JPH0262012A - Inductance element and its manufacture - Google Patents
Inductance element and its manufactureInfo
- Publication number
- JPH0262012A JPH0262012A JP21395088A JP21395088A JPH0262012A JP H0262012 A JPH0262012 A JP H0262012A JP 21395088 A JP21395088 A JP 21395088A JP 21395088 A JP21395088 A JP 21395088A JP H0262012 A JPH0262012 A JP H0262012A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- coil
- inductance element
- ferrite
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 229920005989 resin Polymers 0.000 claims abstract description 29
- 239000011347 resin Substances 0.000 claims abstract description 29
- 238000004804 winding Methods 0.000 claims abstract description 16
- 230000035699 permeability Effects 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- 239000006247 magnetic powder Substances 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 229910000859 α-Fe Inorganic materials 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 9
- 239000000843 powder Substances 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 4
- 238000000465 moulding Methods 0.000 abstract description 3
- 239000004677 Nylon Substances 0.000 abstract description 2
- 230000006835 compression Effects 0.000 abstract description 2
- 238000007906 compression Methods 0.000 abstract description 2
- 229920001778 nylon Polymers 0.000 abstract description 2
- 229920002635 polyurethane Polymers 0.000 abstract 1
- 239000004814 polyurethane Substances 0.000 abstract 1
- 238000000748 compression moulding Methods 0.000 description 7
- 239000000696 magnetic material Substances 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Coils Or Transformers For Communication (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、各種電子機器に使用される小型で高密度実装
に好適な高性能無芯型のインダクタンス素子およびその
製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high-performance coreless inductance element that is compact and suitable for high-density packaging used in various electronic devices, and a method for manufacturing the same.
従来の技術
従来のインダクタンス素子は、第2図で示すように磁芯
もしくはボビン6に絶縁被覆層を有する銅線7を巻線し
、その外周を樹脂あるいは樹脂フェライト5でモールド
し、その外周に外部端子8゜9を設けてインダクタンス
素子とする構成がほとんどである。現在、製品化されて
いるこのインダクタンス素子の最小品は2.6 L X
2゜0WX1.8H闘3のサイズである。2. Description of the Related Art A conventional inductance element is made by winding a copper wire 7 having an insulating coating layer around a magnetic core or bobbin 6, and molding the outer periphery with resin or resin ferrite 5, as shown in FIG. In most cases, an external terminal 8°9 is provided to serve as an inductance element. The smallest product of this inductance element currently commercialized is 2.6 L
The size is 2゜0W x 1.8H To 3.
発明が解決しようとする課題
しかし、電子機器の軽薄短小化が進むにつれてそれに使
用される電子部品の一層の小型化、チップ化が要求され
、特に最近では、電子回路の実装密度を飛躍的に向上さ
せる面実装部品の開発、実用化が一段と進んでいる。と
ころが、インダクタンス素子では他の受動チップ部品た
とえば抵抗体素子やコンデンサ(いずれも最小品は1.
6LXo、8WX0.4H) に比べその小型チップ
化は遅れている。Problems to be Solved by the Invention However, as electronic devices become lighter, thinner, shorter, and smaller, the electronic components used in them are required to be further miniaturized and made into chips.In recent years, in particular, the packaging density of electronic circuits has been dramatically improved. The development and practical application of surface-mounted components that allow However, inductance elements cannot be used with other passive chip components such as resistor elements and capacitors (all of which have a minimum of 1.
6LXo, 8WX0.4H), the development of smaller chips has been delayed.
その大きな理由としては、はとんどのインダクタンス素
子の構成が、コイルを巻くためのボビン(巻芯)もしく
はさらに特性を上げるために巻芯を高透磁率磁性材にし
た磁芯のどちらかを用いるので、それ以下の寸法になり
得す、従って小型化に限界があり、仮りに巻芯を小さく
しても巻線や組立て工程上で歩留が悪くなって生産性、
コスト面で問題が生ずるものであった。The main reason for this is that most inductance elements are constructed using either a bobbin (core) for winding the coil or a magnetic core made of a high permeability magnetic material to further improve the characteristics. Therefore, there is a limit to miniaturization, and even if the winding core is made smaller, the yield in the winding and assembly process will decrease, resulting in lower productivity.
