JPH0262134B2 - - Google Patents

Info

Publication number
JPH0262134B2
JPH0262134B2 JP1773585A JP1773585A JPH0262134B2 JP H0262134 B2 JPH0262134 B2 JP H0262134B2 JP 1773585 A JP1773585 A JP 1773585A JP 1773585 A JP1773585 A JP 1773585A JP H0262134 B2 JPH0262134 B2 JP H0262134B2
Authority
JP
Japan
Prior art keywords
acid
imide
mole
reaction
imide compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1773585A
Other languages
Japanese (ja)
Other versions
JPS61179220A (en
Inventor
Seiichi Hino
Shoichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1773585A priority Critical patent/JPS61179220A/en
Publication of JPS61179220A publication Critical patent/JPS61179220A/en
Publication of JPH0262134B2 publication Critical patent/JPH0262134B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、イミド環含有エポキシ樹脂の製造法
に関する。 〔従来の技術〕 従来エポキシ樹脂の耐熱性、剛直性を向上させ
るため、分子骨格にイミド環の導入を試みること
が行なわれている。しかしそれらは、汎用エポキ
シ樹脂(例えばビスフエノールAのグリシジルエ
ーテル等)とイミド骨格を有する硬化剤を反応さ
せたプレポリマー型、又はアリル基等末端二重結
合を有するイミド化合物を過酸によりエポキシ化
して得られる二官能化合物であり、直接エポキシ
末端を有する多官能(三官能以上)イミド重合体
又はアミドイミド重合体の報告例はほとんど無か
つた。 それは、内在するイミド骨格がエポキシ化する
際に使用する塩基に対して、極めて弱く加水分解
しやすく十分満足できる物が得られなかつたから
である。極端な場合は、加水分解によつて生ずる
カルボン酸基やアミノ基によつて、折角付加した
エポキシ基が硬化反応を起こし、ゲル化し、全く
使用に耐えない物しか得られなかつた。 〔発明の目的〕 そこで、本発明者らは、これらの難点を克服
し、加水分解及びエポキシ基の副反応の低減した
イミド環含有エポキシ樹脂の製造法を得るべく、
種々検討した結果、本発明に到達した。 すなわち、本発明の要旨は、少なくとも1個の
活性水素を有する芳香族イミド化合物をエピハロ
ヒドリンと反応させ、ついで二環式アミジン化合
物により閉環すること特徴とするイミド環含有エ
ポキシ樹脂の製造法にある。 〔発明の構成〕 以下、本発明を詳細に説明する。 まず、本発明において用いられる少なくとも1
個の活性水素を有する芳香族イミド化合物におい
て、活性水素を有する基としては−NH2基、−
OH基、−COOH基、−SH基、等が挙げられる。 このようなイミド化合物は、活性水素を有する
アミノ化合物とイミド環形成能を有するポリカル
ボン酸又はその誘導体とを反応させて得られる。
すなわち、たとえば(i)芳香族ジアミンと芳香族ト
リ又はテトラカルボン酸又はその誘導体、(ii)−
OH、−COOH、−SH基を有する芳香族モノアミ
ンと芳香族ポリカルボン酸又はその誘導体、(iii)−
OH、−COOH、−SH基を有する芳香族ジカルボ
ン酸又はその誘導体と芳香族モノ又はポリアミ
ン、等の組み合せが挙げられる。 活性水素を有する芳香族アミノ化合物として
は、(O−、m−、p−)アミノフエノール、ア
ミノ安息香酸、アミノクレゾール、アミノサリチ
ル酸、アントラニル酸等の芳香族モノアミン類、
又は一般式() H2N−Ar−NH2 () (式中、Arは2価の芳香族有機基を示す)。で示
される芳香族ジアミン、たとえば4,4′−ジアミ
ノジフエニルプロパン、4,4′−ジアミノジフエ
ニルメタン、4,4′−ジアミノジフエニルスルフ
イド、3,3′−ジアミノジフエニルスルフオン、
4,4′−ジアミノジフエニルスルフオン、4,
4′−ジアミノジフエニルエーテル、3,3′−ジメ
チル−4,4′−ジアミノジフエニルメタン、3,
3′−ジエチル−4,4′−ジアミノジフエニルメタ
ン3,3′−ジメトキシ−4,4′−ジアミノジフエ
ニルメタン、メチレンビスアントラニル酸、3,
3′−ジメチル−4,4′−ジアミノジフエニルエー
テル、3,3′−ジエトキシ−4,4′−ジアミノジ
フエニルスルフオン、3,3′−ジエチル−4,
4′−ジアミノジフエニルプロパン、3,3′−ジメ
チル−4,4′−ジアミノベンゾフエノン、3,
3′−ジアミノジフエニルメタン、3,3′−ジアミ
ノジフエニルエーテル、2,4−ジアミノトルエ
ン、2,6−ジアミノトルエン、2.4−ジアミノ
アニソール、2,4−ジアミノモノクロロベンゼ
ン、2,4−ジアミノフルオロベンゼン、m−フ
エニレンジアミン、p−フエニレンジアミン、
3,3′−ジアミノベンゾフエノン、1,3−ビス
(3−アミノフエノキシ)ベンゼン、9,9−ビ
ス(4−アミノフエニル)フルオレン等が挙げら
れる。 一方、イミド環形成能を有するカルボン酸とし
ては、3,3′,4,4′−ベンゾフエノンテトラカ
ルボン酸、ピロメリツト酸、2,3,6,7−ナ
フタレンテトラカルボン酸、3,3′,4,4′ージ
フエニルテトラカルボン酸、2,2−ビス(3,
4−ジカルボキシフエニル)プロパン、ビス
(3,4−ジカルボキシフエニル)プロパン、ビ
ス(3,4−ジカルボキシフエニル)エーテル、
2,6−ジクロロナフタレン−1,4,5,8−
テトラカルボン酸、1,1−ビス(2,3−ジカ
ルボキシフエニル)メタン、ビス(3,4−ジカ
ルボキシフエニル)スルフオン、1,1,1,
3,3,3−ヘキサフロロ−2,2−ビス(3,
4−ジカルボキシフエニル)プロパン、トリメリ
ツト酸、ヒドロキシフタル酸、等が挙げられる。
これらのカルボン酸類は、低級アルキルエスチ
ル、無水物等の誘導体の形で使用しうるが、好適
には、一般式(又は() (式中、Ar′は4価の芳香族有機基であり、4個
のカルボニル基はそれぞれ、別の炭素原子に直接
結合し、かつ各対のカルボニル基はAr′基中にお
ける隣接炭素原子に結合しており、Ar″は3価の
芳香族有機基であり3個のカルボニル基はそれぞ
れ別の炭素原子に直接結合し、かつ一対のカルボ
ニル基はAr″基中における隣接炭素原子に結合し
ている) で表わされるトリ又はテトラカルボン酸無水物が
用いられる。 本発明の出発物質の一つである少なくとも1個
の活性水素を有する芳香族イミド化合物は、上記
2成分をN,N−ジメチルホルムアミド、N,N
−ジメチルアセトアミド、N−メチル−2−ピロ
リドン、m−クレゾール等の極性溶媒中で150〜
250℃、2〜8時間加熱することにより容易に得
られる。 一例として、上記一般式()で表わされる芳
香族ジアミンと、一般式()又は()で表わ
されるポリカルボン酸無水物を用い、芳香族ジア
ミン過剰の場合、一般式()で表わされるアミ
ノ基を有するイミド化合物が得られる。 〔式中、Ar、Ar′、Ar″は一般式()、()及
び()におけると同義であり、n、mは0又は
正の整数である。但し、n+m>0である。〕 次いで、得られた活性水素を有する芳香族イミ
ド化合物をエピハロヒドリンによつてエポキシ化
するが、これにはエピハロヒドリンの付加反応、
付加物の脱ハロゲン化反応の2段にわけて反応を
行う。 まず前段の付加反応であるが、使用されるエピ
ハロヒドリンとしては、 一般式() (式中、Xはハロゲン原子であり、Rは水素原子
又は有機基である) で示されるものが用いられる。たとえばエピクロ
ルヒドリン、β−メテルエピクロルヒドリン、β
−エチルエピクロルヒドリン、β−フエニルエピ
クロルヒドリン等が挙げられる。 この反応はジアミン基上の1〜4個の水素原子
をエポキシ化する。アミン水素の一部分のみをエ
ポキシ化することもできるが、生成物エポキシの
安定性のためには、4個共すなわち全量エポキシ
化するのが望ましい。一般にジアミン化合物1モ
ルに対して1モル以上のエピハロヒドリンを反応
させるが、望ましくは4モル以上の比率で反応さ
せるのが良い。 また、反応に際して、反応促進のためにギ酸、
酢酸、プロピオン酸、酪酸等の有機カルボン酸を
存在させることができる。 さらに、有機カルボン酸と共に反応促進剤とし
て、第4級アンモニウム塩または水酸化リチウ
ム、塩化リチウム、酢酸リチウム等のリチウム化
合物を併用してもよい。 その際使用される有機カルボン酸の量は、ジア
ミン化合物に対して50〜2000重量%使用される
が、好ましくは100〜800重量%である。この第一
段付加反応は無溶媒でも行なわれ得るが、反応の
円滑性、均一性等から溶媒を使用してもよい。使
用し得る溶媒としては、N,N−ジメチルホルム
アミド、ジメチルスルホキシド、N−メチルカプ
ロラクタム、N,N−ジメチルアセトアミド、N
−メチル−2−ピロリドン、ヘキサメチルホスホ
ルアミド、テトラメチレンスルホン、ブチロラク
トン等が挙げられる。溶媒の量は特に限定されな
いが、一般にはジアミン化合物に対して0〜20
(重量)倍量、好ましくは0〜10(重量)倍量使用
される。反応温度は溶媒又はエピハロヒドリンの
沸点まで上げられるが、一般には副反応等を押え
るため室温〜100℃以下で行なうのが望ましい。
このエピハロヒドリン付加物は、メタノール、エ
タノール等の低級アルコールにそそぎ均一に溶解
したあと、多量の水にゆつくりそそぎ沈殿を析出
する。さらに多量のアルコール/水溶液により数
回洗浄、過をくり返し、前示ジアミンのエピハ
ロヒドリン付加物を単離する。 つづいて、塩基を用いて脱ハロゲン化水素反応
を行ない、閉環する。この脱ハロゲン化水素反応
に使用される塩基としては、1,8−ジアザビシ
ロク〔5,4,0〕ウンデセン−7、1,5−ジ
アザビシクロ〔4,3,0〕ノネン−5等の二環
式アミジン類を使用する。 たとえば、エピハロヒドリン付加物を第一段付
加反応時に挙げた溶媒中に再溶媒し、二環式アミ
ジンにより脱ハロゲン化水素反応を行う。溶媒の
量は特に限定されないが、エピハロヒドリン付加
物に対して0〜100(重量)倍量、好ましくは5〜
20(重量)倍量使用される。二環式アミジンはそ
のまま添加することもできるし、溶媒に溶かした
溶液として加えることもできる。使用される二環
式アミジンの量は一般には1モルのエピハロヒド
リン付加物に対して2〜10モル、好ましくは4〜
6モル使用される。反応温度は室温〜100℃、好
ましくは室温〜60℃で行なうことが望ましい。 反応終了後、沈殿溶液にて固型状物を単離し
て、このままエポキシ樹脂として使用し得るが、
さらに有機カルボン酸無水物を添加することで、
生成物中に残存する少量の二環式アミジンをすべ
て除去することができる。 この有機カルボン酸無水物としては、無水酢
酸、無水プロピオン酸、無水酪酸、または前述一
般式〔〕で表わされる酸無水物類が挙げられ
る。 使用される有機カルボン酸無水物は、ジアミン
等のアミノ化合物1モルに対して2〜100モル、
好ましくは10〜50モルが使用される。処理条件
は、室温で1時間以下で良い。処理後、生成物が
固型状で得られた場合はそのままエポキシ樹脂と
して使用し得るが、溶液状で得られた場合は沈殿
溶媒を使用し、固型状で単離することができる。
沈殿溶媒としては、メタノール、エタノール、ア
セトン、エチルアセテート、メチルセロソルブ、
ベンゼン、トルエン、キシレン、シクロヘキサ
ン、水等が使用できる。 得られるイミド環含有エポキシ樹脂は、たとえ
ば、一般式()で表わされるイミド化合物を用
