JPH0262200B2 - - Google Patents

Info

Publication number
JPH0262200B2
JPH0262200B2 JP59154937A JP15493784A JPH0262200B2 JP H0262200 B2 JPH0262200 B2 JP H0262200B2 JP 59154937 A JP59154937 A JP 59154937A JP 15493784 A JP15493784 A JP 15493784A JP H0262200 B2 JPH0262200 B2 JP H0262200B2
Authority
JP
Japan
Prior art keywords
cement
weight
solidified
incineration ash
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59154937A
Other languages
Japanese (ja)
Other versions
JPS6132000A (en
Inventor
Tatsuo Mazaki
Norimitsu Kurumada
Yasuhiro Suzuki
Mamoru Shibuya
Setsuo Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENRYOKU KK
NITSUKI KK
Original Assignee
KYUSHU DENRYOKU KK
NITSUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENRYOKU KK, NITSUKI KK filed Critical KYUSHU DENRYOKU KK
Priority to JP59154937A priority Critical patent/JPS6132000A/en
Publication of JPS6132000A publication Critical patent/JPS6132000A/en
Publication of JPH0262200B2 publication Critical patent/JPH0262200B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の目的 purpose of invention

【産業上の利用分野】[Industrial application field]

本発明は、放射性廃棄物の焼却処理により発生
する焼却灰の固化処理方法の改良に関する。
The present invention relates to an improvement in a method for solidifying incineration ash generated by incineration of radioactive waste.

【従来の技術】[Conventional technology]

原子力施設からの低レベル放射性廃棄物を焼却
処理したときに発生した焼却灰は、そのままドラ
ム缶に詰め保管しているのが現状である。 しかし、このような保管は、安全の見地からも
減容性向上の要請からも十分なものとはいえず、
改善が望ましい。貯蔵安定性を高めるために最も
実際的な方法としては、セメント固化法がある
が、しばしば物性の好ましくない固化体ができる
ことが、日本原子力学会の昭和55年の年会で指摘
された。 焼却灰の組成は、焼却された放射性廃棄物によ
つて異なるが、一般にはシリカ、マグネシア、石
灰、アルミナ等が主成分であつて、微量成分とし
て各種金属あるいは金属酸化物等が混入してい
る。 焼却灰をセメントで固化処理するとき、焼却灰
に含まれるある種の微量成分がセメントの水和硬
化に影響をおよぼし、固化体の物性低下をまね
く。例えば、焼却灰中にAl等の金属が含まれて
いる場合、焼却灰、セメントおよび水を混練する
と、セメントペーストは強いアルカリ性を示すの
で金属はイオン化して、同時に水素ガスが発生す
る。そのためセメント固化体中に気泡や亀裂が生
じて、固化体の比重が小さくなり、強度も低下す
る。 また、ZnOやPbOの金属酸化物が混入している
と、少量でもセメントの水和が阻害され、セメン
トの凝結時間が著しく遅延され、混入量が多くな
ると硬化不良をひき起こす。 さらに、アルカリ液と接触して溶解度の小さい
水酸化物を生成するMg、Fe等の金属塩化合物が
含まれていると、同様にセメントの凝結時間が遅
延し、大幅に遅延すると、満足すべき固化体が得
られない。 一方、別の固化処理方法として、溶融固化法す
なわち焼却灰をマイクロ波、高周波等により加熱
溶融し、冷却固化する方法が提案されている(日
本原子力学会の昭和54年年会、昭和58年秋の分科
会)。しかしその加熱装置は技術的に難しい問題
点があり、未だ研究開発の段階にある。開発でき
ても装置価格、消費エネルギー等を考えると、著
しい減容性というメリツトにもかかわらず、どの
程度実用性があるか、現在のところ不明である。
Currently, incineration ash generated when low-level radioactive waste from nuclear facilities is incinerated is stored in drums. However, this type of storage is not sufficient from both a safety standpoint and the need to improve volume reduction.
Improvement is desirable. The most practical method for increasing storage stability is cement solidification, but it was pointed out at the 1981 annual meeting of the Atomic Energy Society of Japan that it often produces solidified solids with unfavorable physical properties. The composition of incinerated ash varies depending on the radioactive waste incinerated, but generally the main components are silica, magnesia, lime, alumina, etc., with various metals or metal oxides mixed in as trace components. . When incineration ash is solidified with cement, certain trace components contained in the incineration ash affect the hydration hardening of the cement, leading to a decline in the physical properties of the solidified product. For example, if the incinerated ash contains a metal such as Al, when the incinerated ash, cement, and water are mixed together, the cement paste exhibits strong alkalinity, so the metal is ionized and hydrogen gas is generated at the same time. As a result, bubbles and cracks are generated in the solidified cement, which reduces the specific gravity and strength of the solidified cement. Furthermore, if metal oxides such as ZnO or PbO are mixed in, even a small amount will inhibit the hydration of the cement, significantly delaying the setting time of the cement, and if the amount mixed in is large, it will cause poor hardening. Furthermore, the presence of metal salt compounds such as Mg and Fe that produce hydroxides with low solubility on contact with alkaline solutions similarly retards the setting time of the cement, and it should be satisfied that the setting time is significantly delayed. No solidified material is obtained. On the other hand, as another solidification treatment method, a method has been proposed in which the incinerated ash is heated and melted using microwaves, high-frequency waves, etc., and then cooled and solidified. Subcommittee). However, this heating device has technical problems and is still in the research and development stage. Even if it can be developed, it is currently unclear how practical it will be, considering the cost of the equipment, energy consumption, etc., despite the merit of significant volume reduction.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