This caused problems in terms of cost.
このようにインダクタンス素子では特性を落さずにさら
に小型にする構成が模索されている。たとえば、上記の
巻線型のインダクタンス素子よりさらに小型化が可能と
言われるフェライト焼結型積層チップインダクタンス素
子が提案され(特公昭67−39521号公報参照)実
用化もされてイル(最小品2.0LX1.2”Xo、8
H@’ )。しかし、この構成でも、精密な印刷工程、
高温焼成あるいは高価な貴金属導電材料等を用いるなど
の点から歩留、製造コスト面でまだまだ問題がある。In this way, a structure for making the inductance element even smaller without deteriorating its characteristics is being sought. For example, a ferrite sintered multilayer chip inductance element, which is said to be more compact than the wire-wound inductance element described above, has been proposed (see Japanese Patent Publication No. 67-39521) and has been put into practical use (minimum product 2. 0LX1.2"Xo, 8
H@'). However, even with this configuration, the precise printing process,
There are still problems in terms of yield and manufacturing cost due to high temperature firing and the use of expensive noble metal conductive materials.
本発明は上記問題に鑑み、従来の巻線型のインのインダ
クタンス素子を提供するものである。In view of the above problems, the present invention provides a conventional wire-wound type inductance element.
課題を解決するための手段
上記課題を解決するだめの本発明のインダクタンス素子
は、平角導線で整列巻きした無芯(ボビンなし)の巻線
コイルを用意し、それを高透磁率の軟磁性体粉末と樹脂
からなる混合物内に埋設した構成とするものである。Means for Solving the Problems In order to solve the above problems, the inductance element of the present invention is made by preparing a coreless (no bobbin) winding coil made of rectangular conductive wire in an aligned manner, and then winding it with a soft magnetic material of high magnetic permeability. The structure is such that it is embedded in a mixture of powder and resin.
この製造方法は所定の断面寸法を有する平角導線を用い
て所望の巻径、巻数に整列巻きした無芯の巻線コイルを
作成し、この巻線コイルを外部端子となる金属板端子に
取付けた後、高透磁率の磁性体粉末と樹脂との混合物で
上記巻線コイルを埋込むように所望の寸法形状に圧縮成
型し、外部に露出している金属板端子を外部端子となす
ように成形加工したものである。In this manufacturing method, a rectangular conductive wire with a predetermined cross-sectional dimension is used to create a coreless coil that is wound in a desired diameter and number of turns, and this coil is attached to a metal plate terminal that serves as an external terminal. After that, the above-mentioned wire-wound coil is compression molded into the desired size and shape using a mixture of high permeability magnetic powder and resin to embed it, and the metal plate terminals exposed to the outside are molded to form external terminals. It is processed.
作用
上記構成とするインダクタンス素子では、巻芯を使わな
いのでコイルの高さそのものでインダクタンス素子の大
きさを決められる。従って、より小型、薄型化が実現で
き構造が簡単なために工程が簡略化し歩留向上、製造コ
ストが大幅に低減する。Function: In the inductance element configured as described above, since no winding core is used, the size of the inductance element can be determined by the height of the coil itself. Therefore, the device can be made smaller and thinner, and has a simpler structure, which simplifies the process, improves yield, and significantly reduces manufacturing costs.