いた場合、 一般式() 〔式中、Ar、Ar′、Ar″、n、mは前述の定義を
意味し、Y1、Y2、Y3およびY4は水素原子、
[Industrial Application Field] The present invention relates to a method for producing an imide ring-containing epoxy resin. [Prior Art] In order to improve the heat resistance and rigidity of epoxy resins, attempts have been made to introduce imide rings into the molecular skeleton. However, they are either a prepolymer type made by reacting a general-purpose epoxy resin (for example, glycidyl ether of bisphenol A, etc.) with a curing agent having an imide skeleton, or they are made by epoxidizing an imide compound having a terminal double bond such as an allyl group with a peracid. There have been almost no reports of polyfunctional (trifunctional or higher) imide polymers or amide-imide polymers having direct epoxy ends. This is because the inherent imide skeleton is extremely weak and easily hydrolyzed by the base used for epoxidation, and a fully satisfactory product could not be obtained. In extreme cases, the carboxylic acid groups and amino groups produced by hydrolysis cause the painstakingly added epoxy groups to undergo a curing reaction, resulting in gelation, resulting in a product that is completely unusable. [Purpose of the Invention] Therefore, the present inventors aimed to overcome these difficulties and obtain a method for producing an imide ring-containing epoxy resin in which hydrolysis and side reactions of epoxy groups are reduced.
As a result of various studies, we have arrived at the present invention. That is, the gist of the present invention is a method for producing an imide ring-containing epoxy resin, which is characterized by reacting an aromatic imide compound having at least one active hydrogen with epihalohydrin, and then closing the ring with a bicyclic amidine compound. [Structure of the Invention] The present invention will be described in detail below. First, at least one of the
In the aromatic imide compound having active hydrogen, the groups having active hydrogen include -NH 2 group, -
Examples include OH group, -COOH group, -SH group, and the like. Such an imide compound is obtained by reacting an amino compound having active hydrogen with a polycarboxylic acid or a derivative thereof having the ability to form an imide ring.
That is, for example, (i) an aromatic diamine and an aromatic tri- or tetracarboxylic acid or a derivative thereof; (ii) -
Aromatic monoamine having OH, -COOH, -SH group and aromatic polycarboxylic acid or derivative thereof, (iii)-
Examples include a combination of an aromatic dicarboxylic acid having an OH, -COOH, or -SH group or a derivative thereof and an aromatic mono- or polyamine. Aromatic amino compounds having active hydrogen include aromatic monoamines such as (O-, m-, p-) aminophenol, aminobenzoic acid, aminocresol, aminosalicylic acid, and anthranilic acid;
Or the general formula () H 2 N-Ar-NH 2 () (in the formula, Ar represents a divalent aromatic organic group). Aromatic diamines represented by, for example, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone ,
4,4'-diaminodiphenylsulfone, 4,
4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,
3'-diethyl-4,4'-diaminodiphenylmethane 3,3'-dimethoxy-4,4'-diaminodiphenylmethane, methylenebisanthranilic acid, 3,
3'-dimethyl-4,4'-diaminodiphenyl ether, 3,3'-diethoxy-4,4'-diaminodiphenylsulfone, 3,3'-diethyl-4,
4'-diaminodiphenylpropane, 3,3'-dimethyl-4,4'-diaminobenzophenone, 3,
3'-diaminodiphenylmethane, 3,3'-diaminodiphenyl ether, 2,4-diaminotoluene, 2,6-diaminotoluene, 2,4-diaminoanisole, 2,4-diaminomonochlorobenzene, 2,4-diamino Fluorobenzene, m-phenylenediamine, p-phenylenediamine,
Examples include 3,3'-diaminobenzophenone, 1,3-bis(3-aminophenoxy)benzene, and 9,9-bis(4-aminophenyl)fluorene. On the other hand, examples of carboxylic acids having imide ring forming ability include 3,3',4,4'-benzophenonetetracarboxylic acid, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 3,3' , 4,4'-diphenyltetracarboxylic acid, 2,2-bis(3,
4-dicarboxyphenyl)propane, bis(3,4-dicarboxyphenyl)propane, bis(3,4-dicarboxyphenyl)ether,
2,6-dichloronaphthalene-1,4,5,8-
Tetracarboxylic acid, 1,1-bis(2,3-dicarboxyphenyl)methane, bis(3,4-dicarboxyphenyl)sulfone, 1,1,1,
3,3,3-hexafluoro-2,2-bis(3,
Examples include 4-dicarboxyphenyl)propane, trimellitic acid, hydroxyphthalic acid, and the like.
These carboxylic acids can be used in the form of derivatives such as lower alkyl esters and anhydrides, but preferably have the general formula (or () (In the formula, Ar' is a tetravalent aromatic organic group, each of the four carbonyl groups is directly bonded to another carbon atom, and each pair of carbonyl groups is bonded to the adjacent carbon atom in the Ar' group. Ar'' is a trivalent aromatic organic group, each of the three carbonyl groups is directly bonded to a different carbon atom, and a pair of carbonyl groups are bonded to adjacent carbon atoms in the Ar'' group. A tri- or tetracarboxylic acid anhydride represented by The aromatic imide compound having at least one active hydrogen, which is one of the starting materials of the present invention, is prepared by combining the above two components with N,N-dimethylformamide, N,N-dimethylformamide and N,N-dimethylformamide.
- in polar solvents such as dimethylacetamide, N-methyl-2-pyrrolidone, m-cresol etc.
