JPH0155334B2 - - Google Patents

Info

Publication number
JPH0155334B2
JPH0155334B2 JP17098081A JP17098081A JPH0155334B2 JP H0155334 B2 JPH0155334 B2 JP H0155334B2 JP 17098081 A JP17098081 A JP 17098081A JP 17098081 A JP17098081 A JP 17098081A JP H0155334 B2 JPH0155334 B2 JP H0155334B2
Authority
JP
Japan
Prior art keywords
vibration
rotating shaft
stress
shaft system
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17098081A
Other languages
Japanese (ja)
Other versions
JPS5872745A (en
Inventor
Mitsuhiro Yamada
Noriaki Nishioka
Isamu Nakaya
Yoshiaki Mitsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kansai Denryoku KK filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17098081A priority Critical patent/JPS5872745A/en
Publication of JPS5872745A publication Critical patent/JPS5872745A/en
Publication of JPH0155334B2 publication Critical patent/JPH0155334B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Description

【発明の詳細な説明】 本発明はタービン発電機からの送電系統に、直
列キヤパシタを挿入した場合におけるタービン発
電機の回転軸系の捩り振動を監視する装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for monitoring torsional vibration of a rotating shaft system of a turbine generator when a series capacitor is inserted into a power transmission system from the turbine generator.

タービン発電機やコンプレツサーなどの回転軸
系においては、その軸系の微妙なバランスなどの
関係から回転に伴なつて捩り振動が発生すること
は良く知られていることである。
It is well known that torsional vibrations occur in rotating shaft systems such as turbine generators and compressors due to the delicate balance of the shaft systems as they rotate.

しかも回転軸系は通常複数の固有振動数を有し
ており、回転数がその1つの固有振動数に近づく
と共振を起し、非常に大きな振動を生じる。
Moreover, a rotating shaft system usually has a plurality of natural frequencies, and when the rotational frequency approaches one of the natural frequencies, resonance occurs, producing extremely large vibrations.

しかし通常の回転においては上記固有振動数
夫々に対応した振動モード成分の合成として回転
軸系に捩り振動が発生しているが、それ程大きな
ものとはならない。
However, during normal rotation, torsional vibration occurs in the rotating shaft system as a combination of vibration mode components corresponding to each of the above-mentioned natural frequencies, but it is not very large.

一方、これらの回転軸系に何らかの外力が作用
し、この回転軸系の一つの固有振動数に対し共振
現象を起し、軸系が自動振動を生じ始めるとその
振動は急激に増大し、時には軸系を破壊すること
もある。
On the other hand, when some external force acts on these rotating shaft systems, a resonance phenomenon occurs at one of the natural frequencies of this rotating shaft system, and when the shaft system begins to generate automatic vibration, the vibration increases rapidly, and sometimes It may also destroy the shaft system.

タービン発電機の送電系統には直列キヤパシタ
を挿入することが多いが、これは送電線がトラン
ス結合であるためその入力と出力側で位相が遅れ
電力の損失があるので、これを補償するように挿
入するものである。しかしこの直列キヤパシタが
軸系に作用する外力の元ともなるものであつて、
その容量によつて変化する送電系統の振動数の変
化により生じる。
A series capacitor is often inserted into the power transmission system of a turbine generator, but since the power transmission line is transformer-coupled, there is a phase delay between the input and output sides, and there is a power loss, so it is necessary to compensate for this. It is inserted. However, this series capacitor is also the source of external force acting on the shaft system,
This is caused by changes in the frequency of the power transmission system, which varies with its capacity.

すなわち送電線を流れる電力の振動と、タービ
ン発電機軸系の捩り振動が二重共振すると、電気
機械総合系の自動振動となり、これを特にSSR
(Sub−Synchronus Resonance)と言う。この
現象は送電系統の固有振動数feとタービン発電機
を含む回転軸系の捩り固有振動数fmが fe+fm=送電系統周波数(50または60Hz) …(1) となり、これに小さな外乱が加わると急激に発生
るものである。
In other words, when the vibration of the power flowing through the power transmission line and the torsional vibration of the turbine generator shaft system double resonate, automatic vibration of the electromechanical system occurs, and this is particularly important for SSR.
(Sub-Synchronus Resonance). This phenomenon occurs when the natural frequency fe of the power transmission system and the torsional natural frequency fm of the rotating shaft system including the turbine generator become fe + fm = power transmission system frequency (50 or 60Hz)...(1), and when a small disturbance is added to this, the frequency suddenly increases. It occurs in

先に述べたように自励振動の急激な成長によつ
て回転軸系は破壊される恐れがあるため、その発
生を常に監視せねばならず、従来は第1図に示す
ような捩り振動監視装置が提供されていた。
As mentioned earlier, there is a risk that the rotating shaft system will be destroyed due to the rapid growth of self-excited vibrations, so the occurrence of such vibrations must be constantly monitored. Conventionally, torsional vibration monitoring as shown in Figure 1 has been used. equipment was provided.

