JPH0261715B2 - - Google Patents

Info

Publication number
JPH0261715B2
JPH0261715B2 JP57216442A JP21644282A JPH0261715B2 JP H0261715 B2 JPH0261715 B2 JP H0261715B2 JP 57216442 A JP57216442 A JP 57216442A JP 21644282 A JP21644282 A JP 21644282A JP H0261715 B2 JPH0261715 B2 JP H0261715B2
Authority
JP
Japan
Prior art keywords
pulse
period
delay time
delay
oscilloscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57216442A
Other languages
Japanese (ja)
Other versions
JPS59107282A (en
Inventor
Hideyuki Obara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57216442A priority Critical patent/JPS59107282A/en
Publication of JPS59107282A publication Critical patent/JPS59107282A/en
Publication of JPH0261715B2 publication Critical patent/JPH0261715B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は信号波形における時間間隔特に遅延時
間の測定方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an improvement in a method for measuring time intervals, particularly delay times, in signal waveforms.

(b) 技術の背景 従来よりアナログあるいはデジタル信号の波形
観測あるいは複数信号または信号の変化点におけ
る時間間隔即ち後続信号または変化点における遅
延時間等の測定方法としてオシロスコープまたは
計数器を利用する方法が広く用いられている。
(b) Background of the technology Traditionally, oscilloscopes or counters have been widely used to observe the waveforms of analog or digital signals, or to measure time intervals between multiple signals or signal change points, that is, delay times at subsequent signals or change points. It is used.

(c) 従来技術と問題点 オシロスコープは通常陰極線管(CRT)を用
いて入力信号電圧を一方の偏向手段に加えて輝点
をY方向にふらせると同時に、入力信号と同期し
てX方向の偏向手段により掃引して入力信号電圧
の波形を観測する。
(c) Conventional technology and problems Oscilloscopes usually use a cathode ray tube (CRT) to apply an input signal voltage to one deflection means to make the bright spot swing in the Y direction, and at the same time deflect it in the X direction in synchronization with the input signal. The waveform of the input signal voltage is observed by sweeping with the deflection means.

入力信号の増幅器,時間軸発生器,各種の調整
回路等を内蔵して直流より数GHzに及ぶ信号の観
測手段として広く利用されている。また複数組の
入力信号偏向手段を有するCRTあるいは入力信
号と同期する幅の狭いサンプリングパルスによつ
て瞬間値を抽出する手段を用いて複数の信号を同
時に測定する多現象観測手段の他、入力信号がト
リガとなつて掃引を開始する手段を備えているの
で入力信号の変化点によつて掃引を開始し、後続
する他の入力信号または変化点を観測する方法に
より時間間隔例えば被測定回路の遅延時間を測定
出来るトリガとなる先行信号がトリガに好適条件
の鋭い立下りまたは立下りのパルスとは限らない
のでそのトリガレベルの変動に伴い基準点が浮動
したり、また遅延時間の値によつては特に遅延時
間が大きい場合測定精度が得られない欠点を有し
ていた。また別の計数器による方法は先行する入
力信号または変化点により計数器のゲートを開い
て基準クロツクの計数を開始し、後続する入力信
号または変化点によりゲートを閉じることにより
計時を行い、通常デジタル表示による容易な読取
手段の他、例えば10ppm程度の優れた精度と分解
能を備えているが、計数器のゲートトリガが通常
信号レベルによるため緩やかな変化あるいは複雑
な変化を伴う信号については目的の変化点を的確
に捕える保証が得られない点でオシロスコープに
よる目視確認に劣つている。
It has a built-in input signal amplifier, time axis generator, various adjustment circuits, etc., and is widely used as a means of observing signals ranging from DC to several GHz. In addition to multi-phenomenon observation means that simultaneously measure multiple signals using a CRT having multiple sets of input signal deflection means or means for extracting instantaneous values using narrow sampling pulses synchronized with input signals, Since the device is equipped with a means for starting the sweep when triggered, the sweep is started by the change point of the input signal, and the time interval, for example, the delay of the circuit under test, is determined by observing other subsequent input signals or change points. Since the preceding signal that serves as a trigger for time measurement is not necessarily a sharp falling edge or falling pulse, which is the ideal condition for triggering, the reference point may float due to fluctuations in the trigger level, or the value of the delay time may had the disadvantage that measurement accuracy could not be obtained especially when the delay time was large. Another counter method uses a preceding input signal or change point to open the counter gate and start counting the reference clock, and a subsequent input signal or change point closes the gate to measure time. In addition to easy reading through display, it has excellent accuracy and resolution of, for example, 10 ppm. However, since the gate trigger of the counter is usually based on the signal level, it is difficult to detect the desired change for signals with gradual or complex changes. It is inferior to visual confirmation using an oscilloscope in that there is no guarantee that the points will be accurately captured.