It can be easily obtained by heating at 250°C for 2 to 8 hours. As an example, if an aromatic diamine represented by the above general formula () and a polycarboxylic acid anhydride represented by the general formula () or () are used, and the aromatic diamine is in excess, the amino group represented by the general formula () is used. An imide compound having the following is obtained. [In the formula, Ar, Ar′, Ar″ have the same meanings as in the general formulas (), () and (), and n and m are 0 or a positive integer. However, n+m>0.] Then The obtained aromatic imide compound having active hydrogen is epoxidized with epihalohydrin, which involves an addition reaction of epihalohydrin,
The reaction is carried out in two stages of dehalogenation reaction of the adduct. First, in the first stage addition reaction, the epihalohydrin used has the general formula () (wherein, X is a halogen atom and R is a hydrogen atom or an organic group) is used. For example, epichlorohydrin, β-mether epichlorohydrin, β
-ethyl epichlorohydrin, β-phenyl epichlorohydrin, and the like. This reaction epoxidizes 1 to 4 hydrogen atoms on the diamine group. Although it is possible to epoxidize only a portion of the amine hydrogens, in order to ensure the stability of the epoxy product, it is desirable to epoxidize all four amine hydrogens, that is, the entire amount. Generally, 1 mol or more of epihalohydrin is reacted with 1 mol of the diamine compound, preferably at a ratio of 4 mol or more. In addition, for the reaction, formic acid,
Organic carboxylic acids such as acetic acid, propionic acid, butyric acid can be present. Furthermore, a quaternary ammonium salt or a lithium compound such as lithium hydroxide, lithium chloride, or lithium acetate may be used together with the organic carboxylic acid as a reaction promoter. The amount of organic carboxylic acid used in this case is 50 to 2000% by weight, preferably 100 to 800% by weight, based on the diamine compound. Although this first-stage addition reaction can be carried out without a solvent, a solvent may be used in view of the smoothness and uniformity of the reaction. Solvents that can be used include N,N-dimethylformamide, dimethylsulfoxide, N-methylcaprolactam, N,N-dimethylacetamide, N
-Methyl-2-pyrrolidone, hexamethylphosphoramide, tetramethylene sulfone, butyrolactone and the like. The amount of solvent is not particularly limited, but is generally 0 to 20% relative to the diamine compound.
(by weight) times, preferably 0 to 10 times (by weight). Although the reaction temperature can be raised to the boiling point of the solvent or epihalohydrin, it is generally desirable to carry out the reaction between room temperature and 100° C. or lower in order to suppress side reactions.
This epihalohydrin adduct is poured into a lower alcohol such as methanol or ethanol to uniformly dissolve it, and then slowly poured into a large amount of water to precipitate it. Washing and filtration are repeated several times with a large amount of alcohol/aqueous solution to isolate the epihalohydrin adduct of the diamine. Subsequently, a dehydrohalogenation reaction is performed using a base to close the ring. The base used in this dehydrohalogenation reaction includes bicyclic bases such as 1,8-diazabicyclo[5,4,0]undecene-7, 1,5-diazabicyclo[4,3,0]nonene-5, etc. Use amidines. For example, the epihalohydrin adduct is resolvated in the solvent used in the first stage addition reaction, and the dehydrohalogenation reaction is performed with a bicyclic amidine. The amount of solvent is not particularly limited, but is 0 to 100 times (by weight), preferably 5 to 100 times the amount of the epihalohydrin adduct.
20 (weight) times the amount used. The bicyclic amidine can be added as is or as a solution dissolved in a solvent. The amount of bicyclic amidine used is generally from 2 to 10 mol, preferably from 4 to 10 mol, per mol of epihalohydrin adduct.
6 moles are used. The reaction temperature is preferably room temperature to 100°C, preferably room temperature to 60°C. After the reaction is complete, the solid substance can be isolated with a precipitation solution and used as is as an epoxy resin, but
Furthermore, by adding organic carboxylic acid anhydride,
Any small amounts of bicyclic amidine remaining in the product can be removed. Examples of the organic carboxylic anhydride include acetic anhydride, propionic anhydride, butyric anhydride, and acid anhydrides represented by the above general formula []. The organic carboxylic acid anhydride used is 2 to 100 mol per mol of the amino compound such as diamine,
Preferably 10 to 50 mol is used. The treatment conditions may be one hour or less at room temperature. If the product is obtained in solid form after treatment, it can be used as it is as an epoxy resin, but if it is obtained in solution form, it can be isolated in solid form using a precipitation solvent.
Precipitation solvents include methanol, ethanol, acetone, ethyl acetate, methyl cellosolve,
Benzene, toluene, xylene, cyclohexane, water, etc. can be used. For example, when an imide compound represented by the general formula () is used, the resulting imide ring-containing epoxy resin has the general formula (). [In the formula, Ar, Ar′, Ar″, n, and m mean the above definitions, and Y 1 , Y 2 , Y 3 and Y 4 are hydrogen atoms,