タービン01によつて回転する発電機02の出
力電力は発電機出力送電線03を介して送電系統
に接続されている。
The output power of a generator 02 rotated by a turbine 01 is connected to a power transmission system via a generator output power transmission line 03.

04は計測用電流トランス(計測値C Ti)、
05は計測用電圧トランス(同P Ti)であつ
て上記発電機出力送電線03に接続されており、
夫々計測された電流CTiおよび電圧PTiを各相毎
に電力計06により乗算し、それら三相の値を加
算器07で加算すると発電機出力電力Pが計算さ
れる P= 〓i CTi・PTi …(2) このようにして求めた発電機出力電力Pをフイ
ルタ08に通し、定常的な部分(DC成分)およ
び送電系統周波数以上の成分を取り除き、送電系
統周波数以下の変動成分△Pを得る。
04 is a measurement current transformer (measured value C Ti),
05 is a measurement voltage transformer (P Ti), which is connected to the generator output power transmission line 03,
The generator output power P is calculated by multiplying the measured current CTi and voltage PTi by the wattmeter 06 for each phase, and adding the values of these three phases by the adder 07. P= 〓 i CTi・PTi... (2) Pass the generator output power P obtained in this way through the filter 08 to remove the steady portion (DC component) and the component above the transmission system frequency to obtain the fluctuating component ΔP below the transmission system frequency.

上記(1)式から分るように、自励振動は送電系統
の振動が送電系統周波数より小さい時に生じるの
で、この送電系統周波数以下の電力の変動成分△
Pの振幅を監視することによつてその発生を検知
することが可能である。すなわち自励振動が発生
すると変動成分が大きくなるから、あらかじめ設
定値△P′を設定器09に入力し、比較器010で
上記変動成分△Pとの比較を行ない、その設定値
△P′を超えた場合に警報を発生させるとともに、
直列キヤパシタの除去や発電機02の送電系統か
らの切り離しなど、適宜な処理を行なようにして
いる。
As can be seen from equation (1) above, self-excited vibration occurs when the vibration of the power transmission system is lower than the power transmission system frequency, so the fluctuation component of power below the power transmission system frequency △
Its occurrence can be detected by monitoring the amplitude of P. In other words, when self-excited vibration occurs, the fluctuation component increases, so input the set value △P' into the setting device 09 in advance, compare it with the fluctuation component ΔP in the comparator 010, and set the set value △P'. If the limit is exceeded, a warning will be issued and
Appropriate processing is performed, such as removing the series capacitor and disconnecting the generator 02 from the power transmission system.

自励振動はタービン発電機の回転軸系に過大な
捩り振動を発生させることは既に述べたが、その
捩り振動によつて軸系には応力が生じ破壊する。
上記電力の変動成分△Pの大きさによつて自励振
動の発生は検知できるものの、回転軸系各部に対
する応力までを精度よく推定することは難かし
く、従つて設定値△P′は大幅な余裕をもつた値に
設定せざるを得ず、従来の装置はいわば慎重すぎ
る監視装置とならざるを得ないものであつた。
As already mentioned, self-excited vibration generates excessive torsional vibration in the rotating shaft system of the turbine generator, and the torsional vibration generates stress in the shaft system, causing it to break.
Although it is possible to detect the occurrence of self-excited vibration based on the magnitude of the power fluctuation component △P, it is difficult to accurately estimate the stress on each part of the rotating shaft system, and therefore the set value △P' may vary considerably. The value had to be set with some margin, and conventional devices had no choice but to become overly cautious monitoring devices.