(d) 発明の目的 本発明の目的は従来におけるオシロスコープの
時間測定における欠点を除去しつゝオシロスコー
プにおける目視確認の利点を生かしつゝ高精度で
取扱いの容易な遅延時間測定手段を提供しようと
するものである。
(d) Purpose of the Invention The purpose of the present invention is to provide a highly accurate and easy-to-handle delay time measuring means that eliminates the disadvantages of conventional time measurement using an oscilloscope and takes advantage of the visual confirmation provided by the oscilloscope. It is something.

(e) 発明の構成 一定の基準繰返し周期によりパルス波形を発生
する手段、該基準パルスを印加してn倍の繰返し
周期を有する長周期パルスを出力する計数手段、
該長周期パルスを遅延する手段およびオシロスコ
ープによるタイミング観測手段を設けてなり、基
準パルスの任意の立上り位置に遅延手段により得
た2次パルスの立上りを一致せしめつゝ時間測定
零基準とし、2次パルスを被測定回路に印加して
得られる被測定パルスを基準パルスと共にタイミ
ング観測手段の画面上に同一時間軸による表示を
行い、被測定パルスの遅延時間を基準パルスの1
サイクルを単位として計数すると共に、1サイク
ル以下の端数については該画面または観測手段の
拡大表示操作により得ることを特徴とする遅延時
間の測定方法を提供することによつて達成するこ
とが出来る。
(e) Structure of the invention Means for generating a pulse waveform with a constant reference repetition period; counting means for applying the reference pulse and outputting a long-period pulse having a repetition period n times;
A means for delaying the long-period pulse and a timing observation means using an oscilloscope are provided, and the rise of the secondary pulse obtained by the delay means is made to coincide with an arbitrary rise position of the reference pulse, and is used as a zero reference for time measurement. The pulse under test obtained by applying the pulse to the circuit under test is displayed along with the reference pulse on the same time axis on the screen of the timing observation means, and the delay time of the pulse under test is set to 1 of the reference pulse.
This can be achieved by providing a delay time measuring method which counts cycles as a unit and obtains fractions less than one cycle by enlarging the screen or observing means.

(f) 発明の実施例 以下図面を参照しつゝ本発明の一実施例につい
て説明する。
(f) Embodiment of the invention An embodiment of the invention will be described below with reference to the drawings.

第1図は本発明の一実施例における遅延時間の
測定方法によるブロツク図、第2図はそのタイム
チヤートを示す。図において1は基準発振器、2
は計数回路、3は遅延回路、4はオシロスコー
プ、5は被測定回路(DUT)およびSWは切換
スイツチである。
FIG. 1 is a block diagram of a delay time measuring method according to an embodiment of the present invention, and FIG. 2 is a time chart thereof. In the figure, 1 is the reference oscillator, 2
is a counting circuit, 3 is a delay circuit, 4 is an oscilloscope, 5 is a circuit under test (DUT), and SW is a changeover switch.

