JPH0262002A - Oxide metal film resistor and its manufacture - Google Patents

Oxide metal film resistor and its manufacture

Info

Publication number
JPH0262002A
JPH0262002A JP63213339A JP21333988A JPH0262002A JP H0262002 A JPH0262002 A JP H0262002A JP 63213339 A JP63213339 A JP 63213339A JP 21333988 A JP21333988 A JP 21333988A JP H0262002 A JPH0262002 A JP H0262002A
Authority
JP
Japan
Prior art keywords
mol
resistance
range
film
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63213339A
Other languages
Japanese (ja)
Inventor
Shunji Murai
村井 俊二
Tetsuya Urano
浦野 哲也
Masayuki Fujimoto
正之 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP63213339A priority Critical patent/JPH0262002A/en
Publication of JPH0262002A publication Critical patent/JPH0262002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

PURPOSE:To provide a resistor with a resistivity in a range of 1X10<-2> to 1X10<3>OMEGAcm and with a resistance temperature coefficient of 2000ppm/ deg.C by a method wherein Sb2O5 is added to an SnO2-TiO2 system and, in addition, Nb2O5 is added in order to obtain SnO2-TiO2-Sb2O5-Nb2O5. CONSTITUTION:An oxide metal film resistor is composed of a thin film of a composite metal oxide having a composition expressed by a formula: (SnO2)x-(TiO2)y-(Sb2O5)z-(Nb2O5)w. In this formula, x, y, z and w represent SnO2 and TiO2 in mol % as well as Sb2O5 and Nb2O5 in mol% to be added; values of z and w are decided by x+y=100 as a reference value and are numerical values satisfying Formulas I, II and III. Thereby, this resistor can be provided with a resistivity in a range of 1X10<-2> to 1X10<3>OMEGA.cm and with a resistance temperature coefficient in a range of 2000ppm/ deg.C. Then, this resistor can be provided with the resistivity in the range of 1X10<-2> to 1X10<3>OMEGA.cm and with a range of + or -2000 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化金属皮膜抵抗体に関し、さらに詳しくは、
I X 10’Ω・cIT1〜1×103Ω・師の範囲
の比抵抗値と±200ppa+/”Cの範囲の抵抗温度
係数とを併せ持ツS n OT t O2S b 20
 sNb2O,系酸化金属皮膜抵抗体およびその製法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a metal oxide film resistor, and more specifically,
I X 10'Ω・cIT1~1×103Ω・Has both a specific resistance value in the range of 1 and a resistance temperature coefficient in the range of ±200ppa+/”C.S n OT t O2S b 20
This invention relates to a sNb2O, metal oxide film resistor and its manufacturing method.

[従来の技術〕 S n O2皮膜抵抗体は耐熱性が高く、抵抗温度係数
も金属皮膜抵抗器に匹敵する小さな値であるものが低コ
ストで得られるため、各種電子機器に幅広く用いられて
いる。また、精密抵抗器としての用途も広く、±(50
〜200)I)pIII/’Cの範囲の抵抗温度係数を
もつS n 02皮膜抵抗器として電子計算機、通信機
その他の産業機器にあまねく使用されている。これらの
用途に使われる抵抗器は主として10Ω〜IOMΩの範
囲の抵抗値をもつものである。これらのS n O2膜
は、一般に、スパッタ法、スプレー熱分解法、蒸着法、
COD法などにより作られるが、S n O2皮膜抵抗
体の場合は、特性および製造コストの点から、主として
スプレー熱分解法が採用されている。この方法によるS
 n O2皮膜抵抗体の製造に際し抵抗値および抵抗温
度特性の設定は、Sb、F等のドーパントの添加量を変
えることや膜厚を調節すること等によって行なわれてい
る。しかしながら、S n O2単独の皮膜では通常、
比抵抗が10−2Ω・cm以下の皮膜しか得られないの
で比抵抗が10−2Ω・m以上となるような高い抵抗値
をもつ膜を得るためには、TIの添加によりS n O
T 102系複合膜とするなどの方法がとられている。
[Prior art] S n O2 film resistors have high heat resistance and a low temperature coefficient of resistance comparable to that of metal film resistors, and can be obtained at low cost, so they are widely used in various electronic devices. . It is also widely used as a precision resistor, ±(50
~200) I) S n 02 film resistors with a temperature coefficient of resistance in the range of pIII/'C are widely used in electronic computers, communications equipment, and other industrial equipment. Resistors used in these applications primarily have resistance values in the range of 10Ω to IOMΩ. These SnO2 films are generally produced by sputtering, spray pyrolysis, vapor deposition,
Although it is manufactured by the COD method, etc., in the case of SnO2 film resistors, the spray pyrolysis method is mainly adopted from the viewpoint of characteristics and manufacturing cost. S by this method
In manufacturing nO2 film resistors, the resistance value and resistance temperature characteristics are set by changing the amount of dopants such as Sb and F, and by adjusting the film thickness. However, in a film made of SnO2 alone,
Since only films with a specific resistance of 10-2 Ω・cm or less can be obtained, in order to obtain a film with a high resistance value of 10-2 Ω・m or more, S n O is added by adding TI.
Methods such as forming a T 102-based composite film are being used.