本発明はこの欠点を排除するものであつて、直
列キヤパシタが装着された送電系統に接続された
タービン発電機の回転軸系を監視する装置であつ
て、回転軸系の定位置で捩り振動を検出する振動
検出装置と、同装置によつて得られた振動波形の
上記回転軸系の固有振動数のうちのタービン発電
機の送電系統周波数より低いい周波数を有するモ
ード成分のみを分解して取り出す分解装置と、あ
らかじめ求められている上記モード成分における
回転軸系の定位置の振動と任意位置との振動の関
係および同任意位置の振動と応力との関係から上
記任意位置のモード成分毎の応力を求めるモード
別演算装置と、同求められた応力をあらかじめ設
定した値と比較し応力が設定値を越えた時に指令
を出す比較器とからなることを特徴とし、その目
的とするところは直列キヤパシタを送電系統に挿
入することによつて生じる自励振動を、回転軸系
の任意位置の応力との関係において監視すること
により、確実にしかも適切に検知するようにした
回転軸系の捩り振動監視装置を提供するものであ
る。
The present invention eliminates this drawback and is a device for monitoring the rotating shaft system of a turbine generator connected to a power transmission system equipped with a series capacitor, which detects torsional vibrations at a fixed position of the rotating shaft system. A vibration detection device to be detected and a vibration waveform obtained by the device that decomposes and extracts only the mode component having a frequency lower than the power transmission system frequency of the turbine generator among the natural frequencies of the rotating shaft system. The stress for each mode component at the above arbitrary position is determined from the relationship between the vibration of the rotating shaft system at a fixed position and the vibration at an arbitrary position in the decomposition device and the above mode component determined in advance, and the relationship between the vibration and stress at the same arbitrary position. It is characterized by a comparator that compares the calculated stress with a preset value and issues a command when the stress exceeds the set value.The purpose of the comparator is to Torsional vibration monitoring of a rotating shaft system that reliably and appropriately detects self-excited vibrations caused by inserting a rotary shaft system into a power transmission system in relation to stress at any position on the rotating shaft system. It provides equipment.

まず回転軸系の捩り振動とその応力について説
明する。
First, torsional vibration of the rotating shaft system and its stress will be explained.

回転軸系の捩り振動は複数の固有振動数を有し
ており、その固有振動数夫々の振動モード成分の
合成として振動していることは先に述べた。
As mentioned above, the torsional vibration of the rotating shaft system has a plurality of natural frequencies, and it vibrates as a composite of the vibration mode components of each of the natural frequencies.

固有振動数の小さい方から1次、2次と番号を
振り、その振動数をfi夫々の振動モード形をGi
(x)モード成分をAiとする。この振動モード形
Gi(x)は第2図に実線で示すようなものであ
り、軸系の位置xの時刻tのi次の振動Yi(x、
t)は Yi(x、t)=Gi(x)・AiCps(2πfit+ei) …(3) で表わされ、合成された振動Y(x、t)は Y(x、t)=ΣYi(x、t) …(4) であり、通常振動はこの形で計測(観察)されて
いる。
Number the natural frequencies from the smallest to the first and second, and define the frequency as fi and the vibration mode shape of each as Gi.
(x) Let the mode component be Ai. This vibration mode type
Gi(x) is as shown by the solid line in Figure 2, and is the i-th vibration Yi(x,
t) is expressed as Yi(x, t)=Gi(x)・AiC ps (2πfit+ei)...(3), and the synthesized vibration Y(x, t) is expressed as Y(x, t)=ΣYi(x , t) ...(4), and vibrations are usually measured (observed) in this form.

なお位置XpとXとの関係は上間振動モード形
を用いて Yi(x、t)=Gi(x)Y(xp、t)/Gi(xp) …(5) で表わされる。
The relationship between the position X p and X is expressed using the upper vibration mode form as follows: Yi (x, t) = Gi (x) Y (x p , t) / Gi (x p ) (5).

一方応力は振動の振幅に比例するから、第2図
点線で示すように位置xにおける次モード比例定
数をαi(x)、応力をVi(x)とすると Vi(x)=αi(x)Yi(x、t) …(6) であり、(5)式の関係から位置xのi次の応力はxp
を用いて Vi(x)=αi(x)Gi(x)Y(xp、t)/Gi(xp
…(7) で求められるものである。
On the other hand, stress is proportional to the amplitude of vibration, so if the next mode proportionality constant at position x is αi (x) and stress is Vi (x), as shown by the dotted line in Figure 2, then Vi (x) = αi (x) Yi (x, t) ...(6), and from the relationship of equation (5), the i-th stress at position x is x p
Vi (x) = αi (x) Gi (x) Y (x p , t) / Gi (x p ) using
...(7).