【式】または[expression] or

【式】(R、Xは前述の定義を意 味する)である。但しY1、Y2、Y3およびY4のう
ち少なくとも一つは
[Formula] (R and X mean the above definitions). However, at least one of Y 1 , Y 2 , Y 3 and Y 4

〔実施例〕〔Example〕

次に本発明を実施例によつて更に詳細に説明す
るが、本発明はこれによつて何ら制限されない。 <活性水素末端イミド化合物の製造> 参考例 1 (イミド化合物A) 滴下ロート、温度計、空冷コンデンサー、攪拌
機を装備した500ml四つ口フラスコ内を窒素置換
し、精製2,4−ジアミノトルエン57.6g
(0.45mole)と乾燥N−メチル−2−ピロリドン
180mlを入れた。以下窒素を流しつつ200℃まで昇
温した。精製3,3′,4,4′−ベンゾフエノンテ
トラカルボン酸ジ無水物〔以下BTDAと略〕48.3
g(0.15mole)をN−メチル−2−ピロリドン
180mlに溶解し滴下ロートにより滴下した。系内
温度は175℃まで低下したが、生成した水を系外
に追い出す事により徐々に温度は上昇し205℃ま
で達した。リフラツクス状態で溶媒を徐々に留去
させ4時間保つた。放冷後92℃、12mmHgでN−
メチル−2−ピロリドン160mlを留去し、室温ま
で冷却した。生成物を脱塩水360mlに注ぎ沈殿を
析出し、700ml脱塩水で4回懸濁洗浄、過を行
ない、80℃、12時間減圧乾燥により粗生成物を得
た。さらにこれを熱アセトン900mlに2時間懸濁
混合し、精製を行なつた。これを80℃、24時間減
圧乾燥を行ない黄土色粉末を得た。このアミン末
端基含有イミド化合物の全アミン量3.70×
10-3eq・mol/g、融点Tm(DSC法)288℃、イ
ミド化率(IR法)99%であつた。 参考例 2 (イミド化合物B) 精製2,4−ジアミノトルエン48g
(0.375mole)とN−メチル−2−ピロリドン100
mlにBTDA40.25g(0.125mole)、N−メチル−
2−ピロリドン170ml溶液を適下し、イミド化合
物Aと同様の方法によりイミド化合物を得た。つ
ぎに35%塩酸を65g(0.625mole)加え室温で30
分攪拌した。ついで酢酸ソーダ53.8g
(0.656mole)を加え、さらに室温で30分攪拌し
た。脱塩水600ml中に反応物を注ぎ沈殿を析出し
た。過後脱塩水、エタノールの混合溶液1で
数回懸濁洗浄、過を行なつた。その後80℃、12
時間減圧乾燥により全アミン量3.10×10-3eq・
mol/g、Tm270℃、イミド化率99.2%のうす茶
色粉末を得た。 参考例 3 (イミド化合物C) 参考例1と同様の合成方法により、3,3′−ジ
アミノジフエニルメタン5g(0.0253mole)、
BTDA2.7g(0.0084mole)をN−メチル−2−
ピロリドン50ml中で反応させ、灰白色イミド化合
物Cを得た。このイミド化合物Cの物性(分析結
果)を表−1に示す。 参考例 4 (イミド化合物D) 参考例1と同様の合成方法により、3,3′−ジ
アミノジフエニルスルフオン20g
(0.0806mole)、BTDA8.65g(0.0269mole)をN
−メチル−2−ピロリドン150ml中で反応させ、
カーキ色イミド化合物Dを得た。 参考例 5 (イミド化合物E) 100ml四つ口フラスコ内を窒素置換し、精製α
−ビフエニルテトラカルボン酸ジ無水物5g
(0.0170mole)とm−アミノフエノール3.9g
(0.0357mole)を乾燥N−メチル−2−ピロリド
ン40mlに溶解し、窒素を流しつつ昇温し温度は
204℃まで達した。その後リフラツクス状態で溶
媒を徐々に留去させ6時間保つた。室温まで放冷
し茶褐色透明液体を得た。生成物を脱塩水800ml、
メタノール200mlの混合液中に注ぎ沈殿を析出し、
同混合液で2回懸濁洗浄を行い、さらにメタノー
ルで数回洗浄、減圧乾燥によりTm304℃の灰白
色粉末を得た。収率は95%であり、ゲルバーミエ
ーシヨンクロマトグラフイーより求めた純度はほ
ぼ100%であつた。 参考例 6 (イミド化合物F) 参考例1と同様の300ml反応器に精製2,4−
ジアミノトルエン19.2g(0.15mole)と乾燥N,
N−ジメチルアセトアミド50mlを入れ窒素で排気
した。室温でトリメリツト酸無水物の4−酸クロ
ライド21.1g(0.1mole)を乾燥N,N−ジメチ
ルアセトアミド100mlに溶解した溶液を滴下ロー
トにより徐々に滴下すると発熱反応が起つて40℃
の最高温度に達した。系内の温度を30〜40℃に保
ち窒素を流しつつ6時間攪拌を続けた。その後空
気をしや断して室温に15時間放置し、反応を完結
させアミド重合体を生成した。さらに加熱昇温し
空冷コンデンサーにより生成した水を系外に追い
出した結果、系内温度は150℃に達した。その後
リフラツクス状態で5時間保つた。生成物を放冷
後約2/3量のN,N−ジメチルアセトアミドを留
去し、大過剰の脱塩水/エタノール攪拌溶液中に
注いで沈殿を生成させた。さらに数回懸濁洗浄、
過を行ない精製しうす黄土色粉末を得た。赤外
線分析(IR)よりアミドとイミド基の存在を示
し、カルボキシル基は消失した。 以上A〜Fの化合物についてデータを表−1に
示す。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. <Production of active hydrogen-terminated imide compound> Reference example 1 (Imide compound A) The inside of a 500ml four-necked flask equipped with a dropping funnel, thermometer, air-cooled condenser, and stirrer was purged with nitrogen, and 57.6 g of purified 2,4-diaminotoluene was added.
(0.45mole) and dry N-methyl-2-pyrrolidone
I added 180ml. Thereafter, the temperature was raised to 200°C while nitrogen was flowing. Purified 3,3',4,4'-benzophenonetetracarboxylic dianhydride [hereinafter abbreviated as BTDA] 48.3
g (0.15mole) of N-methyl-2-pyrrolidone
The solution was dissolved in 180 ml and added dropwise through a dropping funnel. The temperature inside the system dropped to 175℃, but by expelling the generated water out of the system, the temperature gradually rose and reached 205℃. The solvent was gradually distilled off under reflux and maintained for 4 hours. After cooling, N- was applied at 92℃ and 12mmHg.
160 ml of methyl-2-pyrrolidone was distilled off, and the mixture was cooled to room temperature. The product was poured into 360 ml of demineralized water to separate a precipitate, which was suspended and washed four times with 700 ml of demineralized water, filtered, and dried at 80° C. for 12 hours under reduced pressure to obtain a crude product. Further, this was suspended and mixed in 900 ml of hot acetone for 2 hours for purification. This was dried under reduced pressure at 80°C for 24 hours to obtain an ocher powder. Total amine content of this amine end group-containing imide compound: 3.70×
