JPH0262581B2 - - Google Patents

Info

Publication number
JPH0262581B2
JPH0262581B2 JP6026386A JP6026386A JPH0262581B2 JP H0262581 B2 JPH0262581 B2 JP H0262581B2 JP 6026386 A JP6026386 A JP 6026386A JP 6026386 A JP6026386 A JP 6026386A JP H0262581 B2 JPH0262581 B2 JP H0262581B2
Authority
JP
Japan
Prior art keywords
carbon black
carbon
molded product
polyester resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6026386A
Other languages
Japanese (ja)
Other versions
JPS62215635A (en
Inventor
Yasuo Kishida
Tetsuo Nishikawa
Toshio Pponma
Hitoshi Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP6026386A priority Critical patent/JPS62215635A/en
Publication of JPS62215635A publication Critical patent/JPS62215635A/en
Publication of JPH0262581B2 publication Critical patent/JPH0262581B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、帯電防止材料や電池、スイツチ等の
接点材料として好適な表面導電性に優れた樹脂成
形物に関する。 (従来の技術) 熱可塑性樹脂に、炭素繊維或いはカーボンブラ
ツクを均一に分散させて導電性を付与することは
従来より広く行われている。就中、炭素繊維は補
強材としても優れた性能を有し、導電材料として
益々需要が増大している。例えば、特開昭57−
133155号公報「導電性樹脂」では、熱可塑性樹脂
に、直径が5μm以下の極細の炭素繊維を配合した
導電特性と機械的特性に優れた導電性樹脂が示さ
れている。又特開昭60−206864号公報「導電性材
料」では、導電性材料紛末を配合した熱可塑性樹
脂成形物の表面を、該熱可塑性樹脂を溶解する溶
剤で処理し、導電性材料粉末の一部を成形物表面
に露出させることが示されている。 (発明が解決しようとする問題点) 炭素繊維或いはカーボンブラツクの導電性は
鉄、銅、アルミニウム等の金属材料と比較した場
合には良好といえず、熱可塑性樹脂に配合した組
成物の導電性も充分とはいえない。そのため、高
レベルの導電性を得るためには、炭素繊維或いは
カーボンブラツクの配合量を多くせざるを得ない
という問題点があつた。しかしながら、配合量を
多くした場合には加熱溶融時の流動性が悪くな
り、射出成形法では加工困難という問題を生じ、
又炭素繊維の場合には溶融混練或いは射出成形の
際に繊維の折損が著しくなり、配合量増大に応じ
た導電性の向上が得られないという問題点があつ
た。 一方、特開昭60−206864号公報「導電性材料」
に開示されている成形品表面を溶剤処理して表面
導電性を向上させる方法では、溶剤による膨潤に
基くと思われる機械的物性の低下という問題点が
あつた。 (問題点を解決するための手段) 本発明者らは、かゝる従来技術の有する問題点
を解決すべく鋭意研究した結果、炭素繊維やカー
ボンブラツクを配合したポリエステル樹脂成形物
の表面を、該ポリエステル樹脂を膨潤、溶解しな
い溶液中で解重合することにより、機械的物性を
低下させることなく、大巾に導電性が向上するこ
とを見出し、本発明を達成した。 すなわち本発明は、炭素繊維及び/又はカーボ
ンブラツクを10〜60重量%含有するポリエステル
樹脂成形物において、その表面が該ポリエステル
樹脂を膨潤、溶解しない溶液中で解重合処理され
て炭素繊維及び/又はカーボンブラツクの一部が
成形物表面に露出していることを特徴とする導電
性樹脂成形物である。 以下、本発明を詳細に説明する。 本発明に使用する炭素繊維としては、アクリロ
ニトリル系、ピツチ系、セルロース系、リグニン
系等の種々のものが使用可能であり、炭素質、黒
鉛質の制限も受けないが、導電性付与及び機械的
特性の面より、10-2Ω・cm以下の抵抗率、100
Kg/mm2以上の引張強度を有するアクリロニトリル
系或いはピツチ系の炭素繊維を用いるのが好まし
い。 炭素繊維の形状は、特に制限を受けないが、通
常の場合直径3〜20μm、長さ0.1〜6mm程度のも
のを用いる。 カーボンブラツクは、アセチレンブラツク、チ
ヤンネルブラツク、フアーネスブラツク等の各種
カーボンブラツクが含まれ、これらの1種又は2
種以上を用いることも出来る。カーボンブラツク
の形状は、分散性、流動性より粒径の小さなもの
を用いることが好ましい。 炭素繊維及び/又はカーボンブラツクの配合量
は、10〜60重量%とすることが肝要であり、特に
15〜50重量%とすることが好ましい。配合量が10
重量%未満の場合は、導電性が不充分となり、本
発明の目的を達成することが出来ない。又60重量
%を越える場合は、溶融時の流動性が極めて悪く
なり、成形することが困難となる。 本発明に使用するポリエステル樹脂は、分子鎖
中にエステル結合を有する直鎖状ポリマーであれ
ばよく、通常ジカルボン酸成分とジオール成分の
反応により得られる。ジカルボン酸成分として
は、例えばテレフタル酸、イソフタル酸、フタル
酸、ナフタレン−2,6−ジカルボン酸、ナフタ
レン−2,7−ジカルボン酸、ジフエニル−4,
4′−ジカルボン酸、ジフエノキシエタンジカルボ
ン酸、ジフエニルエーテルジカルボン酸等の芳香
族ジカルボン酸やコハク酸、シユウ酸、アジピン
酸、セバシン酸等の脂肪族ジカルボン酸、及びこ
れらのエステル形成性誘導体等が挙げられる。ジ
オール成分としては、例えばエチレングリコー
ル、1,4−ブタンジオール、トリメチレングリ
コール、ペンタメチレングリコール、ヘキサメチ
レングリコール、ネオペンチルグリコール、ジエ
チレングリコール、トリエチレングリコール、
1,1−シクロヘキサンジメタノール、1,4−
シクロヘキサンジメタノール、キシリレングリコ
ール、2,2−ビスβ−ヒドロキシフエニルプロ
パン、及びこれらのエステル形成性誘導体等が挙
げられる。特に好ましいポリエステル樹脂として
は、ジカルボン酸成分にテレフタル酸、ジオール
成分にエチレングリコールを用いたポリエチレン
テレフタレートとジオール成分に1,4−ブタン
ジオールを用いたポリブチレンテレフタレートが
挙げられる。 本発明に於いて実施する解重合は、前記ポリエ
ステル樹脂を膨潤或いは溶解しない溶液中で行う
ことが、成形物の機械的物性を低下させない点で
肝要である。解重合の方法としては、例えば水で
加水分解する方法、無機酸で加水分解する方法、
水酸化ナトリウム又は炭酸ナトリウム等で加水分
解する方法或いはメタノールやエチレングリコー
ル等でアルコール分解する方法等を挙げることが
できるが、特に水酸化ナトリウムや水酸化カリウ
ム、炭酸ナトリウム等を用いてアルカリ加水分解
する方法が好ましい。アルカリ加水分解に使用す
るアルカリ成分としては、通常水酸化ナトリウム
を用いる。又、アルカリ濃度としては、通常、4
〜20重量%水溶液とし、80℃以上で2分間以上、
アルカリ加水分解処理を実施することが一般的で
ある。 (発明の効果) 本発明にかゝる導電性樹脂成形物は、表面に炭
素繊維及び/又はカーボンブラツクの一部が露出
しており、極めて優れた表面導電性と機械的物性
を併せ持つ導電性材料として、帯電防止材料や電
池、スイツチ等の接点材料として使用することが
できる。 (実施例) 以下、実施例を用いて更に説明を行う。尚、実
施例に示す物性の測定は以下の方法によつた。 (1) 引張強度 ASTM D−638に準じて測定した。 (2) 曲げ弾性率 ASTM D−790に準じて測定した。 (3) 表面抵抗 130mm×13mm×0.8mmの成形品に対し、電極面積
1cm2、電極と成形品の接圧300g/cm2及び電極間
距離10cmとして測定した。 実施例 1 ポリブチレンテレフタレート樹脂(ポリプラス
チツクス(株)製、ジユラネツクス2002)及び直径
8μm、長さ6mmのアクリロニトリル系の炭素繊維
(東邦レーヨン(株)製、ベスフアイトHTA−C6−
NR)を表−1に示す割合で配合し、溶融混練し