しかしこのT iO2を加える方法では抵抗温度係数が
±200ppIIl/℃以内の膜をつくることはできな
かった。
However, with this method of adding TiO2, it was not possible to form a film with a temperature coefficient of resistance within ±200 ppII/°C.

[発明が解決しようとする課題] SbまたはFを添加して改良したものでもS n O2
膜の比抵抗は約5×lO〜2XlOΩ・印の範囲に過ぎ
ないため、膜厚を変えることにより抵抗値を調節する方
法では、安定して歩留り良く作成できる2000Å以上
の膜厚の膜としたい場合には、1にΩ/sq以上の抵抗
値を得ることは困難であった。
[Problem to be solved by the invention] S n O2 even when improved by adding Sb or F
Since the specific resistance of the film is only in the range of approximately 5×lO to 2×lOΩ・mark, in the method of adjusting the resistance value by changing the film thickness, it is desirable to use a film with a thickness of 2000 Å or more, which can be produced stably and with a high yield. In some cases, it has been difficult to obtain a resistance value of 1Ω/sq or more.

一方、SnOにTiOを添加し、S n O2、TiO
3系複合酸化物皮膜とすることにより、もっと高い抵抗
値を持つ皮膜抵抗体をつくれることが知られているが、
この場合は、SbやFの添加によりもたらされる抵抗温
度特性の改善効果がバラツキの大きい不安定なものであ
るため、抵抗温度特性を±200ppa+/ ’Cの範
囲内に設定することが困難であった。
On the other hand, by adding TiO to SnO, SnO2, TiO
It is known that a film resistor with a higher resistance value can be created by using a 3-based composite oxide film.
In this case, the effect of improving the resistance-temperature characteristics brought about by the addition of Sb or F is unstable with large variations, so it is difficult to set the resistance-temperature characteristics within the range of ±200ppa+/'C. Ta.

上記の諸欠点を改善し、抵抗器を抵抗値1にΩ〜10M
Ωのものとできることに相当する比抵抗値10  Ω・
c+n−103Ω・(至)を持ち、さらに±2001)
I)l/”C以内の抵抗温度係数を持つ改良されたS 
n OZ系酸化金属皮膜抵抗体の製造を可能とすること
か本発明の解決しようとする課題である。
The above-mentioned defects have been improved, and the resistor has a resistance value of 1Ω to 10M.
The specific resistance value is 10 Ω, which corresponds to that of Ω.
c+n-103Ω・(to), plus ±2001)
I) Improved S with temperature coefficient of resistance within l/”C
The problem to be solved by the present invention is to make it possible to manufacture nOZ-based metal oxide film resistors.

