JPH0262921A - Optical sensor - Google Patents

Optical sensor

Info

Publication number
JPH0262921A
JPH0262921A JP63215882A JP21588288A JPH0262921A JP H0262921 A JPH0262921 A JP H0262921A JP 63215882 A JP63215882 A JP 63215882A JP 21588288 A JP21588288 A JP 21588288A JP H0262921 A JPH0262921 A JP H0262921A
Authority
JP
Japan
Prior art keywords
optical sensor
laminate
spot
bias voltage
lamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63215882A
Other languages
Japanese (ja)
Inventor
Noritoshi Yamaguchi
文紀 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63215882A priority Critical patent/JPH0262921A/en
Publication of JPH0262921A publication Critical patent/JPH0262921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To accurately detect the intensity of incident light for the position shift of spot light by connecting adjacent lamination bodies about one point on a transparent conductive film so that the junction directions of P-I-N for bias voltages are opposite to each other. CONSTITUTION:For example, the lamination bodies (a)-(d) are formed divided as shown in a figure. Exposed parts 41a-41d are formed at parts of metallic electrodes 4a-4d and the electrodes 4a-4d are connected by conductive layers 5a and 5b through the exposed parts so that adjacent electrodes are not connected mutually. Terminals 6a and 6b to which the bias voltages are applied are formed at parts of the conductive layers 5a and 5b. Then if the incident light shifts in spot position and only the lamination bodies (a) and (b) operate as a sensor, the lamination bodies (a) and (b) are opposite in potential but the plus and minus bias voltages are applied to the terminals 6a and 6b, so opposite-directional photoelectric currents are generated in the lamination body (+a) and an output corresponding to the spot light incident on the lamination body (a) appears between the terminals 6a and 6b. Thus, the intensity detection with a small error can be performed.

Description

【発明の詳細な説明】 〔産業の利用分野〕 本発明は光学的測定装置、光スイツチング素子などに用
いられる光センサーに関するものであり、特にP−I−
N接合の非晶質半導体層を用いた光センサーである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical sensor used in an optical measuring device, an optical switching element, etc., and particularly relates to a P-I-
This is an optical sensor using an N-junction amorphous semiconductor layer.

〔発明の背景〕[Background of the invention]

本発明者は、P−I−N接合した非晶質半導体層を用い
た光センサーとして、透明導電膜を被着した透明基板上
に、非晶質半導体層と金属電極とから成る積層体を互い
に逆向に接続し、両積層体にバイアス電圧を印加する光
センサーを提案した(特願昭62−331620号)。
The present inventor has developed a laminate consisting of an amorphous semiconductor layer and a metal electrode on a transparent substrate coated with a transparent conductive film as an optical sensor using a P-I-N bonded amorphous semiconductor layer. We proposed an optical sensor that is connected in opposite directions and applies a bias voltage to both stacked bodies (Japanese Patent Application No. 62-331620).

第3図(a)、  (b)はその光センサーの構造を示
す断面図及び平面図である。
FIGS. 3(a) and 3(b) are a sectional view and a plan view showing the structure of the optical sensor.

透明基板31はガラス、透光性セラミックなどから成り
、該透明基板31の一主面には透明導電膜32が被着さ
れている。
The transparent substrate 31 is made of glass, translucent ceramic, or the like, and a transparent conductive film 32 is adhered to one main surface of the transparent substrate 31 .

透明導電膜32は酸化錫、酸化インジウム、酸化インジ
ウム錫などの金属酸化物膜で形成され、透明基板31の
一主面の少なくとも積層体x、  yに共通の膜となる
ように形成されている。
The transparent conductive film 32 is formed of a metal oxide film such as tin oxide, indium oxide, or indium tin oxide, and is formed to be a film common to at least the laminates x and y on one main surface of the transparent substrate 31. .

非晶質半導体層33は、少なくとも金属電極34X、3
4yが形成される積層体x、  y部分には、P−I−
N接合が形成されている。
The amorphous semiconductor layer 33 has at least metal electrodes 34X, 3
P-I-
An N junction is formed.

金属電極34x、34yは、非晶質半導体層33上に矩
形形状の間隔を置いて形成されている。
The metal electrodes 34x, 34y are formed on the amorphous semiconductor layer 33 with a rectangular interval.