また、既に実用化されている外部を樹脂フェライトで成
型封止した有芯型巻線インダクタンス素子では、樹脂フ
ェライトでコイルを封止する際、巻芯があるために圧縮
成型法が採用できず一般には射出成型法の一種であるト
ランスファ成型法が用いられる。従って、この方法では
成型時に樹脂フェライトの流れがある程度必要なために
樹脂フェライト中のフェライト粉末の含有量を多くする
には制限がある。その結果樹脂フェライトでインダクタ
ンス素子の特性向上を大きくすることはあまり期待でき
ない。In addition, in the case of the wire-wound inductance element, which is already in practical use and whose exterior is molded and sealed with resin ferrite, compression molding cannot be used when sealing the coil with resin ferrite because of the core. The transfer molding method, which is a type of injection molding method, is used. Therefore, in this method, since a certain amount of flow of the resin ferrite is required during molding, there is a limit to increasing the content of ferrite powder in the resin ferrite. As a result, resin ferrite cannot be expected to significantly improve the characteristics of an inductance element.
しかし、本発明の方法によれば、巻芯を使わないので樹
脂フェライト中のフェライト粉末含有量を90wt%以
上までにすることができ、かつ平角導線を使った整列巻
きコイルであるために高い圧力で圧縮成型しても、丸型
導線を使った場合に生ずるコイルまたは丸線の形状変化
がないので、安定に高圧縮力成型が可能となり、その結
果磁芯を使わないインダクタンス素子としては高インダ
クタンス値、高Qのものが得られるという利点がある。However, according to the method of the present invention, since no winding core is used, the ferrite powder content in the resin ferrite can be increased to 90 wt% or more, and since the coil is an aligned winding coil using a rectangular conducting wire, the pressure is high. Even with compression molding, there is no change in the shape of the coil or round wire that occurs when round conductors are used, so stable high compression molding is possible, resulting in high inductance for an inductance element that does not use a magnetic core. It has the advantage that a high Q value can be obtained.
さらに、本発明のインダクタンス素子は、構造的にコイ
ル部を同質の高透磁率樹脂磁性体で覆っているために、
磁束が外部に漏れなくてクロストークの心配もない高密
度実装や高周波帯域用のインダクタンス素子としても優
れており、最近話題になっている電磁波ノイズ対策部品
としても好適である。Furthermore, since the inductance element of the present invention structurally covers the coil portion with a homogeneous high permeability resin magnetic material,
It is also excellent as an inductance element for high-density packaging and high-frequency bands, as magnetic flux does not leak outside and there is no risk of crosstalk, and it is also suitable as an electromagnetic noise countermeasure component, which has recently become a hot topic.
実施例
以下本発明の一実施例を第1図を用いて説明するが、イ
ンダクタンス素子は単一コイル体に限定するものではな
くトランス型あるいは複数のコイルからなるインダクタ
ンスネットワークも含まれることは言うまでもない。EXAMPLE An example of the present invention will be described below with reference to FIG. 1, but it goes without saying that the inductance element is not limited to a single coil body, but also includes a transformer type or an inductance network consisting of a plurality of coils. .
ここでは、磁性粉末として高透磁率フェライト粉末を例
にした場合を述べる。Here, a case will be described in which high magnetic permeability ferrite powder is used as an example of the magnetic powder.
まず、有機絶縁被覆された0、 037IOIIX 0
.09mm゛mm化線を用いて巻径; 0.6rtan
φ1巻数;24ターンの芯のない整列巻きコイル2をま
ず作成する。このコイル2を外部端子3,4となる金属
板端子に取付けた後、コイル2全体を樹脂フェライト1
で第1図の矢印方向から2t/C14の圧力で3.2L
X1.6WXO0eH■3のサイズに圧縮成型する0こ
の時の樹脂フェライト1は高透磁率のフェライト粉末を
樹脂に対してできる限り高充填にたとえば90 wt%
以上にまでとし、圧縮成型後の樹脂フェライト層1が高
透磁率になるようにする。主な樹脂としては、エポキシ
系樹脂、ポリウレタン系樹脂、アクリル系樹脂、ナイロ
ン系樹脂、フェノール系樹脂、ポリエステル系樹脂等そ
の他加工性の良い樹脂が適しているが、ここでは耐熱性
向上の点から熱硬化性エポキシ樹脂を使用した。圧縮成
型後180’C3o分間硬化させ、外部に露出している
金属板端子を第1図に示すように成型体チップの側面に
沿って折り曲げて外部端子3.4としてインダクタンス
素子を作製した。First, organic insulation coated 0, 037IOIIX 0
.. Winding diameter using 09mm mm wire: 0.6rtan
First, a coreless aligned winding coil 2 with φ1 number of turns: 24 turns is created. After attaching this coil 2 to the metal plate terminals that will become the external terminals 3 and 4, the entire coil 2 is attached to the resin ferrite 1.