[課題を解決するための手段] SpOにT i O2を加えたS n O2T i O
2系にさらにSb OおよびNb2O5を加えて、(S
nO)−(TiO)−(Sb205)22x     
   2y (Nb205)vという組成の複合金属酸化物皮膜を作
成することにより、I X 10’Ω・cIT1〜1×
103Ω・印の範囲の比抵抗と、±200ppn+/ 
’Cの範囲の抵抗温度係数とを併せ持つ薄膜抵抗体を得
ることが可能であることを見出し、前記の課題を解決し
た。ここに、上記組成式中のX+  Y−Z+ および
Wは、SnO2,TiO2゜Sb OおよびN b 2
05それぞれのモル数をSnOとTlO2との合計モル
数に対して%で表わした数値である。すなわち、Xおよ
びyはSnO−Till、系の各構成成分のモル%であ
す、2およびWはこの系に添加した5b205およびN
b2O5それぞれのモル数を添加前におけるこの系の各
構成成分の合計モル数に対して%で表わしたものである
。この意味で以下の記載において、Xおよびyの表イ)
すモル%は単に「モル%」と呼び、2およびWの表わす
モル%は「添加モル%」と呼ぶことにする。x+y−1
00であり、X。
[Means for solving the problem] S n O2T i O obtained by adding T i O2 to SpO
By further adding SbO and Nb2O5 to the 2 system, (S
nO)-(TiO)-(Sb205)22x
By creating a composite metal oxide film with a composition of 2y (Nb205)v, I
Specific resistance in the range of 103Ω・mark and ±200ppn+/
The inventors have discovered that it is possible to obtain a thin film resistor having a temperature coefficient of resistance in the range of 'C, and have solved the above-mentioned problems. Here, X+ Y-Z+ and W in the above compositional formula are SnO2, TiO2゜SbO and Nb2
The number of moles of each of SnO and TlO2 is expressed as a percentage of the total number of moles of SnO and TlO2. That is, X and y are SnO-Till, mol% of each component of the system, 2 and W are 5b205 and N added to this system.
The number of moles of each b2O5 is expressed as a percentage of the total number of moles of each component of the system before addition. In this sense, in the following description, the table of X and y)
The mol % represented by 2 and W will be simply referred to as "mol %", and the mol % represented by 2 and W will be referred to as "added mol %". x+y-1
00 and X.

y、zおよびWは下記の式(1) 、 (2)および(
3)を同時に満たす数値であることが必要である。
y, z and W are expressed by the following formulas (1), (2) and (
It is necessary that the value satisfies 3) at the same time.