回転軸系は複数個の固有振動数を有している
が、この発明ではタービン発電機の商用周波数以
下のもののみに着目する。
Although the rotating shaft system has a plurality of natural frequencies, this invention focuses only on those below the commercial frequency of the turbine generator.

さて、次に直列キヤパシタの説明であるが、昨
今の電力需要の増加に伴ないますます多く使用さ
れるものであり、送電線の送電容量のアツプを図
るために設置される。
Now, let's talk about series capacitors, which are increasingly used as the demand for electricity increases these days, and are installed to increase the power transmission capacity of power transmission lines.

送電容量は送電系統のリアクタンスに反比例す
るので、(8)式に示すように、誘導リアクタンス
ωLを容量リアクタンス(−1/ωc)で相殺し、
リアクタンスxを小さくすることによつて送電容
量をアツプする処理が取られるようになつた。
Since the power transmission capacity is inversely proportional to the reactance of the power transmission system, as shown in equation (8), the inductive reactance ωL is canceled out by the capacitive reactance (-1/ωc),
Processes have begun to be taken to increase power transmission capacity by reducing reactance x.

X=ωL−1/ωc …(8) なお送電線固有の抵抗は誘導リアクタンスに比
べ十分小さく無視することができるので、 L:送電系統のインダクタンス C:直列キヤパシタの容量 とおくと、送電系統の固有振動数feは fe=1/2π√ …(9) で表わされ、直列キヤパシタによる補償度を上げ
るに従つて送電系統の固有振動数feも上昇する。
X=ωL−1/ωc …(8) Since the resistance specific to the power transmission line is sufficiently small compared to the inductive reactance and can be ignored, if L is the inductance of the power transmission system and C is the capacity of the series capacitor, then the resistance of the power transmission system is The natural frequency fe is expressed as fe=1/2π√ (9), and as the degree of compensation by the series capacitor increases, the natural frequency fe of the power transmission system also increases.

すなわち(1)式からも分るように、固有振動数fe
が上昇して行けば、回転軸系の固有振動数fmの
送電系統周波数に近いものから順次その和fe+
fmが送電系統周波数となり、自励振動の危険に
晒されることになる。その時小さな外力が作用し
て自励振動が拡大して行けば、その固有振動数
fmに対する振動モード成分が増加し、その応力
が大きくなれば軸系が破壊されることになるが、
軸系の位置によつて許容できる応力は異なるもの
である。
In other words, as can be seen from equation (1), the natural frequency fe
As increases, the sum fe +
fm becomes the transmission system frequency and is exposed to the risk of self-excited vibration. At that time, if a small external force acts and the self-excited vibration expands, its natural frequency
If the vibration mode component for fm increases and the stress increases, the shaft system will be destroyed.
The allowable stress differs depending on the position of the shaft system.

従つて本発明では送電系統の固有振動数の変動
のみを検知するのではなく、それによつて生じる
回転軸系の対応する固有振動数の捩り振動を検知
し、その捩り振動により任意位置の応力が一定値
を超えるか否かを判定することによつて軸系を監
視するものである。
Therefore, the present invention does not only detect fluctuations in the natural frequency of the power transmission system, but also detects the torsional vibration of the corresponding natural frequency of the rotating shaft system caused by the fluctuation, and the torsional vibration can reduce stress at any position. The shaft system is monitored by determining whether the value exceeds a certain value.

すなわち本発明の監視装置では、回転軸系の定
位置xpにおいて捩り振動Y(xp、t)を検出する
振動検出装置を有している。また得られた捩り振
動Y(xp、t)を回転軸系の固有振動数のうち、
送電系統周波数より低い周波数(たとえばf1
f2)を有する1次および2次のモード成分Y1(xp
t)、Y2(xp、t)に分解して取り出す分解装置
を有している。
That is, the monitoring device of the present invention includes a vibration detection device that detects torsional vibration Y (x p , t) at a fixed position x p of the rotating shaft system. In addition, the obtained torsional vibration Y (x p , t) is expressed as the natural frequency of the rotating shaft system.
Frequencies lower than the grid frequency (e.g. f 1 and
f 2 ) with first and second order modal components Y 1 (x p ,
t) and Y 2 (x p , t).

