicting the instability of an axial compressor
US4433646A (en) Boiler water trip system
JPH07128134A (en) Monitoring-diagnosing apparatus for rotary machine
JPS6337329B2 (en)
JPS58129317A (en) Abnormality detecting device
JP2000209767A (en) Analog input section monitoring device for digital protective controller
JPH0155334B2 (en)
JPH0548856B2 (en)
JPS5910913Y2 (en) Monitoring and protection device for asynchronous motors
JPH0644061B2 (en) Abnormal flow detector for reactor cooling system
JPS62124461A (en) Abnormality diagnosing device
JPS6324170B2 (en)
JPH03276022A (en) Abnormality monitoring device
JPH0226252A (en) Protective device of motor
JPS56124607A (en) Method of diagnosing steam valve
JP2000037095A (en) Axial torque monitoring device for gas turbin generator
JP2914784B2 (en) Sensor abnormality detection method and device
JPH0363300B2 (en)
JPH02237424A (en) Open-phase detection in three-phase circuit transformer and device therefor
JPS6079176A (en) Anomaly detecting apparatus for water wheel or pump water wheel