[作  用] S n O2単独の金属酸化物皮膜では比抵抗は約5×
10〜2 X 10’Ω・印の範囲の値となるに過ぎな
いが、TiOを加えて5nO2−T102系とすること
により、その値を10−2Ω・cmから約105Ω・(
至)程度まで直線的に増加させることができる。しかし
ながら、5nO2−TiO2系皮膜の抵抗温度係数は一
200pN+/ ”Cより小さい値にしかならない。そ
こでS n 02  T t 02系に0,5モル%の
5b205を加えてS n O2TiO−8b205系
とすると、抵抗温度係数(ppII/ ’c )は第1
a図の直線Aのようになり、さらにNb  Oを加えて
S n O2T L 02S b 205  N b 
205とすると、Nb2O5の量をそれぞれ0.5モル
%、1.25モル%、2,5モル%とするとき、これら
の系の抵抗温度係数はそれぞれ第1a図の直線または曲
線B、  C,Dのようになり、抵抗温度係数が±20
0ppa+/’Cの範囲内の皮膜が得られる。Nb2O
,の添加量を3.0モル%とした場合の5n02−Ti
O2Sb O−Nb205系皮膜の抵抗温度係数は、第
1a図下部に黒く塗りつぶした小さな円で示すように、
−300ppm/ ’Cより小さい値となり、明らかに
±200pprA/”Cの範囲から大きくはずれる。S
 b 20 i、の添加量を2モル96としたときのS
nO−TiO2−8b205系皮膜の抵抗温度係数は第
2a図の直線Eに示す通りとなり、±200pp11/
 ”Cの範囲からはずれるが、さらにNb2O5を、そ
れぞれ0.5モル%、1.25モル%、2.5モル%添
加したS n O2−T i 02Sb O−Nb20
5系皮膜の抵抗温度係数は、第2a図の直線または曲線
F、 G、 Hのようになり±200pIts/ ”C
の範囲内となる。Nb2O5の添加量を3.0モル%と
したときの抵抗温度係数は第2a図下部に黒く塗りつぶ
した円で示すように、明らかに一200pp117℃よ
り小さい値となり、±200ppm/ ”Cの範囲から
はずれる。
[Function] In the metal oxide film of S n O2 alone, the specific resistance is approximately 5×
Although the value is only in the range of 10 to 2 x 10'Ω・mark, by adding TiO to create a 5nO2-T102 system, the value can be increased from 10−2Ω・cm to approximately 105Ω・(
can be increased linearly up to However, the temperature coefficient of resistance of the 5nO2-TiO2-based film is only a value smaller than -200 pN+/''C.Therefore, 0.5 mol% of 5b205 was added to the Sn02Tt02-based film to form the SnO2TiO-8b205-based film. Then, the temperature coefficient of resistance (ppII/'c) is the first
It becomes like straight line A in figure a, and by adding Nb O, it becomes S n O2T L 02S b 205 N b
205 and the amounts of Nb2O5 are 0.5 mol%, 1.25 mol%, and 2.5 mol%, respectively, the temperature coefficients of resistance of these systems are the straight lines or curves B, C, and C in Figure 1a, respectively. D, and the temperature coefficient of resistance is ±20
A film within the range of 0 ppa+/'C is obtained. Nb2O
5n02-Ti when the amount of addition is 3.0 mol%
The temperature coefficient of resistance of the O2Sb O-Nb205 film is as shown by the small black circle at the bottom of Figure 1a.
The value is smaller than -300ppm/'C, which clearly deviates significantly from the range of ±200pprA/'C.S
S when the addition amount of b 20 i is 2 mol 96
The temperature coefficient of resistance of the nO-TiO2-8b205 film is as shown by the straight line E in Figure 2a, which is ±200pp11/
"Although outside the range of C, 0.5 mol%, 1.25 mol%, and 2.5 mol% of Nb2O5 were added, respectively.SnO2-Ti02SbO-Nb20
The temperature coefficient of resistance of the 5-series film is as shown in the straight lines or curves F, G, and H in Figure 2a, and is ±200 pIts/''C.
Within the range of When the amount of Nb2O5 added is 3.0 mol%, the temperature coefficient of resistance is clearly smaller than -200 ppm/117°C, as shown by the black circle at the bottom of Figure 2a, and is within the range of ±200 ppm/''C. It comes off.

上記それぞれの場合の比抵抗(Ω・cm)の変化は、そ
れぞれ第1b図および第2b図に示すようになり、直線
りまたはMに従うか、またはそれに近いものとなる。し
たがって、それぞれの5nO−TiO2−8b205−
Nb205系皮膜が、1×lO〜lX103Ω・印の範
囲内の比抵抗値をとり得ることは明らかである。上記の
ことから、各酸化物成分のモル%を調節してS n O
2TiO−8b205−Nb205系複合金属酸化物皮
膜をつくることにより、I X to’〜lX10”Ω
・印の範囲の比抵抗と±200ppm/ ”Cの範囲内
の抵抗温度係数とを併せ持つ皮膜抵抗体を製造すること
が可能であることが理解されよう。
The changes in specific resistance (Ω·cm) in each of the above cases are as shown in FIGS. 1b and 2b, respectively, and follow a straight line or M, or are close to it. Therefore, each 5nO-TiO2-8b205-
It is clear that the Nb205-based film can have a specific resistance value within the range of 1×10 to 1×10 3 Ω·mark. From the above, by adjusting the mol% of each oxide component, S n O
By creating a 2TiO-8b205-Nb205-based composite metal oxide film, I
It will be appreciated that it is possible to produce a film resistor having both a resistivity in the range marked and a temperature coefficient of resistance in the range ±200 ppm/''C.