3.2L at a pressure of 2t/C14 from the arrow direction in Figure 1.
Compression molding to a size of X1.6 W
As described above, the resin ferrite layer 1 after compression molding is made to have high magnetic permeability. As the main resin, other resins with good processability such as epoxy resin, polyurethane resin, acrylic resin, nylon resin, phenol resin, polyester resin, etc. are suitable, but here we will focus on improving heat resistance. A thermosetting epoxy resin was used. After compression molding, the product was cured for 180°C3o minutes, and the metal plate terminals exposed to the outside were bent along the sides of the molded chip as shown in FIG. 1 to produce an inductance element as external terminals 3.4.
比較品として上記と同一の無芯コイルをトランスファ成
型で樹脂フェライトを封止し、同一サイズのインダクタ
ンス素子を作製し、各々のインダクタンス値、Q値を測
定し下表に示した。As a comparative product, the same coreless coil as above was sealed with resin ferrite by transfer molding to produce inductance elements of the same size, and the inductance value and Q value of each were measured and shown in the table below.
上記実施例のところで0.03閣φの丸型銅線を使って
同じようにしてインダクタンス素子を作成したが、圧縮
成型圧力がo、 6t/cJ以上になると整列巻きした
コイルがずれ始め1t/C−以上ではL値、Q値がむし
ろ悪化した。In the above example, an inductance element was made in the same way using a round copper wire with a diameter of 0.03 mm, but when the compression molding pressure exceeded 6t/cJ, the coils wound in alignment began to shift by 1t/cJ. At C- or above, the L value and Q value actually worsened.
(以下余 白)
発明の効果
以上のように本発明によれば、芯のない平角巻線コイル
全体を樹脂磁性体で圧縮成型して埋込んだインダクタン
ス素子は高Q1高インダクタンス値を有し、かつ小型薄
型化が可能である等多くの優れた効果を奏しうるもので
ある。(Left below) Effects of the Invention As described above, according to the present invention, the inductance element in which the entire rectangular winding coil without a core is compressed and embedded with a resin magnetic material has a high Q1 high inductance value, Moreover, it can produce many excellent effects such as being able to be made smaller and thinner.
第1図は本発明の一実施例による樹脂フェライト埋蔵型
の無芯インダクタンス素子の断面図、第2図は従来の代
表的なドラムコア磁芯型インダクタンス素子の断面図で
ある。
1・・・・・・樹脂フェライト、2・・・・・・平角巻
線コイル、3.4・・・・・・外部端子。FIG. 1 is a sectional view of a resin ferrite-embedded coreless inductance element according to an embodiment of the present invention, and FIG. 2 is a sectional view of a typical conventional drum core magnetic core type inductance element. 1... Resin ferrite, 2... Rectangular winding coil, 3.4... External terminal.
Claims (2)
透磁率磁性粉末と樹脂との混合物内に埋設したインダク
タンス素子。(1) An inductance element in which a rectangular winding coil without a bobbin or magnetic core is embedded in a mixture of high magnetic permeability magnetic powder and resin.