本発明は、放射性廃棄物の焼却灰の固化処理法
として実用的なセメント固化をとりあげ、前述の
ようなセメント固化体の物性不良の問題を解決
し、長期にわたつて安定に貯蔵できる固化体とす
る改良方法を提供する。 発明の構成
The present invention adopts practical cement solidification as a solidification treatment method for radioactive waste incineration ash, solves the problem of poor physical properties of solidified cement as described above, and creates a solidified material that can be stored stably over a long period of time. We provide an improved method for Composition of the invention

【問題点を解決するための手段】[Means to solve the problem]

本発明の処理方法は、放射性廃棄物の焼却処理
により発生する焼却灰の処理に当つて、水性媒体
中で焼却灰にアルカリ物質を混合する前処理を行
なつたのち、セメントを加えて混練し固化するこ
とを特徴とする。
In the treatment method of the present invention, incineration ash generated from radioactive waste incineration is pretreated by mixing an alkaline substance with the incineration ash in an aqueous medium, and then cement is added and kneaded. Characterized by solidification.

【作 用】[Effect]

アルカリを用いた前処理をすれば、焼却灰中に
含まれているある種の金属はイオン化し、同時に
水素ガスが発生する。このガス発生がセメントと
の混練に先立つて起り、発生可能なガスのほとん
どが放出されるので、固化体中に気泡が含有され
なくなる。 また、ZnOやPbOは、セメントの水和によつて
遊離してくるCa(OH)2と複塩を形成し、この複
塩がセメント粒子の表面をおおつて水和の進行を
阻害するものと考えられる。焼却灰中にZnOや
PbOが含まれていても、あらかじめアルカリで処
理することにより、このような複塩をセメントと
の混練に先立つて析出させておけば、セメントの
水和過程でセメント粒子の表面をおおうことがな
くなるので、水和阻害が防止できる。 さらに、溶解度の小さい水酸化物生成の場合も
同様の機構で水和を妨げるものと考えられるが、
この種の水酸化物を生成する可能性のある金属塩
化合物が焼却灰中に含まれていても、あらかじめ
アルカリで処理し、水酸化物を沈澱させておけ
ば、同様にセメントの水和過程でセメント粒子表
面への水酸化物の沈着がなくなり、水和阻害が防
止できる。 このようにして、セメント固化体の物性を低下
させる焼却灰中の微量の金属、金属酸化物および
金属塩化合物による悪影響をとり除くことができ
る。
When pre-treated with an alkali, certain metals contained in the incinerated ash are ionized and at the same time hydrogen gas is generated. This gas generation occurs prior to kneading with cement, and most of the gas that can be generated is released, so that no air bubbles are contained in the solidified material. In addition, ZnO and PbO form double salts with Ca(OH) 2 liberated by cement hydration, and this double salt covers the surface of cement particles and inhibits the progress of hydration. Conceivable. ZnO and other substances are found in the incineration ash.
Even if PbO is contained, if such double salts are precipitated before mixing with cement by pretreatment with alkali, they will not cover the surface of cement particles during the cement hydration process. Therefore, hydration inhibition can be prevented. Furthermore, the formation of hydroxides with low solubility is thought to inhibit hydration by a similar mechanism;
Even if the incineration ash contains metal salt compounds that can generate this type of hydroxide, if the ash is treated with alkali in advance to precipitate the hydroxide, the hydration process of cement can be prevented. This eliminates the deposition of hydroxide on the surface of cement particles and prevents hydration inhibition. In this way, it is possible to eliminate the adverse effects of trace amounts of metals, metal oxides, and metal salt compounds in the incineration ash that degrade the physical properties of the solidified cement.