以上のように、光センサーは、P−I−N接合された積
層体x、  yのダイオードが抱き合わされた構造にな
っている。
As described above, the optical sensor has a structure in which diodes of the laminated body x and y, which are connected by P-I-N, are tied together.

そして、金属電極34x、34y間に外部回路(図示せ
ず)から一定のバイアス電圧を印加しておく。今、積層
体Xの金属電極34xに+、積層体yの金属電極34y
に−でバイアス電圧をかけておくと、積層体X側の非晶
質半導体層33xには逆バイアス、積層体y側の非晶質
半導体層33yには順バイアスがかかることになる。
Then, a constant bias voltage is applied between the metal electrodes 34x and 34y from an external circuit (not shown). Now, + to the metal electrode 34x of the laminate X, and the metal electrode 34y of the laminate y.
If a bias voltage is applied at -, a reverse bias will be applied to the amorphous semiconductor layer 33x on the side of the stacked body X, and a forward bias will be applied to the amorphous semiconductor layer 33y on the side of the stacked body Y.

暗状態において、金属電極34x、34y間の抵抗は積
層体Xの逆方向抵抗Rxと積層体yの順方向抵抗Ryの
和になり、金属電極34x、34y間に流れる電流は、
該抵抗(Rx+Ry)に対応する。
In the dark state, the resistance between the metal electrodes 34x and 34y is the sum of the reverse resistance Rx of the laminate X and the forward resistance Ry of the laminate y, and the current flowing between the metal electrodes 34x and 34y is
This corresponds to the resistance (Rx+Ry).

上述の光センサーの透明基板31側より光照射される明
状態では、積層体X及び積層体yに光起電力が生じるが
、互いに逆電位であるため相殺され、実際には光起電流
は流れないものの、金属電極4Xに+、金属電極4yに
−のバイアス電圧が印加されているので、積層体aに逆
方向光電流(明電流)が発生する。なお、積層体yのダ
イオードを順方向抵抗から成る抵抗体とみなせる。
In the bright state where light is irradiated from the transparent substrate 31 side of the above-mentioned photosensor, photovoltaic force is generated in the laminates X and y, but since they have opposite potentials, they cancel each other out, and in reality, the photovoltaic current does not flow. Although not present, since a + bias voltage is applied to the metal electrode 4X and a - bias voltage is applied to the metal electrode 4y, a reverse photocurrent (bright current) is generated in the laminated body a. Note that the diode of the stacked body y can be regarded as a resistor consisting of forward resistance.

そして、2つの金属電極34x、34y間の電流は積層
体Xの金属電極4X−非晶質半導体層33XのNN−1
層−P層−透明導電膜32−積層体yの非晶質半導体層
33YのP層−1層−N層金屈電極34yに流れる。
The current between the two metal electrodes 34x and 34y is the metal electrode 4X of the stacked body X-NN-1 of the amorphous semiconductor layer 33X.
It flows into the layer-P layer-transparent conductive film 32-layer P layer-1 layer-N layer metal electrode 34y of the amorphous semiconductor layer 33Y of the stacked body y.

ここで、光センサー全体において見かけ上、光照射によ
って抵抗(バイアス電圧/明電流)が低下したことにな
り、光導電型センサーのようにはたらく。これにより、
照度−抵抗値特性がリニアとなり、T値が約1となる。
Here, the resistance (bias voltage/bright current) of the entire optical sensor appears to have decreased due to light irradiation, and it functions like a photoconductive type sensor. This results in
The illuminance-resistance value characteristic becomes linear, and the T value becomes approximately 1.

しかしながら、上述の光センサーは、P−IN接合され
た積層体x、  yであるダイオードが抱き合わされた
構造になっているために、両積層体x、  yに光が照
射されなければならないが、例えばカメラの露出調整用
などのように、光センサーの受光面に検出したい入射光
がスポットとして照射される場合、入射光を絞ったりす
ると、スポット照射位置が若干ずれてしまい、積層体X
と積層体yのいづれか一方しか照射されなくなることが
考えられる。このような場合、暗状態と同じ抵抗値又は
所定以下の明抵抗値しか得られず、入射光の強度を正確
に検出できないという問題点があり、カメラの露出用の
光センサーのように特定な用途には使用が困難であった
However, since the above-mentioned optical sensor has a structure in which diodes, which are P-IN junctioned stacked bodies x and y, are tied together, both stacked bodies x and y must be irradiated with light. For example, when the light-receiving surface of a photosensor is illuminated with the incident light that you want to detect as a spot, such as when adjusting the exposure of a camera, if you narrow down the incident light, the spot illumination position will shift slightly, and the laminated X
It is conceivable that only one of the laminates y and y will be irradiated. In such a case, the resistance value that is the same as that in the dark state or the bright resistance value that is less than a certain value is obtained, and there is a problem that the intensity of the incident light cannot be detected accurately. It was difficult to use it for this purpose.