本発明の酸化金属皮膜抵抗体は、たとえば各成分金属の
塩化物を所定のモル比で有機溶媒に溶解して得た原料液
を、加熱したホウケイ酸ガラス等の基材の表面、に圧力
噴霧して着膜させる方法によって容易につくることがで
きる。原料配合時のモル比は必ずしも成膜された酸化物
皮膜の構成成分のモル比と一致しないので、製造に先立
ち簡単な試験を行なって、それぞれの場合のモル比の関
係を調べておき、所望の成膜が得られるような原料配合
を行なうことが必要である。成膜の構成成分であるSn
OTiO2,5b205゜2′ Nb2O5のモル比は、得られた薄膜の構成成分Sn、
Ti 、Sb、Nbの原子比を蛍光X線法により求め、
それぞれの酸化物のモル数に換算して求めることができ
る。
The metal oxide film resistor of the present invention is produced by pressure spraying a raw material liquid obtained by dissolving chlorides of each component metal in an organic solvent at a predetermined molar ratio onto the surface of a heated substrate such as borosilicate glass. It can be easily produced by a method of depositing a film. The molar ratio at the time of blending the raw materials does not necessarily match the molar ratio of the constituent components of the formed oxide film, so prior to manufacturing, a simple test is conducted to find out the relationship between the molar ratios in each case, and the desired It is necessary to mix the raw materials in such a way that the film can be formed. Sn, a component of film formation
The molar ratio of OTiO2,5b205°2' Nb2O5 is the constituents of the obtained thin film, Sn,
The atomic ratio of Ti, Sb, and Nb was determined by fluorescent X-ray method,
It can be calculated by converting it into the number of moles of each oxide.

比抵抗および抵抗温度係数は実施例に記載の方法で求め
ることができる。
Specific resistance and temperature coefficient of resistance can be determined by the method described in Examples.

実施例 S n C,Q 4 24.75g ST t CΩ4
4.74g。
Example S n C, Q 4 24.75g ST t CΩ4
4.74g.

sbcΩ30.23g、 N b (1!50.27g
をエタノール520gに溶解し、Sn:TI:Sb:N
b =95: 25: 1 :1(モル比)となる原料
液(1)をつくった。
sbcΩ30.23g, N b (1!50.27g
was dissolved in 520 g of ethanol, and Sn:TI:Sb:N
A raw material solution (1) having a molar ratio of b = 95:25:1:1 was prepared.

ホットプレートで500℃に加熱したホウケイ酸ガラス
基板(Cornlng” 7059)上に3kg/cd
の圧力で上記の溶液(1)を60秒間噴霧し、厚さ約5
000への薄膜を形成した。
3 kg/cd on a borosilicate glass substrate (Cornlng” 7059) heated to 500°C on a hot plate.
The above solution (1) was sprayed for 60 seconds at a pressure of
000 was formed.

上記薄膜の面抵抗を4端子法で測定し、面抵抗と膜厚か
ら比抵抗を求めた。また、20℃および155℃で面抵
抗を測定し、次の式により抵抗温度係数を求めた。
The sheet resistance of the thin film was measured by a four-probe method, and the specific resistance was determined from the sheet resistance and film thickness. Further, the sheet resistance was measured at 20° C. and 155° C., and the temperature coefficient of resistance was determined using the following formula.

(ppm/’C〕 ここに、R155およびR2Oは155℃および20℃
における面抵抗の値をそれぞれ表わす。
(ppm/'C) Here, R155 and R2O are 155℃ and 20℃
represents the value of sheet resistance at .

次いで薄膜組成におけるSn、TI、Sb。Next, Sn, TI, and Sb in the thin film composition.

Nbの原子比を蛍光X線法により求め、S n O2。The atomic ratio of Nb was determined by X-ray fluorescence method, and SnO2.

TiO2,5b205.Nb2O5のモル比に換算した
値を第1表中No、2の列に示した。同様のことを多数
の別の組成の原料液を用いて行ない、同表中No、1お
よびNo、3〜53の列に同様の換算値を示した。
TiO2,5b205. The values converted to the molar ratio of Nb2O5 are shown in the No. and 2 columns in Table 1. Similar results were carried out using a number of raw material liquids with different compositions, and similar converted values were shown in the columns No. 1 and No. 3 to No. 53 in the same table.