10 -3 eq·mol/g, melting point Tm (DSC method) 288°C, and imidization rate (IR method) 99%. Reference example 2 (Imide compound B) Purified 2,4-diaminotoluene 48g
(0.375mole) and N-methyl-2-pyrrolidone 100
BTDA40.25g (0.125mole) in ml, N-methyl-
170 ml of 2-pyrrolidone solution was added dropwise, and an imide compound was obtained in the same manner as for imide compound A. Next, add 65g (0.625mole) of 35% hydrochloric acid and let it stand at room temperature for 30 minutes.
The mixture was stirred for a minute. Next, 53.8g of sodium acetate
(0.656 mole) was added, and the mixture was further stirred at room temperature for 30 minutes. The reaction product was poured into 600 ml of demineralized water to precipitate. After filtration, suspension washing and filtration were performed several times with a mixed solution of demineralized water and ethanol 1. Then 80℃, 12
Total amine amount 3.10×10 -3 eq・
A light brown powder with mol/g, Tm of 270°C, and imidization rate of 99.2% was obtained. Reference Example 3 (Imide Compound C) By the same synthesis method as Reference Example 1, 5 g (0.0253 mole) of 3,3'-diaminodiphenylmethane,
BTDA2.7g (0.0084mole) as N-methyl-2-
The reaction was carried out in 50 ml of pyrrolidone to obtain a gray-white imide compound C. The physical properties (analytical results) of this imide compound C are shown in Table-1. Reference Example 4 (Imide Compound D) 20 g of 3,3'-diaminodiphenylsulfon was prepared using the same synthesis method as Reference Example 1.
(0.0806mole), BTDA8.65g (0.0269mole)
- React in 150 ml of methyl-2-pyrrolidone,
A khaki imide compound D was obtained. Reference Example 5 (Imide Compound E) Purify α by replacing the inside of a 100ml four-necked flask with nitrogen.
-Biphenyltetracarboxylic dianhydride 5g
(0.0170mole) and m-aminophenol 3.9g
(0.0357 mole) was dissolved in 40 ml of dry N-methyl-2-pyrrolidone and heated while flowing nitrogen until the temperature reached
The temperature reached 204℃. Thereafter, the solvent was gradually distilled off in a reflux state and maintained for 6 hours. The mixture was allowed to cool to room temperature to obtain a brown transparent liquid. 800ml of demineralized water,
Pour into a mixture of 200ml of methanol to precipitate,
Suspension washing was carried out twice with the same mixture, further washed several times with methanol, and dried under reduced pressure to obtain an off-white powder with a Tm of 304°C. The yield was 95%, and the purity determined by gel vermiaction chromatography was approximately 100%. Reference Example 6 (Imide Compound F) Purified 2,4-
19.2 g (0.15 mole) of diaminotoluene and dry N,
50 ml of N-dimethylacetamide was added and the mixture was evacuated with nitrogen. When a solution of 21.1 g (0.1 mole) of the 4-acid chloride of trimellitic anhydride dissolved in 100 ml of dry N,N-dimethylacetamide was gradually added dropwise through a dropping funnel at room temperature, an exothermic reaction occurred and the temperature reached 40°C.
reached its maximum temperature. Stirring was continued for 6 hours while keeping the temperature in the system at 30 to 40°C and flowing nitrogen. Thereafter, the air was removed and the mixture was left at room temperature for 15 hours to complete the reaction and produce an amide polymer. As a result of further heating and expelling the generated water from the system using an air-cooled condenser, the system temperature reached 150°C. Thereafter, it was kept in a reflux state for 5 hours. After the product was left to cool, about two-thirds of the N,N-dimethylacetamide was distilled off and poured into a large excess of a stirred solution of demineralized water/ethanol to form a precipitate. Suspension washing several more times,
A purified light ocher powder was obtained by filtration. Infrared analysis (IR) showed the presence of amide and imide groups, and the carboxyl group disappeared. Data regarding the compounds A to F above are shown in Table 1.