〔本発明の目的〕[Object of the present invention]

本発明は、上述の光センサーの問題点に鑑み案出された
ものであり、その目的は検出したい入射光がスポットと
して照射される場合でも、また、その入射光を絞ったり
する場合でも、スポット照射位置が若干ずれても積層体
Xと積層体yとに同時に入射光が照射され、スポット入
射光の位置や照射面積による検出誤差が皆無となる光セ
ンサーを提供するものである。
The present invention was devised in view of the above-mentioned problems with optical sensors, and its purpose is to detect a spot even when the incident light to be detected is irradiated as a spot or when narrowing down the incident light. To provide an optical sensor in which incident light is irradiated onto a laminate X and a laminate y at the same time even if the irradiation position is slightly shifted, and there is no detection error due to the position of the spot incident light or the irradiation area.

〔問題点を解決するための具体的な手段〕本発明によれ
ば、上述の問題点を解決するために、透明導電膜を被覆
した透明基板上に、P−IN接合した非晶質半導体層と
バイアス電圧が印加される金属電極とから成る積層体を
、複数個形成した光センサーにおいて、前記透明導電膜
上の一点を中心に、隣接しあう積層体を、バイアス電圧
に対するP−I−Nの接合方向が互いに逆向に接続する
ように配置した光センサーが提供される。
[Specific means for solving the problem] According to the present invention, in order to solve the above-mentioned problem, an amorphous semiconductor layer P-IN bonded is formed on a transparent substrate coated with a transparent conductive film. In an optical sensor in which a plurality of stacked bodies are formed, each stacked body is formed of a plurality of stacked bodies each consisting of a metal electrode to which a bias voltage is applied. An optical sensor is provided in which the optical sensors are arranged such that the bonding directions of the optical sensors are connected in opposite directions.

〔実施例〕〔Example〕

以下、本発明の光センサーを図面に基づいて詳細に説明
する。
Hereinafter, the optical sensor of the present invention will be explained in detail based on the drawings.

第1図(a)は本発明に係る光センサーの構造を示す平
面図であり、第1図(b)は同図(a)中x−X線断面
図であり、第1図(c)は同図(a)中y−y線断面図
である。
FIG. 1(a) is a plan view showing the structure of the optical sensor according to the present invention, FIG. 1(b) is a cross-sectional view taken along line x-X in FIG. 1(a), and FIG. 1(c) is a sectional view taken along the line y-y in FIG.

本発明の光センサーは、透明導電膜2を被覆した透明基
板1上に、P−I−N接合した非晶質半導体層3とバイ
アス電圧が印加される金属電極4a〜4dとから成る積
層体a=dが複数個、例えば4つ形成され、前記透明導
電膜2上の一点を中心に、隣接しあう積層体a −dを
、バイアス電圧に対するP−I −Hの接合方向が互い
に逆向に接続するように配置した、即ち田の字状に分割
した構造となっている。
The optical sensor of the present invention is a laminate consisting of a transparent substrate 1 coated with a transparent conductive film 2, an amorphous semiconductor layer 3 bonded by P-I-N, and metal electrodes 4a to 4d to which a bias voltage is applied. A plurality of laminates a=d, for example four, are formed, and adjacent laminates a-d are arranged around one point on the transparent conductive film 2 so that the bonding directions of P-I-H with respect to the bias voltage are opposite to each other. They are arranged so that they are connected, that is, they have a structure that is divided into a square shape.

透明基板1はガラスなどから成り、該透明基板1の一主
面には透明導電膜2が被着されている。
A transparent substrate 1 is made of glass or the like, and a transparent conductive film 2 is adhered to one main surface of the transparent substrate 1.