基準発振器1は時間測定の基準とする精度を有
する例えば100MHz誤差±3PPMの水晶発振器を
基本としてその出力に波形整形を施して得られた
基準パルスPaを連続または図示省略したがトリ
ガ機能によりトリガに従つて必要パルス数を送出
するものとする。従つて基準パルスの繰返し周期
τは10nsとなる。計数回路2は基準パルスPaを
入力しn進計数を施して繰返し周期τ×nの長周
期パルスPbを送出する。第2図bの例ではn=
10としたが後述する遅延時間の測定に支障がない
任意の例えば複数個のフリツプフロツプを縦続し
て得るn=2nによる計数回路でよい。次に計数回
路2による長周期パルスPbを遅延回路3に入力
してその遅延時間を調整し出力パルスの立上りが
基準パルスPaの例えば1サイクル遅れの立上り
に一致する2次パルスPcを得る。尚長周期パル
スPbの遅延時間t0によつては更に遅れた1次パル
スPaの立上りに一致させれば良い。図示省略し
たが1次パルスPaにおける任意の立上り位置に
その立上り位置の2次パルスPbは、計数回路2
からの長周期パルスをそのまゝ利用し、別途基準
パルスPaに遅延を施して得る手段でも同様に実
現出来る。以上は複数現象表示機能を有するオシ
ロスコープ4には基準パルスPaと切替スイツチ
SWを較正側に設定して2次パルスPcを入力し共
通時間軸により掃引してパルス波形を観測するも
のとする。次に切替スイツチSWを測定に設定
し、DUT5に2次パルスPcを入力して得られる
被測定パルスPdを基準パルスPaと比較観測する。
勿論オシロスコープ4の表示能力に余裕があれば
切替スイツチSWを介することなく基準パルス
Pa,被測定パルスPdと共に2次パルスPcを同時
観測しても良い。被測定パルスPdはオシロスコ
ープ4の画面上に例えば第2図dのように得られ
るのでDUT5の遅延時間はt3として表示される
が遅延時間t3の内上位のt1は基準パルスtaの繰返
し周期3サイクルから30nsと計数により容易に求
められる。1サイクル以下の端数時間t2例えば5
〜6nsはオシロスコープ4の画面上直接あるいは
必要によりオシロスコープ4の拡大機能と遅延機
能を組合せて読取ればオシロスコープ4の画面上
における読取りが従来に比較して従来より狭い範
囲をその時間軸掃引の短時間レンジに設定して読
取ることにより精度の高い遅延時間t3=t1+t2
例えばt1=30ns,t2=5.5nsよりt3=35.5nsとして
得ることが出来る。
The reference oscillator 1 is basically a crystal oscillator with an accuracy of, for example, 100 MHz error ±3 PPM, which is used as a reference for time measurement, and the reference pulse Pa obtained by waveform shaping is applied to the output of the crystal oscillator. Therefore, the required number of pulses shall be sent. Therefore, the repetition period τ of the reference pulse is 10 ns. The counting circuit 2 inputs the reference pulse Pa, performs n-ary counting, and sends out a long-period pulse Pb with a repetition period τ×n. In the example of Figure 2b, n=
10, but any counting circuit with n=2 n obtained by cascading a plurality of flip-flops may be used, for example, any counting circuit that does not interfere with the measurement of delay time as will be described later. Next, the long-period pulse Pb from the counting circuit 2 is input to the delay circuit 3 and its delay time is adjusted to obtain a secondary pulse Pc in which the rising edge of the output pulse coincides with the rising edge of the reference pulse Pa, for example, delayed by one cycle. Depending on the delay time t 0 of the long-period pulse Pb, it is sufficient to match the rising edge of the primary pulse Pa which is further delayed. Although not shown, the secondary pulse Pb at any rising position of the primary pulse Pa is generated by the counting circuit 2.
This can be similarly achieved by using the long-period pulse as it is and obtaining it by separately delaying the reference pulse Pa. The above is a reference pulse Pa and a changeover switch for the oscilloscope 4, which has a multi-phenomenon display function.
It is assumed that the SW is set to the calibration side, the secondary pulse Pc is input, and the pulse waveform is observed by sweeping along the common time axis. Next, the changeover switch SW is set to measurement, the secondary pulse Pc is input to the DUT 5, and the obtained pulse to be measured Pd is compared and observed with the reference pulse Pa.
Of course, if the display capacity of the oscilloscope 4 has sufficient capacity, the reference pulse can be displayed without going through the changeover switch SW.
The secondary pulse Pc may be observed simultaneously with Pa and the pulse to be measured Pd. The pulse to be measured Pd is obtained on the screen of the oscilloscope 4 as shown in Figure 2 (d), so the delay time of the DUT 5 is displayed as t3 , but the upper t1 of the delay time t3 is the repetition of the reference pulse ta. The period is 30 ns from 3 cycles, which can be easily determined by counting. Fractional time t 2 less than 1 cycle, e.g. 5
~6ns can be read directly on the screen of the oscilloscope 4 or, if necessary, in combination with the magnification and delay functions of the oscilloscope 4, allowing the reading on the screen of the oscilloscope 4 to cover a narrower range in a shorter time axis sweep than before. By setting and reading in the time range, a highly accurate delay time t 3 =t 1 +t 2 can be obtained as t 3 =35.5 ns, for example, from t 1 =30 ns and t 2 =5.5 ns.