てペレツトを得た。 次いで、得られたペレツトを通常行われている
ポリブチレンテレフタレート樹脂の成形条件で射
出成形し、試験片を作成した。 得られた試験片を表−2に示す条件でアルカリ
加水分解処理した後、表面処理した試験片の諸物
性を測定した。その結果を表−3に示す。尚、表
−2の処理−3には、比較例として、ポリブチレ
ンテレフタレート樹脂の溶媒であるo−クロルフ
エノールを用いて成形物表面を解重合せず溶解し
た場合を示した。結果を表−3に示す。 尚、表−1No.5の試料は、加熱溶融時の流動性
が極めて悪く、ペレツト化することはできなかつ
た。 本発明にかゝる導電性樹脂組成物は、表−3に
示す結果に見られるように、極めて優れた機械的
特性と表面導電性を有する。
(Industrial Application Field) The present invention relates to a resin molded product with excellent surface conductivity suitable as an antistatic material and a contact material for batteries, switches, etc. (Prior Art) It has been widely practiced in the past to impart conductivity to thermoplastic resin by uniformly dispersing carbon fibers or carbon black therein. In particular, carbon fiber has excellent performance as a reinforcing material and is increasingly in demand as a conductive material. For example, JP-A-57-
Publication No. 133155, "Conductive Resin," describes a conductive resin with excellent electrical conductivity and mechanical properties, which is made by blending ultrafine carbon fibers with a diameter of 5 μm or less into a thermoplastic resin. Furthermore, in JP-A No. 60-206864 ``Conductive Materials'', the surface of a molded thermoplastic resin compounded with conductive material powder is treated with a solvent that dissolves the thermoplastic resin, and the conductive material powder is treated with a solvent that dissolves the thermoplastic resin. It is shown that a portion is exposed on the surface of the molded product. (Problems to be solved by the invention) The conductivity of carbon fiber or carbon black is not good when compared with metal materials such as iron, copper, and aluminum, and the conductivity of the composition blended with thermoplastic resin is poor. is also not sufficient. Therefore, in order to obtain a high level of conductivity, there was a problem that the amount of carbon fiber or carbon black had to be increased. However, when the blending amount is increased, the fluidity during heating and melting deteriorates, causing problems such as difficulty in processing with the injection molding method.
Furthermore, in the case of carbon fibers, there is a problem in that the fibers are significantly broken during melt-kneading or injection molding, and the conductivity cannot be improved in proportion to the increase in the blending amount. On the other hand, Japanese Patent Application Laid-open No. 60-206864 "Electrically conductive material"
The method of improving surface conductivity by treating the surface of a molded article with a solvent, as disclosed in , had the problem of deterioration of mechanical properties, which was thought to be due to swelling caused by the solvent. (Means for Solving the Problems) As a result of intensive research in order to solve the problems of the prior art, the present inventors found that the surface of a polyester resin molded product containing carbon fiber or carbon black, The present invention was accomplished by discovering that by depolymerizing the polyester resin in a solution that does not swell or dissolve it, electrical conductivity can be greatly improved without deteriorating mechanical properties. That is, the present invention provides a polyester resin molded product containing 10 to 60% by weight of carbon fibers and/or carbon black, whose surface is depolymerized in a solution that does not swell or dissolve the polyester resin, thereby forming carbon fibers and/or carbon black. This is a conductive resin molded product characterized by a part of the carbon black being exposed on the surface of the molded product. The present invention will be explained in detail below. Various carbon fibers such as acrylonitrile-based, pitch-based, cellulose-based, and lignin-based fibers can be used as the carbon fibers used in the present invention. In terms of characteristics, resistivity of 10 -2 Ω・cm or less, 100