透明導電膜2は酸化錫、酸化インジウム、酸化インジウ
ム錫などの金属酸化物膜で形成され、透明基板1の一主
面の少なくとも積層体a=dに共通の膜となるように形
成されている。具体的には透明基板1の一主面上にマス
クを装着し、上述の金属酸化物膜を被着したり、透明基
板1の一主面上に金属酸化物膜を被着した後、レジスト
・エツチング処理したりして形成されている。
The transparent conductive film 2 is formed of a metal oxide film such as tin oxide, indium oxide, indium tin oxide, etc., and is formed to be a film common to at least the laminate a=d on one main surface of the transparent substrate 1. . Specifically, a mask is attached to one main surface of the transparent substrate 1, and the above-mentioned metal oxide film is deposited, or after a metal oxide film is deposited on one main surface of the transparent substrate 1, a resist is applied.・It is formed by etching.

非晶質半導体層3は、少なくとも金属電極4a〜4dが
形成される積層体a ” d部分には、第1の導電型、
第2の導電型、第3の導電型を接合、即ちP−I−N接
合されて形成されている。具体的には、非晶質半導体層
3はシラン、ジシランなどのシリコン化合物ガスをグロ
ー放電で分解するプラズマCVD法や光CVD法等で被
着される非晶質シリコンなどから成り、PJ’43Pは
シランガスにジポランなどのP型ドーピングガスを混入
した反応ガスで形成され、153 Iはシランガスを反
応ガスとして形成され、NFi3Nはシランガスにフォ
スフインなどのN型ドーピングガスを混入した反応ガス
で形成される。
The amorphous semiconductor layer 3 has a first conductivity type,
The second conductivity type and the third conductivity type are joined together, that is, they are formed by a P-I-N junction. Specifically, the amorphous semiconductor layer 3 is made of amorphous silicon deposited by a plasma CVD method or a photo CVD method in which a silicon compound gas such as silane or disilane is decomposed by glow discharge. is formed from a reactive gas containing silane gas mixed with a P-type doping gas such as diporane, 153I is formed using silane gas as a reactive gas, and NFi3N is formed from a reactive gas containing silane gas mixed with an N-type doping gas such as phosphine. .

金属電極4a〜4dは、非晶質半導体層3上に放射状、
即ち田の字状に分割されて形成されている。具体的には
、フォトエツチング法では、金属電極4a〜4dは非晶
質半導体N3上にニッケル、アルニウム、チタン、クロ
ム等の金属膜を被着した後、該金属膜上にスピンコード
法等でフォトレジストを塗布し、プリベーク(〜100
°C)、露光パターン、現像、ポストベーク(120〜
150° C)、エツチング溶液浸漬、フォトレジスト
剥離、洗浄処理したりして所定パターンに形成される。
The metal electrodes 4a to 4d are arranged radially on the amorphous semiconductor layer 3,
In other words, it is formed by being divided into a rice field shape. Specifically, in the photoetching method, the metal electrodes 4a to 4d are formed by depositing a metal film of nickel, aluminum, titanium, chromium, etc. on the amorphous semiconductor N3, and then depositing a metal film on the metal film using a spin code method or the like. Apply photoresist and pre-bake (~100
°C), exposure pattern, development, post-bake (120~
150° C.), immersion in an etching solution, peeling off the photoresist, and cleaning to form a predetermined pattern.

また、リフトオフ法では、非晶質半導体層3上にフォト
レジストを金属電極4a〜4dの金属膜が被着形成され
ない所定パターンに形成し、ニッケル、アルニウム、チ
タン、クロム等の金属膜を被着し、フォトレジスト剥離
と同時に不要な金属膜を除去し、所定パターンの金属電
極4a〜4dが形成される。
In addition, in the lift-off method, a photoresist is formed on the amorphous semiconductor layer 3 in a predetermined pattern in which the metal films of the metal electrodes 4a to 4d are not deposited, and a metal film of nickel, alumium, titanium, chromium, etc. is deposited. Then, at the same time as the photoresist is peeled off, unnecessary metal films are removed to form metal electrodes 4a to 4d in predetermined patterns.

このように、複数個の積層体a −dが田の字状に分割
されて形成されたが、次に各積層体a w dの金属電
極4a〜4dでの接続及びバイアス電圧の印加力法につ
いて説明する。
In this way, a plurality of laminates a to d were formed by being divided into a square shape.Next, the connection of each laminate with the metal electrodes 4a to 4d and the application of bias voltage were performed. I will explain about it.