第1表中、尚tl、NO,5、No、6. No、LO
,No、14〜23゜No、28. Na、29. N
o、33. No、34. No、37〜53に示す膜
組成を持つものは、 のいずれかの条件を満たさない。その結果、所望の比抵
抗と抵抗温度係数とを有する皮膜とはならない。したが
って、これらの列に示した酸化金属皮膜抵抗体は本発明
を例示するものではなく、比較例である。
In Table 1, tl, NO, 5, No, 6. No, L.O.
, No, 14~23°No, 28. Na, 29. N
o, 33. No, 34. No. Those having film compositions shown in 37 to 53 do not satisfy any of the following conditions. As a result, the film does not have the desired resistivity and temperature coefficient of resistance. Therefore, the metal oxide film resistors shown in these columns are not illustrative of the present invention, but are comparative examples.

その他の列に示す膜組成を持つものは、上記(1)。Those having the film compositions shown in the other columns are (1) above.

(2)および(3)の条件を同時に満足する酸化金属皮
膜抵抗体であり、いずれもlXl0’Ω・cm〜1×1
03Ω・(1)の範囲の比抵抗値と、±200ppm/
 ”Cの範囲内の抵抗温度係数とを併せ持つS n O
2TiO−8b205−Nb205系酸化金属皮膜抵抗
体である。すなわち、これらは本発明の実施例である。
It is a metal oxide film resistor that satisfies the conditions (2) and (3) at the same time, and both are lXl0'Ω・cm~1×1
Specific resistance value in the range of 03Ω・(1) and ±200ppm/
“S n O with a temperature coefficient of resistance within the range of C
This is a 2TiO-8b205-Nb205 metal oxide film resistor. That is, these are examples of the present invention.

〔ただし、x、y、z、wはそれぞれS n O2+T
iOのモル%および、5b205.Nb2O5の添加モ
ル%であり、x + y = 100を基準とし、z、
wはこの基準に基づいて定めた値である。〕未満のとき
は比抵抗がlロー2Ω・印より小さく、0.70より大
きいときはに5.No、6に示すように103Ω・(1
)より大きくなるため所望の皮膜が得られない。
[However, x, y, z, and w are each S n O2+T
Mol% of iO and 5b205. Addition mol% of Nb2O5, based on x + y = 100, z,
w is a value determined based on this standard. ] When the resistivity is less than 10, the resistivity is less than the 2Ω mark, and when it is greater than 0.70, the resistivity is 5. As shown in No.6, 103Ω・(1
), the desired film cannot be obtained.

No、47〜51および第3図に示すように原料液中の
Sb量に対する抵抗温度係数のバラツキが大きく安定し
た特性が得られない。また、0.02より大きいときは
No、38〜46に示すように抵抗温度係数が±200
ppm/℃の範囲に入らないため所望の皮膜が得られな
い。
As shown in Nos. 47 to 51 and FIG. 3, the temperature coefficient of resistance varied greatly with respect to the amount of Sb in the raw material liquid, making it impossible to obtain stable characteristics. Also, if it is larger than 0.02, it is No, and the resistance temperature coefficient is ±200 as shown in 38 to 46.
Since it does not fall within the range of ppm/°C, the desired film cannot be obtained.

安定であり、O,[125より大きいときは、第1表N
o。
stable, O, [When larger than 125, Table 1 N
o.

15、 NoJ8に示すように抵抗温度係数が±200
ppm/℃の範囲に入らないため所望の皮膜が得られな
い。
15. As shown in NoJ8, the temperature coefficient of resistance is ±200
Since it does not fall within the range of ppm/°C, the desired film cannot be obtained.