【表】【table】

【表】 * ゲルパーミエーシヨンクロマトグラフイ
ーによるポリスチレン換算の重量平均分子

(エポキシ化合物の製造) 実施例 1 温度計、コンデンサー、窒素導入管、攪拌機を
装備した1000ml反応器にイミド化合物A60g
(0.111mole)とエピクロルヒドリン328.8g
(3.552mole)<当量の8倍量>、氷酢酸300gを
入れ、窒素置換後加温して80℃に6時間保つた。
空気をしや断して室温に一夜放置後、エタノール
500mlを加え均一攪拌、数倍量の脱塩水に注いだ。
ついで少量の塩化ナトリウムを添加して沈殿を液
体と分離した。さらにN,N−ジメチルホルムア
ミド200mlに再溶解し、数倍量の脱塩水に注いで
沈殿を析出した。沈殿を数回脱塩水により懸濁洗
浄、過後減圧乾燥によりTm225℃の桃色粉末
を得た。得られたエピクロルヒドリン付加単離物
は、IR、NMR、GPCより加水分解、副反応のな
い付加率〜100%生成物であつた。つぎにエピク
ロルヒドリン付加単離物4.5g(0.0049mole)、乾
燥N,N−ジメチルホルムアミド50mlを100ml四
つ口フラスコに入れ溶解後、減圧3mmHgで脱気
した。窒素流通下1,8−ジアザシクロ〔5,
4,0〕ウンデセン−7〔以下DBUと略〕3.45g
(0.0227mole)<化学量論的に必要な量の15%過
剰>を添加し、加温して40℃に6時間保つた。放
冷後、無水酢酸11.6g(0.1135mole)<DBUの5
倍モル>を添加し、室温で30分間攪拌した。過
後脱塩水150ml、エタノール150mlの混合溶液中に
生成物を注いで沈殿を析出した。少量の塩化ナト
リウムを添加して沈殿を生成させ、数回脱塩水に
より懸濁洗浄、過をくり返し、45℃、12時間減
圧乾燥によりうす黄土色粉末を得た。IRよりイ
ミドの加水分解はない。NMRスペクトルから、
脱塩酸によるエポキシ化率はおよそ90%であり、
またDBUの残存はなかつた。物性(分析結果)
を表−2、に示す。 実施例 2 イミド化合物Bとエピクロルヒドリン、氷酢酸
より実施例1と同様の方法により、エピクロルヒ
ドリン付加物を単離した。NMRスペクトルよ
り、アミンの活性水素に対するエピクロルヒドリ
ンの付加率は、98%であつた。300ml四つ口フラ
スコにエピクロルヒドリン付加単離物20g
(0.022mole)とDBU15.3g(0.10mole)<化学量
論的に必要な量の15%過剰>N,N−ジメチルホ
ルムアミド150mlを一括で添加した。窒素流通下
50℃に加温し6時間保つた。空気をしや断して一
夜放置後無水酢酸51g(0.050mole)<DBUの5
倍モル>を加え、室温で30分間攪拌した。脱塩
水、エタノール混合溶液に沈殿を析出させ、うす
黄土色粉末を得た。収率は92%であつた。IRよ
りイミドの加水分解はなく、NMRスペクトルか
ら、エポキシ化率はおよそ89%であつた。 実施例 3 イミド化合物Cとエピクロルヒドリン<当量の
8倍>、氷酢酸より、実施例1と同様の方法によ
り得られたエピクロルヒドリン付加単離物5g
(0.0048mole)とDBU3.8g(0.0248mole)<化学
量論的に必要な量の30%過剰>、N,N−ジメチ
ルホルムアミド50mlより脱塩酸反応後無水酢酸
10.1g(0.099mole)<DBUの4倍モル>で処理
することにより灰白色粉末を得た。 実施例 4 イミド化合物Dとエピクロルヒドリン<当量の
7倍>、氷酢酸より、実施例1と同様の方法によ
り得られたエピクロルヒドリン付加単離物20g
(0.0174mole)とDBU12.2g(0.080mole)<化学
量論的に必要な量の15%過剰>、N,N−ジメチ
ルホルムアミド170mlで脱塩酸反応後、無水酢酸
40.8g(0.400mole)<DBUの5倍モル>処理に
より、灰白色粉末を得た。 実施例 5 実施例1と同様の100ml反応器に、イミド化合
物E4g(0.0084mole)、エピクロルヒドリン24.8
g(0.2688mole)<化学量論的に必要な量の16倍
量>、N,N−ジメチルホルムアミド25mlを入
れ、窒素置換後加温して8φ℃に6時間保つた。
その後系内を減圧6mmHgとし、未反応エピクロ
ルヒドリンをほぼ留去した。生成物を数倍量の攪
拌脱塩水中に徐々に注ぎ沈殿を析出し、その後数
回脱塩水、エタノールの混合溶液により懸濁洗
浄、過をくり返した。減圧乾燥により得られた
エピクロルヒドリン付加単離物はうす茶色粉末で
あつた。IR、NMRより加水分解がなく、活性水
素に対する付加率はほぼ100%であつた。エピク
ロルヒドリン付加単離物3g(0.0045mole)と
DBU1.59g(0.010mole)<化学量論的に必要な
量の15%過剰>、N,N−ジメチルホルムアミド
30mlを一括で添加した後、窒素流通下40℃に加温
して5時間保つた。その後40℃、2〜3mmHg減
圧下、約2/3量のN,N−ジメチルホルムアミド
を留去した。放冷後、無水酢酸4.1g(0.04mole)
<DBUの4倍モル>を加え、室温で20分攪拌し
た。脱塩水、エタノール混合溶液中に沈殿を析出
させ、Tm165℃のうす茶色粉末を得た。ゲルパ
ーミエーシヨンクロマトグラフイーより96%以上
の単品が得られた。収率は92.5%であつた。 実施例 6 イミド化合物Fとβ−メチルエピクロルヒドリ
ン<当量の10倍>、氷酢酸より実施例1と同様の
方法により、β−メチルエピクロルヒドリン付加
物を単離した。NMRスペクトルより、アミン活
性水素に対するβ−メチルエピクロルヒドリンの
付加率は93%であつた。実施例1と同様の方法に
より、β−メチルエピクロルヒドリン付加単離物
5g(0.008mole)とDBU6.57g(0.0432mole)
<化学量論的に必要な量の35%過剰>、N,N−
ジメチルホルムアミド50mlで脱塩酸反応後、無水
酢酸22g(0.216mole)<DBUの5倍モル>処理
により、うす黄土色粉末を得た。
[Table] * Weight average molecular weight in terms of polystyrene by gel permeation chromatography (manufacture of epoxy compounds) Example 1 60 g of imide compound A was placed in a 1000 ml reactor equipped with a thermometer, condenser, nitrogen inlet tube, and stirrer.
(0.111mole) and 328.8g of epichlorohydrin
(3.552 mole) <8 times the equivalent amount> and 300 g of glacial acetic acid were added, and after purging with nitrogen, the mixture was heated and kept at 80°C for 6 hours.
After removing the air and leaving it at room temperature overnight, add ethanol.
500 ml was added, stirred uniformly, and poured into several times the amount of demineralized water.
A small amount of sodium chloride was then added to separate the precipitate from the liquid. Furthermore, it was redissolved in 200 ml of N,N-dimethylformamide and poured into several times the volume of demineralized water to precipitate. The precipitate was suspended and washed several times with demineralized water, filtered, and dried under reduced pressure to obtain a pink powder with a Tm of 225°C. The obtained epichlorohydrin adduct isolate was found to be a product with an addition rate of ~100% without hydrolysis or side reactions by IR, NMR, and GPC. Next, 4.5 g (0.0049 mole) of epichlorohydrin adduct isolate and 50 ml of dry N,N-dimethylformamide were placed in a 100 ml four-necked flask and dissolved, followed by degassing under reduced pressure of 3 mmHg. 1,8-Diazacyclo[5,
4,0] Undecene-7 [hereinafter abbreviated as DBU] 3.45g
(0.0227 mole) <15% excess of the stoichiometrically required amount> was added and warmed to 40° C. for 6 hours. After cooling, acetic anhydride 11.6g (0.1135mole) < 5 DBU
2 moles> was added, and the mixture was stirred at room temperature for 30 minutes. After filtration, the product was poured into a mixed solution of 150 ml of demineralized water and 150 ml of ethanol to precipitate. A small amount of sodium chloride was added to form a precipitate, and the suspension was washed several times with demineralized water and filtered, followed by drying under reduced pressure at 45° C. for 12 hours to obtain a light ocher powder. There is no imide hydrolysis compared to IR. From the NMR spectrum,