次にこのモード成分Yix(p、t)i=1、2に
おける回転軸系の応力を求める訳であるが、第2
図点線に示したように振幅に対する応力の比例定
数αi(x)は位置xにより変化する。
Next, we will find the stress in the rotating shaft system at this mode component Yix ( p , t)i = 1, 2.
As shown by the dotted line in the figure, the proportionality constant αi(x) of stress to amplitude changes depending on the position x.

すなわち精度よくその応力を求めようとするの
であれば、その絶対値が最大である位置xにおい
て応力を求めれば良いことになる。(第2図のα1
(x1)、α2(x2)) 従つて振動検出装置をその位置に取り付けて捩
り振動を検出すれば話は早いが、モードによつて
その位置が異なることや、回転軸系によつては物
理的に設置できない場合もある。
In other words, if you want to find the stress with high accuracy, it is sufficient to find the stress at the position x where its absolute value is maximum. (α 1 in Figure 2
(x 1 ), α 2 (x 2 )) Therefore, it would be quick to install a vibration detection device at that position and detect torsional vibration, but the position differs depending on the mode and the rotation axis system In some cases, it may not be possible to physically install it.

そこで定位置xpから任意位置の捩り振動を推定
し、かつ応力を求めることになるが、(7)式の関係
を利用しモード別演算装置により任意位置の応力
の計算を行なう。
Therefore, the torsional vibration at an arbitrary position is estimated from the fixed position x p and the stress is determined, and the stress at an arbitrary position is calculated by a mode-specific arithmetic unit using the relationship in equation (7).

以上の手順によつて、任意位置xでのi次の応
力Vi(x)が求められる。この応力が大きくなる
ことは自励振動が誘起され始めたことであるので
ある一定値と常に比較しておき、一定値以上にな
つた時すみやかに各種の手を打てば良い。
Through the above procedure, the i-th stress Vi(x) at an arbitrary position x is determined. When this stress increases, it means that self-excited vibration has begun to be induced, so it is best to constantly compare it with a certain value and take various measures as soon as it exceeds a certain value.

本発明では比較器によつて応力を常に監視する
ようにしている。
In the present invention, stress is constantly monitored by a comparator.

このように本発明の監視装置によれば直列キヤ
パシタの設置されている送電系統に接続されてい
るタービン発電機の回転軸系を自励振動の発達に
判なう故障から保護することができ、しかも直列
キヤパシタの効率的な運用を行なうことも可能と
なる。
As described above, according to the monitoring device of the present invention, it is possible to protect the rotating shaft system of a turbine generator connected to the power transmission system in which the series capacitor is installed from failures caused by the development of self-excited vibrations. Moreover, it is also possible to efficiently operate the series capacitor.

以下本発明を第3図に示す一実施例について説
明する。
The present invention will be described below with reference to an embodiment shown in FIG.

1は高圧および低圧のタービンであつて発電機
2と連結されており、それらの回転軸は一直線を
なし回転軸系Zを構成している。なお発電機2の
出力は図示しない送電系統に接続されており、直
列キヤパシタが挿入されている。
Reference numeral 1 denotes high-pressure and low-pressure turbines, which are connected to a generator 2, and whose rotating shafts form a straight line and constitute a rotating shaft system Z. Note that the output of the generator 2 is connected to a power transmission system (not shown), and a series capacitor is inserted.

11は上記回転軸系Zの定位置xpに配置される
歯環・12は同歯環11と対向して配設されるピ
ツクアツプである。
Reference numeral 11 indicates a tooth ring disposed at a fixed position x p of the rotation axis system Z. Reference numeral 12 indicates a pick-up disposed opposite the tooth ring 11.

すなわち歯環11には等間隔にたとえば60個の
歯形が形成されており、ピツクアツプ12はその
歯形が1つ通過するごとに1つのパルスを発生す
るものである。13は上記ピツクアツプ12の出
力を受けて定位置xpの捩り振動を求める捩り振動
計であり、上記ピツクアツプ12が発するパルス
間隔を微分することによつて捩り振動Y(xp、t)
は得られる。これら歯環11・ピツクアツプ1
2、捩り振動計13によつて捩り振動検出装置が
構成されるが、検出精度を向上する為に歯環11
等の数を多くすることも可能である。
That is, the tooth ring 11 has, for example, 60 tooth profiles formed at equal intervals, and the pick-up 12 generates one pulse each time one of the tooth profiles passes. Reference numeral 13 denotes a torsional vibration meter which receives the output of the pickup 12 and measures the torsional vibration at a fixed position x p , and calculates the torsional vibration Y (x p , t) by differentiating the pulse interval emitted by the pickup 12.
can be obtained. These tooth rings 11 and pick-up 1
2. The torsional vibration detecting device is composed of the torsional vibration meter 13, but in order to improve the detection accuracy, the tooth ring 11 is
It is also possible to increase the number of .