(g) 発明の効果 以上説明したように本発明によれば従来の方法
に比較して遅延時間を上廻る長周期パルスを測定
パルスとして使用すると共に基準パルスの立上り
と該長周期パルスの立上りを一致させて、操作が
容易な上基準パルスの精度を遅延時間における大
部分に適用し且端数については従来より精度良く
読取れるオシロスコープのレンジを設定すること
により優れた遅延時間の測定方法が得られるので
有用である。
(g) Effects of the Invention As explained above, according to the present invention, a long-period pulse with a delay time longer than that of the conventional method is used as a measurement pulse, and the rising edge of the reference pulse and the rising edge of the long-period pulse can be By matching, applying the accuracy of the reference pulse to most of the delay time, which is easy to operate, and setting the range of the oscilloscope to read fractions more accurately than before, an excellent method of measuring delay time can be obtained. Therefore, it is useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における遅延時間の
測定方法によるブロツク図、第2図はそのタイム
チヤートである。 図において1は基準発振器、2は計数回路、3
は遅延手段、4はオシロスコープおよび5は被測
定回路である。
FIG. 1 is a block diagram of a delay time measuring method according to an embodiment of the present invention, and FIG. 2 is a time chart thereof. In the figure, 1 is a reference oscillator, 2 is a counting circuit, and 3 is a reference oscillator.
4 is a delay means, 4 is an oscilloscope, and 5 is a circuit to be measured.

Claims (1)

【特許請求の範囲】[Claims] 1 一定の基準繰返し周期によりパルス波形を発
生する手段、該基準パルスを印加してn倍の繰返
し周期を有する長周期パルスを出力する計数手
段、該長周期パルスを遅延する手段およびオシロ
スコープによるタイミング観測手段を設けてな
り、基準パルスの任意の立上り位置に遅延手段に
より得た2次パルスの立上りを一致せしめつつ時
間測定零基準とし、2次パルスを被測定回路に印
加して得られる被測定パルスを基準パルスと共に
タイミング観測手段の画面上に同一時間軸による
表示を行い、被測定パルスの遅延時間を基準パル
スの1サイクルを単位として計数すると共に、1
サイクル以下の端数については該画面または観測
手段の拡大表示操作により得ることを特徴とする
遅延時間の測定方法。
1. Means for generating a pulse waveform with a constant reference repetition period, counting means for applying the reference pulse and outputting a long-period pulse having a repetition period n times, means for delaying the long-period pulse, and timing observation using an oscilloscope. The pulse to be measured is obtained by applying the secondary pulse to the circuit under test, using means as a zero reference for time measurement while making the rise of the secondary pulse obtained by the delay means coincide with any rising position of the reference pulse. is displayed along with the reference pulse on the same time axis on the screen of the timing observation means, and the delay time of the pulse to be measured is counted in units of one cycle of the reference pulse.
A method for measuring delay time, characterized in that a fraction less than a cycle is obtained by an enlarged display operation of the screen or observation means.
JP57216442A 1982-12-10 1982-12-10 Measuring method of delay time Granted JPS59107282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57216442A JPS59107282A (en) 1982-12-10 1982-12-10 Measuring method of delay time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216442A JPS59107282A (en) 1982-12-10 1982-12-10 Measuring method of delay time

Publications (2)

Publication Number Publication Date
JPS59107282A JPS59107282A (en) 1984-06-21
JPH0261715B2 true JPH0261715B2 (en) 1990-12-20

Family

ID=16688600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216442A Granted JPS59107282A (en) 1982-12-10 1982-12-10 Measuring method of delay time

Country Status (1)

Country Link
JP (1) JPS59107282A (en)

Also Published As

Publication number Publication date
JPS59107282A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
US4438404A (en) Signal sampling system
US2591738A (en) Cathode-ray tube voltage measuring device
US7653500B2 (en) Sequential timebase
US6137749A (en) Apparatus and method for measuring time intervals with very high resolution
GB2107872A (en) Ultrasonic test instrument
US4105932A (en) "Slewed pulse" scope sweep calibrator
US3449671A (en) Oscillographic apparatus for measuring the magnitude and duration of input waveforms
US20040167733A1 (en) Mixer-based timebase for sampling multiple input signal references asynchronous to each other
JPH0261715B2 (en)
US10119997B2 (en) Method for measuring the waveform capture rate of a digital storage oscilloscope based on average dead time measurement
US3466553A (en) Control circuit for a sampling system
US4097798A (en) Oscilloscope sweep rate indicator system
JPS63191979A (en) Measuring instrument for transmission line parameter
JPH06103293B2 (en) Ultrasonic measurement device A / D conversion processing method
JPS6356506B2 (en)
KR920001718B1 (en) Pulse detective circuit
RU2071062C1 (en) Oscillograph
RU1793387C (en) Digital oscillograph
JP3080480B2 (en) Signal delay time measuring device
SU1599785A1 (en) Oscillograph
RU2073873C1 (en) Oscilloscope
SU116740A1 (en) Device for visual observation and measurement of the basic parameters of a quadrupole
RU2106646C1 (en) Oscillograph
SU1705767A1 (en) Amplitude-frequency and time characteristics measuring device
SU748290A1 (en) Device for measuring statistical characteristics of switching-over elements