透明基板1上に形成された積層体a −dの金属電極4
a〜4dの一部に露出部41a〜41dを形成して、全
体を覆う絶縁樹脂などからなる保護膜5が形成される。
Metal electrodes 4 of the laminate a-d formed on the transparent substrate 1
Exposed portions 41a to 41d are formed in parts of a to 4d, and a protective film 5 made of insulating resin or the like is formed to cover the entire surface.

そして隣接しあう積層体a〜dの金属電極4a〜4d間
同士が接続されることがないように露出部41a〜41
dを介して導通層5a、5bによって接続される。即ち
、積層体aの金属電極4aは、隣接しあう積層体す及び
dの金属電極4b、4dに接続されることな(、導通層
5aを介して積層体aの対称部分にある積層体Cの金属
電極4cに接続される。また、積層体すの金属電極4b
は、導通層5bを介して積層体dの金属電極4dに接続
される。
Then, the exposed portions 41a to 41
They are connected by conductive layers 5a and 5b via d. That is, the metal electrode 4a of the laminate a is not connected to the metal electrodes 4b and 4d of the adjacent laminates A and d (the metal electrode 4a of the laminate A is not connected to the metal electrodes 4b and 4d of the adjacent laminates A and D (i.e., the metal electrode 4a of the laminate A is not connected to the metal electrodes 4b and 4d of the adjacent laminates A and D). The metal electrode 4b of the laminate is connected to the metal electrode 4c of the laminate.
is connected to the metal electrode 4d of the stacked body d via the conductive layer 5b.

これにより、積層体a及び積層体Cは、透明導電膜2を
通じて積層体す及び積層体dに逆向に接続されている。
Thereby, the laminate a and the laminate C are connected to the laminates 1 and d through the transparent conductive film 2 in opposite directions.

さらに、導通層5a、5bの一部にバイアス電圧を印加
する端子6a、6bを形成するように第2の絶縁保護膜
6が積層体a −d及び導通層5a、5b上に被膜され
る。
Furthermore, a second insulating protective film 6 is coated on the stacked bodies a to d and the conductive layers 5a and 5b so as to form terminals 6a and 6b for applying a bias voltage to parts of the conductive layers 5a and 5b.

具体的には、導通層5a、5bは、エポキシ樹脂、アク
リル樹脂、フェノール樹脂などの母材に金属粉粒が混合
された材料がスクリーン印刷などで形成され、第2の絶
縁保護膜6は、エポキシ樹脂、アクリル樹脂、フェノー
ル樹脂などの母材に遮光顔料、黒色系着色顔料を添加し
た材料をスクリーン印刷することにより形成される。
Specifically, the conductive layers 5a and 5b are formed by screen printing or the like using a material in which metal powder particles are mixed into a base material such as epoxy resin, acrylic resin, or phenol resin, and the second insulating protective film 6 is It is formed by screen printing a material in which a light-shielding pigment and a black colored pigment are added to a base material such as epoxy resin, acrylic resin, or phenol resin.

そして、この端子6a、6b間に外部回路(図示せず)
から一定のバイアス電圧を印加しておく。
An external circuit (not shown) is connected between these terminals 6a and 6b.
A constant bias voltage is applied from .

今、端子6aに「+」、端子6bに「−」のバイアス電
圧をかけておくと、積層体a及び積層体。
Now, if a bias voltage of "+" is applied to the terminal 6a and a bias voltage of "-" is applied to the terminal 6b, the laminate a and the laminate.

の非晶質半導体層3a、3Cには逆バイアス、積層体す
及び積層体dの非晶質半導体層3b、3dには順バイア
スがかかることになる。
A reverse bias is applied to the amorphous semiconductor layers 3a and 3C, and a forward bias is applied to the amorphous semiconductor layers 3b and 3d of the laminate d.

そして、第2図にしめす入射光がスポット先の状態を用
いて、光センサーの動作を説明する。
The operation of the optical sensor will be explained using the state in which the incident light is spotted as shown in FIG.

光センサーに全く入射光が照射されない状態では、上述
したように各積層体a ” dが抵抗体としてはたらく
When the optical sensor is not irradiated with any incident light, each of the laminated bodies a''d functions as a resistor as described above.