巻線コイルを作成し、これを外部端子となる金属板端子
に取付けた後、高透磁率磁性粉末と樹脂との混合物で上
記コイルを埋設するように所望の寸法、形状に圧縮成型
し、外部に露出している金属板端子を外部端子となるよ
うに加工するインダクタンス素子の製造方法。(2) Create an aligned winding coil without a bobbin or magnetic core using rectangular conductive wire, attach it to a metal plate terminal that will serve as an external terminal, and then wrap the coil with a mixture of high permeability magnetic powder and resin. A method of manufacturing an inductance element, in which the inductance element is compressed into a desired size and shape so as to be buried, and the exposed metal plate terminal is processed to become an external terminal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21395088A JPH0262012A (en) | 1988-08-29 | 1988-08-29 | Inductance element and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21395088A JPH0262012A (en) | 1988-08-29 | 1988-08-29 | Inductance element and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0262012A true JPH0262012A (en) | 1990-03-01 |
Family
ID=16647733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21395088A Pending JPH0262012A (en) | 1988-08-29 | 1988-08-29 | Inductance element and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0262012A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02127013U (en) * | 1989-03-28 | 1990-10-19 | ||
JPH0446513U (en) * | 1990-08-28 | 1992-04-21 | ||
WO2005005341A1 (en) * | 2003-07-14 | 2005-01-20 | Matsushita Electric Industrial Co., Ltd. | Magnetic ferrite and magnetic device using same |
US7921546B2 (en) | 1995-07-18 | 2011-04-12 | Vishay Dale Electronics, Inc. | Method for making a high current low profile inductor |
-
1988
- 1988-08-29 JP JP21395088A patent/JPH0262012A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02127013U (en) * | 1989-03-28 | 1990-10-19 | ||
JPH0446513U (en) * | 1990-08-28 | 1992-04-21 | ||
US7921546B2 (en) | 1995-07-18 | 2011-04-12 | Vishay Dale Electronics, Inc. | Method for making a high current low profile inductor |
US7986207B2 (en) | 1995-07-18 | 2011-07-26 | Vishay Dale Electronics, Inc. | Method for making a high current low profile inductor |
WO2005005341A1 (en) * | 2003-07-14 | 2005-01-20 | Matsushita Electric Industrial Co., Ltd. | Magnetic ferrite and magnetic device using same |
US7378930B2 (en) | 2003-07-14 | 2008-05-27 | Matsushita Electric Industrial Co., Ltd. | Magnetic ferrite and magnetic device containing the ferrite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2163052C (en) | Low profile inductor/transformer component | |
CN1627457B (en) | Magnetic component and its making method | |
EP0490438B1 (en) | Inductive device comprising a toroidal core | |
US7612641B2 (en) | Simplified surface-mount devices and methods | |
US20040135660A1 (en) | Low profile high current multiple gap inductor assembly | |
US6917273B2 (en) | Common mode choke coil with edgewise windings and line filter including same | |
WO2016009899A1 (en) | Surface-mounted inductor and manufacturing method therefor | |
US6239683B1 (en) | Post-mountable planar magnetic device and method of manufacture thereof | |
WO2008021958A2 (en) | Electronic component and methods relating to same | |
JP2005510050A (en) | Controlled guidance device and manufacturing method | |
CN108231335B (en) | Inductor | |
US11688547B2 (en) | Inductor device and method of fabricating the same | |
JPH0262012A (en) | Inductance element and its manufacture | |
JPH05304035A (en) | Chip type common mode choke coil and manufacturing method thereof | |
JPH01222415A (en) | Inductance element and manufacture thereof | |
JP2004006696A (en) | Wire-wound inductor | |
TW201814742A (en) | Coil components providing a coil component capable of suppressing magnetic saturation and having excellent DC superposition characteristics | |
JPS63196018A (en) | Inductance element | |
JPH0897045A (en) | Wound magnetic core, pulse transformer provided therewith, and pc card for interface | |
JPH0410723B2 (en) | ||
KR20170014598A (en) | Coil electronic component and method for manufacturing same | |
JPS6328008A (en) | Chip inductor | |
JP2003007551A (en) | Coil component and method of manufacturing the same | |
JPS629689Y2 (en) | ||
JPH0536252Y2 (en) |