14は第1のフイルタであつて定位置xpにおけ
る捩り振動Y(xpt)のうち、上記回転軸系Zの
固有振動モードのうちのタービン発電機の商用周
波数より低い周波数を有するモード成分(たとえ
ば1次と2次モード成分)以外のもの、 〓i=3 Yi(xp、t) を除去するものである。
Reference numeral 14 denotes a first filter, which is a mode component having a frequency lower than the commercial frequency of the turbine generator, among the natural vibration modes of the rotating shaft system Z , of the torsional vibration Y (x p t) at the fixed position x p. (for example, the first-order and second-order mode components), 〓 i=3 Yi(x p , t) is removed.

15,15′はバンドパルスフイルタであつて、
上記第1のフイルタ14を通過した捩り振動の送
電系統周波数より低い周波数を有するものの和
Y1(xp、t)+Y2(xp、t)のうち夫々対応するも
ののみを通過させるものであつて、バンドパルス
フイルタ15を通過したものは1次のモード成分
Y1(xp、t)でありバンドパルスフイルタ15′
を通過するものは2次のモード成分Y2(xp、t)
である。これら第1のフイルタ14および2つの
バンドパルスフイルタ15,15′で分解装置が
構成される。
15 and 15' are band pulse filters,
The sum of torsional vibrations that have passed through the first filter 14 and have a frequency lower than the power transmission system frequency.
It allows only corresponding ones of Y 1 (x p , t) + Y 2 (x p , t) to pass through, and those that have passed through the band pulse filter 15 are primary mode components.
Y 1 (x p , t) and band pulse filter 15'
The one passing through is the second-order mode component Y 2 (x p , t)
It is. The first filter 14 and the two band pulse filters 15, 15' constitute a decomposition device.

16,16′は乗算器、17,17′は設定器で
あつて、(7)式に示す任意位置xi(i=1、2)に
おけるi次の応力Vi(xi)を求めるための定数 αi(xi)Gi(xi)/Gi(xp)(i=1、2) が夫々設定器17,17′に記憶されており、バ
ンドパルスフイルタ15,15′の出力Yi(xp
t)と乗算器16,16′において乗ぜられる。
16, 16' are multipliers, 17, 17' are setters, and constant αi is used to obtain the i-th stress Vi (xi) at an arbitrary position xi (i=1, 2) shown in equation (7). (xi) Gi(xi)/Gi(x p ) (i=1, 2) are stored in the setters 17, 17', respectively, and the output Yi(x p ,
t) in multipliers 16 and 16'.

これら乗算器16,16′と設定器17,7
1′によつてモード別演算装置が構成されるが、
1つの振動モードに対し任意位置xiは1つに限る
ことなく複数の位置において夫々演算するように
しても良い。
These multipliers 16, 16' and setters 17, 7
1' constitutes a mode-specific arithmetic unit, but
The arbitrary position xi for one vibration mode is not limited to one, but may be calculated at a plurality of positions.

18,18′はピーク検出器であつて、乗算器
16,16′で得られた応力のピーク値を検出す
るものであつて、たとえば乗算器16で第4図に
示すような1次振動モードに対する位置x1での応
力波形V1(x1)が得られたとすると、そのピーク
値Vk 1(x1)K=1・2…を検出するものである。
Reference numerals 18 and 18' are peak detectors that detect the peak values of stress obtained by the multipliers 16 and 16'. If the stress waveform V 1 (x 1 ) at the position x 1 is obtained, then its peak value V k 1 (x 1 )K=1·2 is detected.