光センサーに照射される入射光のスポットが積層体a 
−dの交点に照射される場合(スポット1)、各積層体
a = dに光起電力が生じるものの、各積層体a−d
は、互いに逆電位であるため相殺され、端子6a、6層
間に光起電力に対応する電流の流れは生じない。しかし
、端子6aに「+」、端子6bに「−」のバイアス電圧
を印加されているので、積層体a及びCに逆方向光電流
が発生し、積層体a及びCに入射されるスポット光に対
応する出力が端子6a、6層間に導出される。なお、積
層体す及びdは、順方向のダイオードから成る抵抗体と
みなせる。
The spot of incident light irradiated on the optical sensor is the laminate a
-d intersection point (spot 1), a photovoltaic force is generated for each stack a = d, but each stack a - d
Since they are at opposite potentials, they cancel each other out, and no current flow corresponding to the photovoltaic force occurs between the terminal 6a and the 6th layer. However, since a "+" bias voltage is applied to the terminal 6a and a "-" bias voltage is applied to the terminal 6b, a reverse photocurrent is generated in the laminates a and C, and the spot light is incident on the laminates a and C. An output corresponding to 1 is derived between the terminal 6a and the 6th layer. Note that the laminated bodies S and D can be regarded as resistors consisting of forward-directed diodes.

つぎに、カメラの露出調整用などのように、入射光を絞
ったりするために、スポット照射位置が若干ずれてしま
い光センサーに照射される場合(スポット2)、センサ
ーとしてはたらぐ積層体a及びbのみである。そして、
光照射により、積層体a及び積層体すに光起電力が生じ
るものの、各積層体a及び積層体すは、互いに逆電位で
あるため相殺され、端子6a、6層間に光起電力に対応
する電流の流れは生じない。しかし、端子6aに「+」
、端子6bに「−」のバイアス電圧を印加されているの
で、積層体aに逆方向光電流が発生し、積層体aに入射
されるスポット光に対応する出力が端子6a、6層間に
導出される。
Next, when the spot irradiation position is slightly shifted and the light sensor is irradiated (spot 2) to narrow down the incident light, such as when adjusting the exposure of a camera, the laminate a that acts as a sensor is and b only. and,
Although a photovoltaic force is generated in the laminate a and the laminate 2 due to the light irradiation, each laminate a and the laminate 2 are at opposite potentials, so they cancel each other out, and the photovoltaic force is generated between the terminal 6a and the 6th layer. No current flow occurs. However, there is a "+" on terminal 6a.
Since a negative bias voltage is applied to the terminal 6b, a reverse photocurrent is generated in the laminate a, and an output corresponding to the spot light incident on the laminate a is output between the terminal 6a and the 6th layer. be done.

次に、3つの積層体bXc、dにのみスポット光が照射
される場合(スポット3)、センサーとしてはたらく積
層体す、c、dのみである。そして、光照射により、積
層体b、積層体C,積層体dに光起電力が生じるものの
、積層体す及び積層体dに対して、積層体Cは逆電位で
あるため相殺され、端子6a、6層間に光起電力に対応
する電流の流れは生じない。しかし、端子6aに「+」
、端子6bに「−」のバイアス電圧を印加されているの
で、積層体Cに逆方向光電流が発生し、積層体Cに入射
されるスポット光に対応する出力が端子6a、6層間に
導出される。なお、積層体b11層体dは順方向のダイ
オードとなり、導通層5bによって並列的に接続されて
成る抵抗体とみなせる。
Next, when only the three stacked bodies bXc and d are irradiated with the spotlight (spot 3), only the stacked bodies S, c, and d function as sensors. Although photovoltaic force is generated in the laminate b, laminate C, and laminate d by the light irradiation, the laminate C is at an opposite potential to the laminates 1 and d, so it is canceled out, and the photovoltaic force is canceled out by the terminal 6a. , no current flow corresponding to the photovoltaic force occurs between the six layers. However, there is a "+" on terminal 6a.
Since a negative bias voltage is applied to the terminal 6b, a reverse photocurrent is generated in the laminate C, and an output corresponding to the spot light incident on the laminate C is derived between the terminal 6a and the 6th layer. be done. Note that the laminated body b11 and the laminated body d serve as forward diode, and can be regarded as a resistor connected in parallel through the conduction layer 5b.