The epoxidation rate due to dehydrochloric acid is approximately 90%,
Also, there was no remaining DBU. Physical properties (analysis results)
are shown in Table-2. Example 2 An epichlorohydrin adduct was isolated from imide compound B, epichlorohydrin, and glacial acetic acid in the same manner as in Example 1. From the NMR spectrum, the addition rate of epichlorohydrin to the active hydrogen of the amine was 98%. 20 g of epichlorohydrin adduct isolate in a 300 ml four-necked flask
(0.022 mole) and 15.3 g (0.10 mole) of DBU <15% excess of the stoichiometrically required amount> N,N-dimethylformamide (150 ml) were added all at once. Under nitrogen flow
It was heated to 50°C and kept for 6 hours. After removing the air and leaving it overnight, acetic anhydride 51g (0.050mole) <5 DBU
twice the mole amount was added, and the mixture was stirred at room temperature for 30 minutes. A precipitate was deposited in a mixed solution of demineralized water and ethanol to obtain a light ocher powder. The yield was 92%. There was no hydrolysis of the imide according to IR, and the epoxidation rate was approximately 89% from the NMR spectrum. Example 3 5 g of epichlorohydrin adduct isolated from imide compound C, epichlorohydrin <8 times the equivalent>, and glacial acetic acid in the same manner as in Example 1
(0.0048mole) and DBU3.8g (0.0248mole) <30% excess of the stoichiometrically required amount>, acetic anhydride after dehydrochloric acid reaction from 50ml of N,N-dimethylformamide.
A gray-white powder was obtained by treatment with 10.1 g (0.099 mole) <4 times mole of DBU>. Example 4 20 g of epichlorohydrin adduct isolated from imide compound D, epichlorohydrin <7 times the equivalent amount>, and glacial acetic acid in the same manner as in Example 1
(0.0174mole) and DBU12.2g (0.080mole) <15% excess of the stoichiometrically required amount>, after dehydrochloric acid reaction with 170ml of N,N-dimethylformamide, acetic anhydride
A grayish white powder was obtained by treatment of 40.8 g (0.400 mole) <5 times the mole of DBU>. Example 5 In a 100 ml reactor similar to Example 1, 4 g (0.0084 mole) of imide compound E and 24.8 g of epichlorohydrin were added.
g (0.2688 mole) <16 times the stoichiometrically required amount> and 25 ml of N,N-dimethylformamide were added, and after purging with nitrogen, the mixture was heated and kept at 8φC for 6 hours.
Thereafter, the pressure in the system was reduced to 6 mmHg, and almost all unreacted epichlorohydrin was distilled off. The product was gradually poured into several times the amount of stirring demineralized water to precipitate it, and then the suspension was washed several times with a mixed solution of demineralized water and ethanol, and then filtered. The epichlorohydrin adduct isolate obtained by drying under reduced pressure was a light brown powder. IR and NMR showed that there was no hydrolysis, and the addition rate to active hydrogen was almost 100%. 3 g (0.0045 mole) of epichlorohydrin adduct isolate
DBU1.59g (0.010mole) <15% excess of stoichiometrically required amount>, N,N-dimethylformamide
After adding 30 ml at once, the mixture was heated to 40°C under nitrogen flow and kept for 5 hours. Thereafter, about 2/3 of the amount of N,N-dimethylformamide was distilled off at 40° C. under a reduced pressure of 2 to 3 mmHg. After cooling, acetic anhydride 4.1g (0.04mole)
<4 times the mole of DBU> was added, and the mixture was stirred at room temperature for 20 minutes. A precipitate was deposited in a mixed solution of demineralized water and ethanol to obtain a light brown powder with a Tm of 165°C. More than 96% of the single product was obtained by gel permeation chromatography. The yield was 92.5%. Example 6 A β-methylepichlorohydrin adduct was isolated from imide compound F, β-methylepichlorohydrin <10 times the equivalent amount>, and glacial acetic acid in the same manner as in Example 1. From the NMR spectrum, the addition rate of β-methylepichlorohydrin to amine active hydrogen was 93%. By the same method as in Example 1, 5 g (0.008 mole) of β-methylepichlorohydrin adduct isolate and 6.57 g (0.0432 mole) of DBU
<35% excess of stoichiometrically required amount>, N,N-
After a dehydrochloric acid reaction with 50 ml of dimethylformamide, a light ocher powder was obtained by treatment with 22 g (0.216 mole) of acetic anhydride (5 times mole of DBU).