19ないし21および19′ないし21′は比較
器、22ないし24および22′ないし24′は設
定器であつて、設定器22ないし24には位置x1
の応力の注意・警告・危検となる夫々の水準の値
δ1ないしδ3 1が、また設定器22′ないし24′には
位置x2の同様なδ1 2ないしδ3 2が夫々設定されてお
り、ピーク検出器18,18′の出力とその設定
値が比較器19などで比較されている。たとえば
比較器19ではK番目のピークVk 1(x1)がδ1′より
大きく、かつVK+1 1(x1)もδ1′より大きい時に出力
を行ない、クパイクノイズ等による誤差動を防止
している。
19 to 21 and 19' to 21' are comparators, and 22 to 24 and 22' to 24' are setters .
The values δ 1 to δ 3 1 of the stress caution, warning, and danger inspection levels are respectively set in the setting devices 22' to 24', and similar values δ 1 2 to δ 3 2 at the position x 2 are set, respectively. The outputs of the peak detectors 18, 18' and their set values are compared by a comparator 19 or the like. For example, the comparator 19 outputs when the Kth peak V k 1 (x 1 ) is larger than δ 1 ' and V K+1 1 (x 1 ) is also larger than δ 1 ', thereby eliminating error movements due to spike noise, etc. It is prevented.

なお比較器19,19′の出力は警報器Aに、
また比較器20,20′の出力は直列キヤパシタ
を除却する信号T1を発生させ、更に比較器21,
21′の出力は発電機出力を送電系統から切り離
すためのトリツプ信号T2を発生させる。
The outputs of comparators 19 and 19' are sent to alarm A.
The outputs of the comparators 20, 20' also generate a signal T 1 which eliminates the series capacitor, and furthermore the outputs of the comparators 21, 20'
The output of 21' generates a trip signal T2 for disconnecting the generator output from the power grid.

直列キヤパシタを挿入した送電系統の振動とタ
ービン発電機の回転軸系の捩り振動の二重共振に
よる自励振動が発生した場合、回転軸系の捩り振
動の減衰率にもより異なるが数秒から数十秒の間
で回転軸系が故障するような巨大振動に成長する
可能性があるが、本発明の一実施例の監視装置で
は全ての測定・演算・判定を電気的に行なつてい
るので応答速度が速く、監視装置として十分機能
する。
When self-excited vibration occurs due to the double resonance of the vibration of the power transmission system in which the series capacitor is inserted and the torsional vibration of the rotating shaft system of the turbine generator, it will last from several seconds to several seconds, depending on the damping rate of the torsional vibration of the rotating shaft system. There is a possibility that the vibration will grow to such a huge extent that the rotating shaft system will break down within ten seconds, but in the monitoring device according to one embodiment of the present invention, all measurements, calculations, and judgments are performed electrically. It has a fast response speed and functions well as a monitoring device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の監視装置のブロツク図、第2図
は1次および2次のモード形および比例定数を示
した図、第3図は本発明の一実施例を示すブロツ
ク図、第4図は位置x1で得られる応力の図であ
る。 1:タービン、2:発電機、11:歯環、1
2:ピツクアツプ、13:振動計、14:第1の
フイルタ、15:バンドパスフイルタ、16:乗
算器、17:設定器、18:ピーク検出器、19
ないし21:比較器、22ないし24:設定器、
Z:回転軸系。
FIG. 1 is a block diagram of a conventional monitoring device, FIG. 2 is a diagram showing primary and secondary mode shapes and proportionality constants, FIG. 3 is a block diagram showing an embodiment of the present invention, and FIG. 4 is the stress diagram obtained at position x 1 . 1: Turbine, 2: Generator, 11: Tooth ring, 1
2: Pickup, 13: Vibration meter, 14: First filter, 15: Band pass filter, 16: Multiplier, 17: Setting device, 18: Peak detector, 19
to 21: comparator, 22 to 24: setting device,
Z: Rotation axis system.

Claims (1)