【実施態様】[Embodiment]

アルカリ物質は、上記した作用を十分に発揮す
るCa(OH)2を使用することが好ましい。Ca(H)2
の飽和溶液は高PHを示し、上記した作用を効果的
に発揮すると同様に、それ自体セメントの水和生
成物の1種であつて、セメントの水和硬化に悪影
響を与えることはない。 しかし、焼却灰中に粒径の大きな金属(アルカ
リ物と反応して水素ガスを発生する金属)が含ま
れていると、金属とアルカリ液による前処理工程
での水素ガス発生が徐々に進行し、前処理に長時
間を要する場合がある。このような焼却灰を処理
するには、アルカリ物質として前記Ca(OH)2
NaOH、KOHのようなアルカリ金属の水酸化物
を併用するのが好ましい。前処理におけるアルカ
リ液のPHが高くなり、前処理時間を短縮すること
ができる。ただし、NaOH、KOHのようなアル
カリ金属の水酸化物は、硬化セメントの組織を粗
にし、セメント固化体の強度に悪影響を与える傾
向があるので、添加量は、水素ガスを発生する金
属のセメント固化体に及ぼす影響をとり除くに必
要な最少量にとどめたい。 前処理は、焼却灰の組成や撹拌の強さによつて
異なるが、温度は常温でよく、所要時間は1〜数
10時間、通常は数〜10数時間である。 実施に当つて、前処理(焼却灰、水およびアル
カリ物質の添加混合)は、後続のセメントを混練
する同じミキサー中で行なうのが好都合である。
十分に撹拌して前処理したのち、ひきつづいて同
じミキサー中にセメントを投入し混練できるの
で、前処理用装置を特に備えなくてもよい。 セメントの使用量は、固化体に必要な物性が得
られるよう、実験的に定めればよい。 実施例 1 下記の組成(重量%、以下同じ)の模擬焼却灰
を用意した。主原料には、製紙クレー(填料、塗
被料)として使用されているタルク、カオリン、
ロウ石を1000℃で焼成し用いた。 SiO2 42.7% Al2O3 19.7% MgO 3.1% Fe2O3 17.7% CaO 3.3% ZnO 3.0% 未燃焼のカーボン 5.0% その他 2.5% この模擬焼却灰100重量部に対し、固形分12%
(重量)のCa(OH)2スラリー125重量部を添加し、
室温で、モルタルミキサーを用いて約6時間撹拌
しながら前処理した。 次に、ポルトランドセメントを、110重量部加
え(セメント/水の重量比1.0)混練し、混練物
を型枠に充填し、20℃、湿空中にて養生したとこ
ろ1日後硬化した。 1日後、硬化した固化体を離型しさらに20℃、
湿空中にて養生し、圧縮強度を想定したところ、
養生1週間後で148Kg/cm2、1ケ月後は223Kg/cm2
であつた。 前処理をせず同じ条件で、水、ポルトランドセ
メントを加え、混練したものは、混練後1週間経
過しても硬化しなかつた。 実施例 2 実施例1の模擬焼却灰100重量部に、金属アル
ミニウム粉末0.5重量部を添加し、アルミニウム
を含む模擬焼却灰を用意した。 この模擬焼却灰100重量部に対し、ポルトラン
ドセメント110重量部、水110重量部を加え、室温
にてモルタルミキサーを用いて混練し、混練物を
型枠に注入し、20℃、湿空中にて養生した。しか
し、1週間経過しても硬化しなかつた。 一方、この模凝焼却灰100重量部に対し、固形
分12%(重量)のCa(OH)2スラリー125重量部を
添加し、室温にてモルタルミキサーを用いて、約
12時間撹拌しながら前処理した。ついで、ポルト
ランドセメント110重量部を加え(セメント/水
の重量比1.0)混練し、混練物を型枠に注入し、
20℃湿空中にて養生したところ、1日後硬化し、
比重1.60の固化体を得た。前処理なしの場合とく
らべると、前処理の効果が確認できた。しかし、
硬化した固化体を離型し、さらに20℃、湿空中に
て養生し、圧縮強度を測定したところ、養生1週
間後で77Kg/cm2、1カ月後は80Kg/cm2であり、十
分な強度が得られなかつた。 そこで、前記模擬焼却灰100重量部に対し、固
形分12%(重量)のCa(OH)2スラリー122重量部
および25%(重量)NaOH水溶液4重量部を加
え、前記と同様に前処理した。ついで、ポルトラ
ンドセメント110重量部を加え(セメント/水の
重量比1.0)、前記と同様に混練し、養生し、1日
後、比重1.80の固化体を得た。さらに圧縮強度を
測定したところ、養生1週間後234Kg/cm2、1ケ
月後320Kg/cm2の値が得られた。金属アルミニウ
ムを含む焼却灰に対する前処理に際して、アルカ
リ物質としてCa(OH)2およびNaOHの併用が、
より効果的であることが確認できた。 発明の効果 本発明の処理方法によれば、焼却灰中の微量な
金属および金属酸化物がセメント固化体の物性に
与える悪影響を、前処理によりとり除いて、良好
な物性の固化体を得ることができる。 使用する薬剤は市販の入手容易なものであり、
価格も低廉である。 要する設備も簡単で、放射性廃棄物または廃液
のセメント固化処理のための既存の設備があれ
ば、直ちに実施できる。
As the alkaline substance, it is preferable to use Ca(OH) 2 , which fully exhibits the above-mentioned effects. Ca(H) 2
A saturated solution of chloride exhibits a high pH and effectively exerts the above-mentioned effects, but it is itself a type of hydration product of cement and does not have an adverse effect on the hydration hardening of cement. However, if the incineration ash contains metals with large particle sizes (metals that generate hydrogen gas by reacting with alkaline substances), hydrogen gas generation will gradually progress during the pretreatment process using the metals and alkaline liquid. , pretreatment may take a long time. To treat such incineration ash, Ca(OH) 2 is added as an alkaline substance.