It is preferable to use acrylonitrile-based or pitch-based carbon fibers having a tensile strength of Kg/mm 2 or more. Although the shape of the carbon fiber is not particularly limited, it is usually about 3 to 20 μm in diameter and 0.1 to 6 mm in length. Carbon black includes various types of carbon black such as acetylene black, channel black, and furnace black.
It is also possible to use more than one species. Regarding the shape of carbon black, it is preferable to use one having a smaller particle size in view of dispersibility and fluidity. It is important that the amount of carbon fiber and/or carbon black is 10 to 60% by weight, especially
It is preferably 15 to 50% by weight. The amount is 10
If it is less than % by weight, the conductivity will be insufficient and the object of the present invention cannot be achieved. If it exceeds 60% by weight, the fluidity during melting becomes extremely poor, making it difficult to mold. The polyester resin used in the present invention may be any linear polymer having an ester bond in its molecular chain, and is usually obtained by reacting a dicarboxylic acid component and a diol component. Examples of dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,
Aromatic dicarboxylic acids such as 4'-dicarboxylic acid, diphenoxyethane dicarboxylic acid, diphenyl ether dicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, oxalic acid, adipic acid, sebacic acid, and ester-forming derivatives thereof etc. Examples of diol components include ethylene glycol, 1,4-butanediol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, diethylene glycol, triethylene glycol,
1,1-cyclohexanedimethanol, 1,4-
Examples include cyclohexanedimethanol, xylylene glycol, 2,2-bisβ-hydroxyphenylpropane, and ester-forming derivatives thereof. Particularly preferred polyester resins include polyethylene terephthalate using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the diol component, and polybutylene terephthalate using 1,4-butanediol as the diol component. It is important that the depolymerization carried out in the present invention be carried out in a solution that does not swell or dissolve the polyester resin, in order to avoid deteriorating the mechanical properties of the molded product. Depolymerization methods include, for example, a method of hydrolysis with water, a method of hydrolysis with an inorganic acid,
Methods of hydrolysis using sodium hydroxide or sodium carbonate, etc., or methods of alcoholysis using methanol, ethylene glycol, etc. can be mentioned, but in particular, alkaline hydrolysis using sodium hydroxide, potassium hydroxide, sodium carbonate, etc. can be mentioned. The method is preferred. As the alkaline component used in alkaline hydrolysis, sodium hydroxide is usually used. Also, the alkaline concentration is usually 4
~20% by weight aqueous solution, at 80°C or higher for 2 minutes or more,
It is common to carry out an alkaline hydrolysis treatment. (Effects of the Invention) The conductive resin molded product according to the present invention has a part of carbon fiber and/or carbon black exposed on the surface, and has extremely excellent surface conductivity and mechanical properties. As a material, it can be used as an antistatic material and a contact material for batteries, switches, etc. (Example) Hereinafter, further explanation will be given using an example. The physical properties shown in the Examples were measured by the following methods. (1) Tensile strength Measured according to ASTM D-638. (2) Flexural modulus Measured according to ASTM D-790. (3) Surface resistance Measured on a molded product of 130 mm x 13 mm x 0.8 mm, with an electrode area of 1 cm 2 , a contact pressure between the electrode and the molded product of 300 g/cm 2 , and a distance between the electrodes of 10 cm. Example 1 Polybutylene terephthalate resin (Dyuranecs 2002, manufactured by Polyplastics Co., Ltd.) and diameter