【特許請求の範囲】[Claims] 1 直列キヤパシタが装着された送電系統に接続
されたタービン発電機の回転軸系を監視する装置
であつて、回転軸系の定位置で捩り振動を検出す
る振動検出装置と、同装置によつて得られた振動
波形の上記回転軸系の固有振動数のうちのタービ
ン発電機の商用周波数より低い周波数を有するモ
ード成分のみを分解して取り出す分解装置と、あ
らかじめ求められている上記モード成分における
回転軸系の定位置の振動と任意位置との振動の関
係および同任意位置の振動と応力との関係から上
記任意位置のモード成分毎の応力を求めるモード
別演算装置と、同求められた応力をあらかじめ設
定した値と比較し応力が設定値を越えた時に指令
を出す比較器とからなることを特徴とする回転軸
系捩り振動監視装置。
1 A device for monitoring the rotating shaft system of a turbine generator connected to a power transmission system equipped with a series capacitor, which includes a vibration detection device that detects torsional vibration at a fixed position of the rotating shaft system, and a vibration detection device that detects torsional vibration at a fixed position of the rotating shaft system. A decomposition device that decomposes and extracts only the mode component having a frequency lower than the commercial frequency of the turbine generator out of the natural frequencies of the rotating shaft system of the obtained vibration waveform, and a rotation at the above mode component determined in advance. A mode-specific calculation device that calculates the stress for each mode component at the arbitrary position from the relationship between the vibration at a fixed position of the shaft system and the vibration at an arbitrary position, and the relationship between the vibration and stress at the same arbitrary position, and the calculated stress A rotating shaft system torsional vibration monitoring device comprising a comparator that compares the stress with a preset value and issues a command when the stress exceeds the set value.
JP17098081A 1981-10-26 1981-10-26 Device for monitoring torsional vibration of rotary shaft system Granted JPS5872745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17098081A JPS5872745A (en) 1981-10-26 1981-10-26 Device for monitoring torsional vibration of rotary shaft system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17098081A JPS5872745A (en) 1981-10-26 1981-10-26 Device for monitoring torsional vibration of rotary shaft system

Publications (2)

Publication Number Publication Date
JPS5872745A JPS5872745A (en) 1983-04-30
JPH0155334B2 true JPH0155334B2 (en) 1989-11-24

Family

ID=15914899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17098081A Granted JPS5872745A (en) 1981-10-26 1981-10-26 Device for monitoring torsional vibration of rotary shaft system

Country Status (1)

Country Link
JP (1) JPS5872745A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171932A (en) * 1985-01-23 1986-08-02 Mitsubishi Electric Corp Vibration controlling device
JPS61290252A (en) * 1985-06-17 1986-12-20 Mitsubishi Electric Corp Vibration controller
JPS6262036A (en) * 1985-09-09 1987-03-18 Mitsubishi Electric Corp Vibration control device
JPS6288836A (en) * 1985-10-09 1987-04-23 Mitsubishi Electric Corp Earthquake vibration damper

Also Published As

Publication number Publication date
JPS5872745A (en) 1983-04-30

Similar Documents

Publication Publication Date Title
US6263738B1 (en) Vibration phasor monitoring system for rotating members
CN101617234B (en) Advanced real-time grid monitoring system
US5671112A (en) Digital integrator V/Hz relay for generator and transformer over-excitation protection
Chen et al. Fault features of large rotating machinery and diagnosis using sensor fusion
CA1322782C (en) Monitoring, testing and operator controlling of active noise and vibration cancellation systems
US6043664A (en) Method and apparatus for turn fault detection in multi-phase AC motors
US4454428A (en) Noise reduction means for a dynamic stabilizer for synchronous machines having torsional oscillations and method
CN107179440B (en) Subsynchronous oscillation inter-harmonic extraction method for online self-adaption frequency variation
JPH08503042A (en) Method and apparatus for monitoring the excitation of an axial compressor
JPH10511177A (en) Plant parameter detection by power spectral density monitoring
CN104677483B (en) A kind of digitized magneto-electric low-frequency shock transducer system
US6010303A (en) Apparatus and method of predicting aerodynamic and aeromechanical instabilities in turbofan engines
CN102185283A (en) Method for sub-synchronous current calculation and sub-synchronous over-current and divergent protection of generator
JP2017129583A (en) Vibration monitoring systems
EP0671067B1 (en) Method and arrangement for detecting and damping transient oscillations at or near a natural resonant frequency in a power transmission system
CA1111282A (en) Apparatus for monitoring phase currents and torsional vibrations of a turbine-generator
US4078434A (en) Method and apparatus for determining the parameters of natural vibration of a system
JPH0155334B2 (en)
Lawson et al. Minimization of power system stabilizer torsional interaction on large steam turbine-generators
CN112858906A (en) Method for eliminating influence of motor rotation speed disturbance on fatigue accumulation
US10254155B2 (en) Monitoring torsional oscillations in a turbine-generator
GB2038119A (en) Protecting against subsynchronous oscillations
US11495969B2 (en) Method and device for detection of sub-synchronous oscillations in a power system
JP3281333B2 (en) Shaft torsional vibration monitoring and protection device
JP3184812B2 (en) DC power transmission control device