It is preferable to use an alkali metal hydroxide such as NaOH or KOH in combination. The PH of the alkaline solution in pretreatment becomes higher, and the pretreatment time can be shortened. However, alkali metal hydroxides such as NaOH and KOH tend to coarsen the structure of hardened cement and have a negative effect on the strength of the solidified cement. It is desired to keep the amount to the minimum necessary to eliminate the effect on the solidified material. Pretreatment varies depending on the composition of the incinerated ash and the strength of stirring, but the temperature may be room temperature, and the time required may vary from 1 to several minutes.
10 hours, usually several to tens of hours. In practice, the pretreatment (additive mixing of incineration ash, water and alkaline substances) is conveniently carried out in the same mixer in which the subsequent cement is kneaded.
After sufficient stirring and pretreatment, the cement can be subsequently introduced into the same mixer and kneaded, so there is no need to provide any special pretreatment equipment. The amount of cement to be used may be determined experimentally so that the required physical properties of the solidified product can be obtained. Example 1 Simulated incineration ash having the following composition (weight %, same hereinafter) was prepared. The main raw materials include talc, kaolin, which is used as paper clay (filler, coating),
Rouseite was fired at 1000℃ and used. SiO 2 42.7% Al 2 O 3 19.7% MgO 3.1% Fe 2 O 3 17.7% CaO 3.3% ZnO 3.0% Unburned carbon 5.0% Others 2.5% Solid content 12% for 100 parts by weight of this simulated incineration ash
Add 125 parts by weight of Ca(OH) 2 slurry (by weight);
Pretreatment was carried out at room temperature with stirring using a mortar mixer for about 6 hours. Next, 110 parts by weight of Portland cement was added and kneaded (cement/water weight ratio 1.0), and the kneaded mixture was filled into a mold and cured at 20° C. in a humid atmosphere, whereupon it hardened after one day. After one day, the hardened solidified product was released from the mold and further heated at 20℃.
After curing in humid air and assuming compressive strength,
148Kg/cm 2 after 1 week of curing, 223Kg/cm 2 after 1 month