本発明では、特に積層体a−dを基板1の一点く中心点
)を中心に、例えば積層体a−dを田の字状に分割して
配置するとともに隣接しあう積層体a = dを透明導
電膜2を介して、互いに逆向に接続したため、光センサ
ーで検出したい入射光が光センサーの一部にスポットと
して照射されるカメラの露出調整用に用いた光センサー
の場合でも、スポット入射光が若干位置ずれを発生して
も検出誤差が少なく、入射光の強度を正確に検出できる
In the present invention, in particular, the laminates a to d are divided and arranged, for example, in the shape of a square, centering on one center point of the substrate 1, and the adjacent laminates a = d are arranged. Because they are connected in opposite directions through the transparent conductive film 2, the incident light that you want to detect with the optical sensor is illuminated as a spot on a part of the optical sensor.Even in the case of an optical sensor used for adjusting the exposure of a camera, the incident light is a spot. Even if a slight positional shift occurs, the detection error is small and the intensity of the incident light can be detected accurately.

尚、上述の光センサーでは、積層体a −dを田の字状
に4分割したが、基板1のある1点より放射状に6.8
・・・分割してもよい。また、非晶質半導体層がガラス
基板側から、P層、1層、N層を順次積層したP−T−
N接合したいるが、ガラス基板側から、N層、IEt、
P層を順次積層した非晶質半導体層でも構わない。
In the above-mentioned optical sensor, the laminate a to d is divided into four parts in a square shape, but 6.8
...It may be divided. In addition, the amorphous semiconductor layer is a P-T-
Although it is N-junction, from the glass substrate side, the N layer, IEt,
An amorphous semiconductor layer in which P layers are sequentially laminated may also be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明は透明導電膜を被覆した透明基板
上に、P−I−N接合した非晶質半導体層とバイアス電
圧が印加される金属電極とから成る積層体を、複数個形
成した光センサーにおいて、前記透明導電膜上の一点を
中心に、隣接しあう積層体を、バイアス電圧に対するP
−1−Hの接合方向が互いに逆向に接続するように配置
したため、光センサーで検出したい入射光が光センサー
の一部にスポットとして照射される場合でも、少なくと
も、隣接しあう積層体にに同時に入射光が照射され得る
程度のスポット光の位置ずれに対して、入射光の強度を
正確に検出でき、光センサーの使用用途を拡大できるも
のとなる。
As described above, the present invention forms a plurality of laminates each consisting of a P-I-N bonded amorphous semiconductor layer and a metal electrode to which a bias voltage is applied, on a transparent substrate coated with a transparent conductive film. In the optical sensor, adjacent stacked bodies are arranged around one point on the transparent conductive film at a P level relative to a bias voltage.
-1-H are arranged so that the bonding directions are opposite to each other, so even if the incident light that you want to detect with the optical sensor is irradiated as a spot on a part of the optical sensor, at least the adjacent laminates will be connected at the same time. The intensity of the incident light can be accurately detected even if the position of the spot light is shifted to the extent that the incident light can be irradiated, and the applications of the optical sensor can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明に係る光センサーの構造を示す平
面図であり、第1図(b)は同図(a)中x−X線断面
図であり、第1図(c)は同図(a)中y−y線断面図
である。 第2図は本発明に係る光センサーで入射されるスポット
光の状態による光センサーの動作を説明するためのみ平
面図である。第3図(a)、  (b)は従来の光セン
サーの構造を示す断面図及び平面図である。 1.31 ・ ・ 2.32 ・ ・ 3.33 ・ ・ 4a、 4b、 4c、 4d a、 b、 c、 d  ・ ・ 透明基板 透明導電膜 非晶質半導体層 金属電極 ・積層体
FIG. 1(a) is a plan view showing the structure of the optical sensor according to the present invention, FIG. 1(b) is a cross-sectional view taken along line x-X in FIG. 1(a), and FIG. 1(c) is a sectional view taken along the line y-y in FIG. FIG. 2 is a plan view for explaining the operation of the optical sensor according to the state of the spot light incident on the optical sensor according to the present invention. FIGS. 3(a) and 3(b) are a sectional view and a plan view showing the structure of a conventional optical sensor. 1.31 ・ ・ 2.32 ・ ・ 3.33 ・ ・ 4a, 4b, 4c, 4d a, b, c, d ・ ・ Transparent substrate Transparent conductive film Amorphous semiconductor layer Metal electrode/laminate