また上記実施例では有機溶媒としてエタノールを用いた
が、本発明はこれに限定されるものではなく、エタノー
ルのかわりにメタノール、プロパツール、ブタノール、
アセトン、トルエン、エーテル等を用いることもできる
Further, in the above examples, ethanol was used as the organic solvent, but the present invention is not limited to this, and instead of ethanol, methanol, propatool, butanol, etc.
Acetone, toluene, ether, etc. can also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図はS n O+ T iO2−100モル%を
基準として、5b205が0.5モル%添加されたSn
O−TiO2−8b205系に、それぞれ、上記と同じ
基準で0モル%、0.5モル%、1.25モル%、2.
5モル%および3.0モル%のNb2O5が添加された
5nO2−TiO2−8b205Nb205系複合金属
酸化物皮膜抵抗体におけるNb2O5含有量と抵抗温度
係数との関係を示すグラフである。 第1b図は、第1a図に説明した皮膜抵抗体におけるN
b2O5含有量と非抵抗との関係を示すグラフである。 第2a図はS n O+ T i O2−100モル%
を基準としてS b 20 i、が2モル%添加された
SnO−TiO−8b205系に、それぞれ上記と同じ
基準で0モル%、0.5モル%、1.25モル%、2.
5モル%および3.0モル%のN b 205が添加さ
れたSnO−TiO2−3b205Nb2O5系複合金
属酸化物皮膜抵抗体におけるNb2O,含有量と抵抗温
度係数との関係を示すグラフである。 第2b図は、m2a図に関して説明した皮膜抵抗体にお
けるN b 205含有量と比抵抗との関係を示すグラ
フである。 第3図は、原料液中の5bCj113量と抵抗温度係数
との関係を示すグラフである。 図中の記号は次のものをそれぞれ表わす。 Nb2O5含有量W (添加モル%) ・・・・ 3.0 ×・・・ 2,5 0・・・1.25 △・・・ 0,5 0・・・ 0
Figure 1a shows Sn to which 0.5 mol% of 5b205 is added based on SnO+TiO2-100 mol%.
To the O-TiO2-8b205 system, 0 mol%, 0.5 mol%, 1.25 mol%, 2.
2 is a graph showing the relationship between the Nb2O5 content and the temperature coefficient of resistance in 5nO2-TiO2-8b205Nb205-based composite metal oxide film resistors to which 5 mol% and 3.0 mol% of Nb2O5 are added. Figure 1b shows the N in the film resistor described in Figure 1a.
It is a graph showing the relationship between b2O5 content and non-resistance. Figure 2a shows S n O+ T i O2-100 mol%
Based on the above, to the SnO-TiO-8b205 system to which 2 mol% of S b 20 i was added, 0 mol%, 0.5 mol%, 1.25 mol%, 2.
2 is a graph showing the relationship between the Nb2O content and the temperature coefficient of resistance in SnO-TiO2-3b205Nb2O5-based composite metal oxide film resistors to which 5 mol% and 3.0 mol% of Nb205 are added. FIG. 2b is a graph showing the relationship between the N b 205 content and specific resistance in the film resistor described in connection with the m2a diagram. FIG. 3 is a graph showing the relationship between the amount of 5bCj113 in the raw material liquid and the temperature coefficient of resistance. The symbols in the figure represent the following, respectively. Nb2O5 content W (additional mol%)... 3.0 ×... 2,5 0...1.25 △... 0,5 0... 0

Claims (2)