It was hot. When water and Portland cement were added and kneaded under the same conditions without pretreatment, the product did not harden even after one week had passed after kneading. Example 2 0.5 parts by weight of metallic aluminum powder was added to 100 parts by weight of the simulated incinerated ash of Example 1 to prepare simulated incinerated ash containing aluminum. To 100 parts by weight of this simulated incineration ash, 110 parts by weight of Portland cement and 110 parts by weight of water were added and kneaded at room temperature using a mortar mixer. I took care of myself. However, it did not harden even after one week had passed. On the other hand, to 100 parts by weight of this simulated coagulated incineration ash, 125 parts by weight of Ca(OH) 2 slurry with a solid content of 12% (by weight) was added, and approximately
Pretreatment was carried out with stirring for 12 hours. Next, 110 parts by weight of Portland cement was added and kneaded (cement/water weight ratio 1.0), and the kneaded mixture was poured into the formwork.
When cured in humid air at 20℃, it hardened after one day.
A solidified material with a specific gravity of 1.60 was obtained. The effect of pretreatment was confirmed when compared with the case without pretreatment. but,
The hardened solidified material was released from the mold, further cured at 20°C in a humid atmosphere, and its compressive strength was measured; it was 77Kg/cm 2 after one week of curing and 80Kg/cm 2 after one month, which is sufficient. I couldn't get the strength. Therefore, 122 parts by weight of a Ca(OH) 2 slurry with a solid content of 12% (by weight) and 4 parts by weight of a 25% (by weight) NaOH aqueous solution were added to 100 parts by weight of the simulated incineration ash, and the mixture was pretreated in the same manner as above. . Next, 110 parts by weight of Portland cement was added (cement/water weight ratio 1.0), kneaded and cured in the same manner as above, and after one day, a solidified product with a specific gravity of 1.80 was obtained. Furthermore, when the compressive strength was measured, values of 234 Kg/cm 2 were obtained after one week of curing and 320 Kg/cm 2 after one month. When pre-treating incineration ash containing metallic aluminum, the combination of Ca(OH) 2 and NaOH as alkaline substances is effective.
It was confirmed that it is more effective. Effects of the Invention According to the treatment method of the present invention, the adverse effects of trace amounts of metals and metal oxides in the incineration ash on the physical properties of cement solidified bodies can be removed by pretreatment, thereby obtaining solidified bodies with good physical properties. Can be done. The drugs used are commercially available and easily available.
The price is also low. The equipment required is simple and can be implemented immediately if there is existing equipment for cement solidification treatment of radioactive waste or waste liquid.