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、イミド環の加水分解及び
エポキシ基の副反応を実質的に生じることなく、
安定してイミド環含有エポキシ樹脂を得ることが
できる。
According to the method of the present invention, hydrolysis of the imide ring and side reactions of the epoxy group are not substantially caused.
An imide ring-containing epoxy resin can be stably obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも1個の活性水素を有する芳香族イ
ミド化合物をエピハロヒドリンと反応させ、つい
で二環式アミジン化合物により閉環することを特
徴とするイミド環含有エポキシ樹脂の製造法。
1. A method for producing an imide ring-containing epoxy resin, which comprises reacting an aromatic imide compound having at least one active hydrogen with epihalohydrin, and then closing the ring with a bicyclic amidine compound.
JP1773585A 1985-02-02 1985-02-02 Production of imide ring-containing epoxy resin Granted JPS61179220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1773585A JPS61179220A (en) 1985-02-02 1985-02-02 Production of imide ring-containing epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1773585A JPS61179220A (en) 1985-02-02 1985-02-02 Production of imide ring-containing epoxy resin

Publications (2)

Publication Number Publication Date
JPS61179220A JPS61179220A (en) 1986-08-11
JPH0262134B2 true JPH0262134B2 (en) 1990-12-25

Family

ID=11952000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1773585A Granted JPS61179220A (en) 1985-02-02 1985-02-02 Production of imide ring-containing epoxy resin

Country Status (1)

Country Link
JP (1) JPS61179220A (en)

Also Published As

Publication number Publication date
JPS61179220A (en) 1986-08-11

Similar Documents

Publication Publication Date Title
US3998786A (en) Process for preparing aromatic polyimides, polyimides prepared thereby
US4111906A (en) Polyimides prepared from perfluoroisopropylidene diamine
KR100205963B1 (en) Novel soluble polyimide resin for liquid crystal orientation film
KR20020042733A (en) Novel diamine, novel acid dianhydride, and novel polyimide composition formed therefrom
JP3116175B2 (en) Soluble polyimide
US3996196A (en) Polyimide-metallo-phthalocyanines and their preparation
JP3773445B2 (en) Fluorine-containing alicyclic diamine and polymer using the same
EP0411304B1 (en) Acetylene bis-phthalic compounds and polyimides made therefrom
JPH0967438A (en) New polyimide and its production
JPH05156003A (en) Imino-functional polyethers and their use
JPH0262134B2 (en)
TW202248191A (en) Meta-ester aromatic diamines, method for producing same, and polyimide having said meta-ester aromatic diamines as raw material
WO2014084188A1 (en) Fluorine-containing polymerizable monomer and polymer compound using same
Yan et al. Optical transparency and light colour of highly soluble fluorinated polyimides derived from a novel pyridine-containing diamine m, p-3FPAPP and various aromatic dianhydrides
JP3022933B2 (en) Thermosetting oligomer and method for producing the same
JP3022917B2 (en) Thermosetting compound and method for producing the same
Hsiao et al. Preparation and properties of polymides, polyamides and poly (amide‐imide) s based on a spirobichroman dietheramine
JPH05301960A (en) Thermosetting oligomer and its production
WO2005061585A1 (en) Polyamic acid and polyimide
Padmanaban et al. Preparation and properties of new photosensitive polyimides from bis (4‐aminophenyl) tetramethyldisilane and various aromatic tetracarboxylic dianhydrides
JP2958104B2 (en) Thermosetting oligomer and method for producing the same
JPH0459334B2 (en)
JPS62241923A (en) Polyimide
JP3386383B2 (en) Method for producing polyimide
SU370219A1 (en) METHOD OF OBTAINING POLYAMIDOIMIDES

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term