【特許請求の範囲】[Claims] (1)式:(SnO_2)_x−(TiO_2)_y−
(Sb_2O_5)_z−(Nb_2O_5)_wで表
わされる組成をもつ複合金属酸化物の薄膜〔ただし、x
,y,z,wはそれぞれ、SnO_2,TiO_2のモ
ル%およびSb_2O_5,Nb_2O_5の添加モル
%を表わし、x+y=100を基準として、z,wの値
を定め、かつ ▲数式、化学式、表等があります▼ を満足する数値である。〕 からなる酸化金属皮膜抵抗体。
(1) Formula: (SnO_2)_x-(TiO_2)_y-
(Sb_2O_5)_z-(Nb_2O_5)_w [However, x
, y, z, and w represent the mol% of SnO_2 and TiO_2 and the added mol% of Sb_2O_5 and Nb_2O_5, respectively, and the values of z and w are determined based on x+y=100, and ▲ mathematical formulas, chemical formulas, tables, etc. It is a value that satisfies ▼. ] A metal oxide film resistor consisting of
(2)SnCl_4,TiCl_4,SbCl_3およ
びNbCl_5を所定のモル比で有機溶媒に添加混合し
て得た原料液を、加熱した基材表面に圧力噴霧して、式
:(SnO_2)_x−(TiO_2)_y−(Sb_
2O_5)_z−(Nb_2O_5)_wで表わされる
組成をもつ複合金属酸化物の薄膜を形成する〔ただし、
x,y,z,wは上に同じ。〕ことからなる酸化金属皮
膜抵抗体の製法。
(2) A raw material liquid obtained by adding and mixing SnCl_4, TiCl_4, SbCl_3 and NbCl_5 to an organic solvent at a predetermined molar ratio is pressure sprayed onto the heated substrate surface to form a compound with the formula: (SnO_2)_x-(TiO_2). _y-(Sb_
A thin film of a composite metal oxide having a composition represented by 2O_5)_z-(Nb_2O_5)_w is formed [However,
x, y, z, w are the same as above. ] A method for manufacturing a metal oxide film resistor.
JP63213339A 1988-08-27 1988-08-27 Oxide metal film resistor and its manufacture Pending JPH0262002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63213339A JPH0262002A (en) 1988-08-27 1988-08-27 Oxide metal film resistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63213339A JPH0262002A (en) 1988-08-27 1988-08-27 Oxide metal film resistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH0262002A true JPH0262002A (en) 1990-03-01

Family

ID=16637515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63213339A Pending JPH0262002A (en) 1988-08-27 1988-08-27 Oxide metal film resistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH0262002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398019B1 (en) * 2001-08-30 2003-09-19 정영찬 Method for manufacturing the film of a high capacity and high property metal oxide film resistor which insulation substrate is substituted with low content alumina

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398019B1 (en) * 2001-08-30 2003-09-19 정영찬 Method for manufacturing the film of a high capacity and high property metal oxide film resistor which insulation substrate is substituted with low content alumina

Similar Documents

Publication Publication Date Title
JP3636914B2 (en) High resistance transparent conductive film, method for producing high resistance transparent conductive film, and sputtering target for forming high resistance transparent conductive film
Biswas et al. Effects of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of sol–gel indium tin oxide films on glass
JP6943704B2 (en) Resistor film for λ / 4 type radio wave absorber and λ / 4 type radio wave absorber
Randhawa et al. SnO2 films prepared by activated reactive evaporation
KR101849449B1 (en) Conductive structure body and method for manufacturing the same
Biswas et al. Study of sol–gel-derived high tin content indium tin oxide (ITO) films on silica-coated soda lime silica glass
JPH0350148A (en) Zinc oxide sintered compact, production and its application
JPH0262002A (en) Oxide metal film resistor and its manufacture
JP2989886B2 (en) Analog touch panel
KR101884643B1 (en) Zinc-doped tine oxide based transparent conducting oxide, multilayered transparent conducting film using the same and method for preparing the same
CN102651251A (en) Low-temperature crystallization indium tin oxide (ITO) transparent conducting film and preparation method of low-temperature crystallization ITO transparent conducting film
CN111446028A (en) Transparent conductive film and touch screen
JP3834339B2 (en) Transparent conductive film and method for producing the same
JPH0262001A (en) Oxide metal film resistor and its manufacture
JP3589428B2 (en) High resistance indium oxide film
KR960015222B1 (en) Liquid coating composition and method for forming a fluorine-doped tin oxide coating on glass
US10619227B2 (en) Thin film resistor
JP5308117B2 (en) Method for producing transparent conductive substrate
JPH0668713A (en) Transparent conductive film
KR102252112B1 (en) A transparent conducting oxide thin film based on silver metal alloy composition and method for manufacturing the same
JPS647445B2 (en)
JPH0428114A (en) Transparent conductive layered product
Jin et al. Transparent and infrared-reflecting ZnO: Al films reactively sputtered onto polyester foil
Swami et al. Multilayer and Thin Transparent Conducting Oxide Fabrication Using RF Magnetron Sputtering on Flexible Substrates
CN212541929U (en) Transparent conductive film and touch screen