Claims (1)

【特許請求の範囲】 1 放射性廃棄物の焼却処理により生じる焼却灰
の処理に当つて、水性媒体中で焼却灰にアルカリ
物質を混合する前処理を行なつたのち、これにセ
メントを加えて混練し固化することを特徴とする
固化処理方法。 2 アルカリ物質としてCa(OH)2を添加する特
許請求の範囲第1項に記載の方法。 3 アルカリ物質としてCa(OH)2およびNaOH
(またはKOH)を添加する特許請求の範囲第1項
に記載の方法。
[Scope of Claims] 1. When treating incinerated ash produced by incineration of radioactive waste, the incinerated ash is pretreated by mixing an alkaline substance in an aqueous medium, and then cement is added and kneaded. A solidification treatment method characterized by solidification. 2. The method according to claim 1, wherein Ca(OH) 2 is added as an alkaline substance. 3 Ca(OH) 2 and NaOH as alkaline substances
(or KOH).
JP59154937A 1984-07-25 1984-07-25 Method of solidifying and treating incinerating ash Granted JPS6132000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59154937A JPS6132000A (en) 1984-07-25 1984-07-25 Method of solidifying and treating incinerating ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59154937A JPS6132000A (en) 1984-07-25 1984-07-25 Method of solidifying and treating incinerating ash

Publications (2)

Publication Number Publication Date
JPS6132000A JPS6132000A (en) 1986-02-14
JPH0262200B2 true JPH0262200B2 (en) 1990-12-25

Family

ID=15595194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59154937A Granted JPS6132000A (en) 1984-07-25 1984-07-25 Method of solidifying and treating incinerating ash

Country Status (1)

Country Link
JP (1) JPS6132000A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134498U (en) * 1988-03-08 1989-09-13
JP3005617B2 (en) * 1992-07-06 2000-01-31 株式会社テクノジャパン Method for stable solidification of incinerated ash and solidified products
JP5558027B2 (en) * 2009-05-08 2014-07-23 株式会社東芝 Solidification method for radioactive waste
JP5666328B2 (en) * 2011-02-01 2015-02-12 日揮株式会社 Solidification method for radioactive waste
JP5190975B1 (en) * 2012-03-27 2013-04-24 株式会社太平洋コンサルタント Solidification method for combustible waste incineration ash and its solidified body
JP2013213704A (en) * 2012-03-30 2013-10-17 Ihi Corp Intra-sea crust restoration method and crust-like composition

Also Published As

Publication number Publication date
JPS6132000A (en) 1986-02-14

Similar Documents

Publication Publication Date Title
Asavapisit et al. Strength, leachability and microstructure characteristics of cement-based solidified plating sludge
JP3150445B2 (en) Radioactive waste treatment method, radioactive waste solidified material and solidified material
EP0644555B1 (en) Preparation of inorganic hardenable slurry and method for solidifying wastes with the same
JPH0634097B2 (en) Solidifying agent for radioactive waste
JPS63289498A (en) Solidifying agent for radioactive waste
JPH0262200B2 (en)
JP5047400B1 (en) Method for producing radioactive waste incineration ash cement solidified body and solidified body thereof
JP3184508B2 (en) Radioactive waste treatment method, radioactive waste solidified material and solidified material
JP4694434B2 (en) By-product processing method
JP2913265B2 (en) Photocatalyst consolidation method
JP5190975B1 (en) Solidification method for combustible waste incineration ash and its solidified body
Asavapisit et al. Immobilization of metal-containing waste in alkali-activated lime–RHA cementitious matrices
JPH0214308B2 (en)
CN111933326A (en) Method for treating radioactive tritium-containing wastewater
JP2716758B2 (en) Cement admixture
JP2002326853A (en) Expansion suppressor and cement composition
JP3559464B2 (en) Fixing method of electric furnace steelmaking dust
JPS6345276B2 (en)
JPS633674B2 (en)
JP2001289993A (en) Device for manufacturing paste for solidification of radioactive waste including amphoteric metal
JPS59133498A (en) Method of processing radioactive liquid waste
JPH10153694A (en) Method for processing radioactive solid waste containing metal aluminum
JPS5924749B2 (en) Method for producing hardened material using coal ash as main raw material
JPH0646235B2 (en) Solidification material for radioactive waste
JPS54132473A (en) Treating method for waste matter containing chromium