Acrylonitrile carbon fiber (manufactured by Toho Rayon Co., Ltd., Besuphite HTA-C6-) with a length of 8 μm and a length of 6 mm.
NR) were blended in the proportions shown in Table 1 and melt-kneaded to obtain pellets. Next, the obtained pellets were injection molded under the usual molding conditions for polybutylene terephthalate resin to prepare test pieces. After the obtained test piece was subjected to alkaline hydrolysis treatment under the conditions shown in Table 2, various physical properties of the surface-treated test piece were measured. The results are shown in Table-3. In addition, as a comparative example, Process-3 in Table-2 shows the case where o-chlorophenol, which is a solvent for polybutylene terephthalate resin, was used to dissolve the surface of the molded product without depolymerizing it. The results are shown in Table-3. The sample No. 5 in Table 1 had extremely poor fluidity during heating and melting, and could not be pelletized. The conductive resin composition according to the present invention has extremely excellent mechanical properties and surface conductivity, as seen from the results shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 2 ポリエチレンテレフタレート樹脂(カネボウ合
繊(株)製、EFG−6)、炭素繊維(東邦レーヨン(株)
製、HTA−C6−N)及びカーボンブラツクを表
−4に示す割合で配合し、溶融混練してペレツト
を得た。 次いで得られたペレツトを用いて、通常行われ
ているポリエチレンテレフタレート樹脂の成形条
件で射出成形し、試験片を作成した。 得られた試験片に対し、実施例1の表−2に示
す条件で表面処理を施した後、諸物性の測定を行
つた。結果を表−5に示す。 尚、表−4のNo.10の試料は、加熱溶融時の流動
性が極めて悪く、ペレツト化ができなかつた。
[Table] Example 2 Polyethylene terephthalate resin (manufactured by Kanebo Gosen Co., Ltd., EFG-6), carbon fiber (manufactured by Toho Rayon Co., Ltd.)
HTA-C6-N) and carbon black were blended in the proportions shown in Table 4 and melt-kneaded to obtain pellets. Next, the obtained pellets were injection molded under the usual molding conditions for polyethylene terephthalate resin to prepare test pieces. The obtained test piece was subjected to surface treatment under the conditions shown in Table 2 of Example 1, and then various physical properties were measured. The results are shown in Table-5. Incidentally, sample No. 10 in Table 4 had extremely poor fluidity during heating and melting, and could not be pelletized.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 炭素繊維及び/又はカーボンブラツクを10〜
60重量%含有するポリエステル樹脂成形物におい
て、その表面が該ポリエステル樹脂を膨潤、溶解
しない溶液中で解重合処理されて炭素繊維及び/
又はカーボンブラツクの一部が成形物表面に露出
していることを特徴とする導電性樹脂成形物。 2 炭素繊維及び/又はカーボンブラツクが15〜
50重量%である特許請求の範囲第1項記載の成形
物。 3 ポリエステル樹脂がポリブチレンテレフタレ
ート及びポリエチレンテレフタレートである特許
請求の範囲第1項記載の成形物。 4 解重合処理がアルカリ加水分解である特許請
求の範囲第1項記載の成形物。
[Claims] 1. 10 to 10 carbon fibers and/or carbon black
In a polyester resin molded product containing 60% by weight, its surface is depolymerized in a solution that does not swell or dissolve the polyester resin, resulting in carbon fibers and/or carbon fibers.
Or a conductive resin molded article characterized in that a part of the carbon black is exposed on the surface of the molded article. 2 Carbon fiber and/or carbon black is 15~
50% by weight of the molded product according to claim 1. 3. The molded article according to claim 1, wherein the polyester resin is polybutylene terephthalate and polyethylene terephthalate. 4. The molded article according to claim 1, wherein the depolymerization treatment is alkaline hydrolysis.
JP6026386A 1986-03-17 1986-03-17 Molded article of electrically conductive resin Granted JPS62215635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6026386A JPS62215635A (en) 1986-03-17 1986-03-17 Molded article of electrically conductive resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6026386A JPS62215635A (en) 1986-03-17 1986-03-17 Molded article of electrically conductive resin