Claims (1)

【特許請求の範囲】 透明導電膜を被覆した透明基板上に、P−I−N接合し
た非晶質半導体層とバイアス電圧を印加する金属電極と
から成る積層体を、複数個形成した光センサーにおいて
、 前記透明導電膜上の一点を中心に、隣接しあう積層体を
、バイアス電圧に対するP−I−Nの接合方向が互いに
逆向に接続するように配置したことを特徴とする光セン
サー。
[Claims] An optical sensor in which a plurality of laminates each consisting of a P-I-N bonded amorphous semiconductor layer and a metal electrode for applying a bias voltage are formed on a transparent substrate coated with a transparent conductive film. An optical sensor, characterized in that adjacent laminates are arranged around one point on the transparent conductive film so that the P-I-N bonding directions relative to the bias voltage are connected in opposite directions.
JP63215882A 1988-08-30 1988-08-30 Optical sensor Pending JPH0262921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63215882A JPH0262921A (en) 1988-08-30 1988-08-30 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63215882A JPH0262921A (en) 1988-08-30 1988-08-30 Optical sensor

Publications (1)

Publication Number Publication Date
JPH0262921A true JPH0262921A (en) 1990-03-02

Family

ID=16679822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63215882A Pending JPH0262921A (en) 1988-08-30 1988-08-30 Optical sensor

Country Status (1)

Country Link
JP (1) JPH0262921A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031030A1 (en) * 2017-08-09 2019-02-14 株式会社カネカ Photoelectric conversion element and photoelectric conversion device
WO2019053959A1 (en) * 2017-09-13 2019-03-21 株式会社カネカ Photoelectric conversion element and photoelectric conversion device
US11402262B2 (en) 2017-11-15 2022-08-02 Kaneka Corporation Photoelectric conversion device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031030A1 (en) * 2017-08-09 2019-02-14 株式会社カネカ Photoelectric conversion element and photoelectric conversion device
JPWO2019031030A1 (en) * 2017-08-09 2020-08-27 株式会社カネカ Photoelectric conversion element and photoelectric conversion device
US11508866B2 (en) 2017-08-09 2022-11-22 Kaneka Corporation Photoelectric conversion element and photoelectric conversion device
WO2019053959A1 (en) * 2017-09-13 2019-03-21 株式会社カネカ Photoelectric conversion element and photoelectric conversion device
JPWO2019053959A1 (en) * 2017-09-13 2020-10-15 株式会社カネカ Photoelectric conversion element and photoelectric conversion device
US11125612B2 (en) 2017-09-13 2021-09-21 Kaneka Corporation Photoelectric conversion element and photoelectric conversion device
US11402262B2 (en) 2017-11-15 2022-08-02 Kaneka Corporation Photoelectric conversion device

Similar Documents

Publication Publication Date Title
WO2018214799A1 (en) Photoelectric sensor and manufacturing method therefor, and display device
JPH0262921A (en) Optical sensor
EP0613183B1 (en) Optical sensor and method of its manufacture
JP2706942B2 (en) Light sensor
JPS6097681A (en) Monolithic integrated circuit
JP2761730B2 (en) Photoelectric conversion device
JPH0737323Y2 (en) Color sensor
JPH0677526A (en) Plastic molded type photoelectric transducer and its manufacture
JPH01278077A (en) Photosensor
JPS63228766A (en) Solar battery
JPH01278079A (en) Photosensor
JPS6246278Y2 (en)
JPH01278078A (en) Photosensor
JPH0295217A (en) Optical sensor
JP2706953B2 (en) Photoelectric conversion device
JPS61148870A (en) Solid-state image sensor
JPH01248571A (en) Manufacture of optical sensor
JP2529248Y2 (en) Color sensor
JPH0294670A (en) Photosensor
JPH0262922A (en) Optical sensor
JPH04343276A (en) Light position detector
JP2764297B2 (en) Photoelectric conversion device
KR20230133999A (en) Input sensing part and driving method thereof
JPS63304675A (en) Semiconductor element device
JPS63164280A (en) Position detecting device