Publications (2)

Publication Number Publication Date
JPS62215635A JPS62215635A (en) 1987-09-22
JPH0262581B2 true JPH0262581B2 (en) 1990-12-26

Family

ID=13137090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6026386A Granted JPS62215635A (en) 1986-03-17 1986-03-17 Molded article of electrically conductive resin

Country Status (1)

Country Link
JP (1) JPS62215635A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725932B2 (en) * 1987-12-18 1995-03-22 株式会社アルファ Antistatic resin material
JP2862578B2 (en) * 1989-08-14 1999-03-03 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド Resin composition
JPH06260017A (en) * 1993-03-04 1994-09-16 Otsuka Chem Co Ltd Conductive thermoplastic resin composition
US20050128877A1 (en) * 2001-12-21 2005-06-16 Morinobu Endo Alarm electronic timepiece and conductive spring

Also Published As

Publication number Publication date
JPS62215635A (en) 1987-09-22

Similar Documents

Publication Publication Date Title
EP1342246B1 (en) Conductive polyester/polycarbonate blends, methods for preparation thereof, and articles derived therefrom
US3764576A (en) Moldable polybutylene terephthalate compositions containing acicular calcium metasilicate
EP0572911A1 (en) Liquid crystal polyester resin composition and molded article
WO2022004235A1 (en) Thermoplastic resin composition, member, method for producing same, and method for imparting electroconductivity to thermoplastic resin composition
JPH05247328A (en) Composition derived from recycled polycarbonate and polyester
JPH0262581B2 (en)
JP3373398B2 (en) Flame retardant polyester resin composition for lighting parts with antistatic properties
EP1144510B1 (en) Polyester molding composition
JP5224686B2 (en) Mixture for molding conductive thermoplastic resin composition and molded article formed by molding the mixture
JP2002128998A (en) Flame-retardant polyester resin composition
JP2002146679A (en) Carbon fiber bundle, resin composition, forming material and formed product using the same
JP3456104B2 (en) Resin composition
JPH0245659B2 (en)
JP2005239926A (en) Thermoplastic resin containing filler and its use
JP3860291B2 (en) Thermoplastic polyester resin composition
JP3378179B2 (en) Flame-retardant polyester resin composition for contact electric / electronic parts having low gas property and contact electronic parts comprising the same
JP2597668B2 (en) Flame retardant polyester composition
JPS63272536A (en) Manufacture of conductive resin molded product
JP2001049095A (en) Thermoplastic polyester resin composition
JP2694697B2 (en) Conductive resin composition
JPH0469097B2 (en)
JP2005225126A (en) Method for producing molding of conductive thermoplastic resin
JP2000109657A (en) Thermoplastic polyester resin composition
JPH0641406A (en) Flame-retardant polyester resin composition
JP3122551B2 (en) Resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees