JPH0261634B2 - - Google Patents

Info

Publication number
JPH0261634B2
JPH0261634B2 JP57009551A JP955182A JPH0261634B2 JP H0261634 B2 JPH0261634 B2 JP H0261634B2 JP 57009551 A JP57009551 A JP 57009551A JP 955182 A JP955182 A JP 955182A JP H0261634 B2 JPH0261634 B2 JP H0261634B2
Authority
JP
Japan
Prior art keywords
flow rate
load
pressure
supply
excess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57009551A
Other languages
Japanese (ja)
Other versions
JPS58127216A (en
Inventor
Yoichi Kita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP955182A priority Critical patent/JPS58127216A/en
Publication of JPS58127216A publication Critical patent/JPS58127216A/en
Publication of JPH0261634B2 publication Critical patent/JPH0261634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 (a) 技術分野の説明 本発明は気体圧縮機の台数制御装置に係り、改
良された負荷への供給流量算出部を備えて成る気
体圧縮機の台数制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Description of the Technical Field The present invention relates to a device for controlling the number of gas compressors, and more particularly, to a device for controlling the number of gas compressors that includes an improved supply flow rate calculation unit to a load.

(b) 従来技術の説明 従来、空気圧縮機を負荷に応じて台数制御する
方式には、圧力チエツク方式と、流量チエツク方
式の2通りがある。圧力チエツク方式とは、圧力
に応じて運転台数を決定するものである。すなわ
ち、第1図のような空気圧縮システムにおいて、
第2図のように設定圧よりの偏差の大きさに応じ
て、台数を決定するものである。しかしながらこ
の方式においては、制御対象に応じた圧力偏差が
必要とされるが、このことは、圧力変動幅がひろ
くなることを意味する。
(b) Description of Prior Art Conventionally, there are two methods for controlling the number of air compressors depending on the load: a pressure check method and a flow rate check method. The pressure check method determines the number of operating units depending on the pressure. That is, in an air compression system as shown in Fig. 1,
As shown in Fig. 2, the number of units is determined depending on the magnitude of the deviation from the set pressure. However, this method requires a pressure deviation depending on the controlled object, which means that the range of pressure fluctuation becomes wider.

一般に、圧縮空気の圧力変動幅がひろいと、負
荷側に精度悪化等の悪影響を及ぼすので好ましく
ない。これを改善するものが流量チエツク方式
で、負荷への供給流量に応じて運転台数を決定す
るものである。すなわち、第3図のような空気圧
縮システムにおいて、第4図のように負荷への供
給流量の大きさに応じて、運転台数を決定するも
のである。この方式では、負荷に合わせて台数制
御するから圧力偏差をひろく必要とせず、圧力変
動幅を小さくできるので、圧力チエツク方式より
優る。このように、流量チエツク方式は優れた方
式ではあるが、従来、殆ど利用されていない。そ
の原因は、負荷への供給流量を正しく検出するこ
とが困難なためである。
Generally, if the pressure fluctuation range of compressed air is wide, it is not preferable because it has an adverse effect on the load side, such as deterioration of accuracy. A method to improve this is the flow rate check system, which determines the number of units in operation according to the flow rate supplied to the load. That is, in the air compression system as shown in FIG. 3, the number of units in operation is determined according to the magnitude of the flow rate supplied to the load as shown in FIG. 4. This method is superior to the pressure check method because the number of units is controlled according to the load, so there is no need for wide pressure deviations, and the range of pressure fluctuations can be made small. As described above, although the flow rate check method is an excellent method, it has rarely been used in the past. The reason for this is that it is difficult to correctly detect the flow rate supplied to the load.

つまり、空気が圧縮性の気体であることから、
第3図において検出する負荷への供給流量は、圧
縮機よりの吐出流量となつており、負荷へ実供給
される供給流量とは相異するものとなつていた。
これは、圧縮機から負荷端を結ぶ配管がバツフア
となつてそこへ空気を送り込むためで、これを避
けるためには、多数ある末端へ流量計をつけて合
計をとらなければならず、実施面で困難であつ
た。
In other words, since air is a compressible gas,
The flow rate supplied to the load detected in FIG. 3 is the discharge flow rate from the compressor, and is different from the flow rate actually supplied to the load.
This is because the piping that connects the compressor to the load end becomes a buffer and the air is sent there. To avoid this, it is necessary to attach flow meters to the many ends and measure the total, which is difficult to implement. It was difficult.

このため、従来の圧縮機の台数制御は適格性を
欠いたものとなつていた。
For this reason, conventional control of the number of compressors has become unsuitable.

(c) 発明の目的 本発明は上記事由に鑑みてなされ、負荷に供給
される供給流量を精度良く算出することにより圧
縮機の台数制御の適確性を向上させた圧縮機台数
制御装置を提供することを目的とする。
(c) Purpose of the Invention The present invention has been made in view of the above reasons, and provides a compressor number control device that improves the accuracy of compressor number control by accurately calculating the supply flow rate supplied to the load. The purpose is to

(d) 発明の構成と作用 以下本発明を図面を参照して説明する。第5図
は本発明の空気圧縮システムを示し、本発明にお
いては、微細な圧力変化ΔPから第6図及び第7
図に示すように、吐出流量Qと負荷への供給流量
Q′の差ΔQ(以降、過不足流量とよぶ)を求め、
吐出流量Qとから過不足流量ΔQから負荷への供
給流量Q′を求める。
(d) Structure and operation of the invention The present invention will be explained below with reference to the drawings. FIG. 5 shows the air compression system of the present invention, and in the present invention, from minute pressure changes ΔP,
As shown in the figure, the discharge flow rate Q and the supply flow rate to the load
Find the difference ΔQ (hereinafter referred to as excess/deficiency flow rate) of Q',
The supply flow rate Q' to the load is calculated from the excess/deficiency flow rate ΔQ based on the discharge flow rate Q.

まず過不足流量ΔQの算出は、第6図に示すよ
うに、微小時間Δtの間に圧力がΔP変化したとす
ると、物理理論式よりから P1V1=P2V2 が成立つ。よつて 1.033Kg/cm3×(Vm3+ΔQm3/h・Δth) =(1.033Kg/cm3+ΔPKg/cm3)×Vm3 これから過不足流量 ΔQm3/h=ΔP・V/1.033・Δt ……(1) を得る。式中、Vは配管吐出から負荷端までのバ
ツフア(配管等のすべてを含む)の容積で系で一
定と見なすことができる。なお、1.033は、空気
流量を大気圧換算するためのものである。
First, to calculate the excess/deficiency flow rate ΔQ, as shown in FIG. 6, assuming that the pressure changes by ΔP during a minute time Δt, P 1 V 1 =P 2 V 2 holds true from the physical theory formula. Therefore, 1.033Kg / cm 3 × (Vm 3 + ΔQm 3/h・Δt h ) = (1.033Kg / cm 3 + ΔPKg / cm 3 ) × Vm 3 From this, excess or deficiency flow rate ΔQm 3/h = ΔP・V/1.033・Δt ...(1) is obtained. In the formula, V is the volume of the buffer (including all pipes, etc.) from the pipe discharge to the load end, and can be considered to be constant in the system. Note that 1.033 is for converting the air flow rate to atmospheric pressure.

又、負荷への供給流量の算出は、第7図に示す
ように、 Q′m3/h=Qm3/h−ΔQm3/hから、 Q′m3/h=Q′m3/h−ΔPKg/m3・Vm3/1.033・Δth…
…(2) を得る。
Also, as shown in Figure 7, the supply flow rate to the load can be calculated from Q′m 3/h = Qm 3/h −ΔQm 3/h , Q′m 3/h = Q′m 3/h −ΔPKg/ m3Vm3 /1.033・Δth…
…(2) is obtained.

第8図は本発明の一実施例の要部を示したもの
で、第5図に示される圧力センサー2で測定され
た負荷への供給圧力は供給圧入力部5より取込ま
れ、圧力変化算出部6で一定微小時間Δt間の圧
力変化ΔPが算出される。過不足流量部7では、
ΔPから過不足流量(ΔQ)を算出し、供給流量算
出部9ではΔQと第5図に示される流量センサー
3にて測定され吐出流量入力部8を介して取り込
まれる吐出流量Qより負荷への供給流量Q′を算
出する。
FIG. 8 shows a main part of an embodiment of the present invention, in which the supply pressure to the load measured by the pressure sensor 2 shown in FIG. 5 is taken in from the supply pressure input section 5, and the pressure changes. The calculation unit 6 calculates the pressure change ΔP during a certain minute time Δt. In the excess/deficiency flow section 7,
The supply flow rate calculation unit 9 calculates the excess or deficiency flow rate (ΔQ) from ΔP, and the supply flow rate calculation unit 9 calculates the amount of flow to the load based on ΔQ and the discharge flow rate Q measured by the flow rate sensor 3 shown in FIG. Calculate the supply flow rate Q'.

(e) 総合的な効果 以上説明したよう本発明によれれば、負荷への
実供給流量を負荷端へ流量計を多数取り付けるこ
となく正確に算出でき、これより効果的な圧縮機
の台数制御を行うことが可能となる。
(e) Overall effect As explained above, according to the present invention, the actual flow rate supplied to the load can be accurately calculated without installing multiple flowmeters at the load end, and the number of compressors can be controlled more effectively. It becomes possible to do this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧力チエツク方式における空気圧縮シ
ステムを示す図、第2図は圧力チエツク方式によ
る台数制御の関係図、第3図は流量チエツク方式
における空気圧縮システムを示す図、第4図は流
量チエツク方式における台数制御の関係図、第5
図は本発明における空気圧縮システムを示す図、
第6図は吐出流量と負荷への供給流量の関係図、
第7図は微少時間における圧力変化図、第8図は
本発明の一実施例の要部を示すブロツク図であ
る。 1……空気圧縮機、5……供給圧力入力部、2
……圧力センサー、6……圧力変化算出部、3…
…流量センサー、7……過不足流量算出部、4…
…台数制御装置、8……吐出流量入力部、9……
供給流量算出部。
Figure 1 is a diagram showing the air compression system using the pressure check method, Figure 2 is a diagram showing the relationship between the number of units controlled using the pressure check method, Figure 3 is a diagram showing the air compression system using the flow rate check method, and Figure 4 is a diagram showing the air compression system using the flow rate check method. Relationship diagram of number control in the method, 5th
The figure shows an air compression system in the present invention,
Figure 6 is a diagram showing the relationship between the discharge flow rate and the supply flow rate to the load.
FIG. 7 is a pressure change diagram over a short period of time, and FIG. 8 is a block diagram showing a main part of an embodiment of the present invention. 1... Air compressor, 5... Supply pressure input section, 2
...Pressure sensor, 6...Pressure change calculation section, 3...
...Flow rate sensor, 7...Excess/deficiency flow rate calculation unit, 4...
...Number of units control device, 8...Discharge flow rate input section, 9...
Supply flow rate calculation section.

Claims (1)

【特許請求の範囲】[Claims] 1 一体に接続された複数の気体圧縮機に配管部
を介して接続される需要変動負荷の要求需要流量
に応じて前記複数の気体圧縮機の台数制御を行う
圧縮機台数制御装置において、所定時間内の前期
複数の気体圧縮機より前期負荷への供給圧力の変
化値を算出する圧力変化算出部と、前記複数の気
体圧縮機よりの吐出流量と前期負荷へ前記配管部
を介して実供給された供給流量との差である過不
足流量を前記供給圧力変化値より算出する過不足
流量算出部と、前記過不足流量と前記吐出流量か
ら前記供給流量を算出する供給流量算出部とを備
えて成る圧縮機台数制御装置。
1. In a compressor number control device that controls the number of the plurality of gas compressors in accordance with the demand flow rate of a demand variable load connected to the plurality of gas compressors integrally connected via a piping section, a pressure change calculation unit that calculates a change in the supply pressure from the plurality of gas compressors to the first load; an excess/deficiency flow rate calculation unit that calculates an excess/deficiency flow rate that is a difference between the supply flow rate and the supply flow rate based on the supply pressure change value; and a supply flow rate calculation unit that calculates the supply flow rate from the excess/deficiency flow rate and the discharge flow rate. Compressor number control device.
JP955182A 1982-01-26 1982-01-26 Load flow calculator Granted JPS58127216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP955182A JPS58127216A (en) 1982-01-26 1982-01-26 Load flow calculator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP955182A JPS58127216A (en) 1982-01-26 1982-01-26 Load flow calculator

Publications (2)

Publication Number Publication Date
JPS58127216A JPS58127216A (en) 1983-07-29
JPH0261634B2 true JPH0261634B2 (en) 1990-12-20

Family

ID=11723408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP955182A Granted JPS58127216A (en) 1982-01-26 1982-01-26 Load flow calculator

Country Status (1)

Country Link
JP (1) JPS58127216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154294A (en) * 2011-01-28 2012-08-16 Hitachi Industrial Equipment Systems Co Ltd Gas compressor control system
JPWO2016016982A1 (en) * 2014-07-31 2017-04-27 三菱重工業株式会社 Compressor control device, compressor control system, and compressor control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201890A (en) * 1985-03-04 1986-09-06 Hitachi Ltd Operation control method for compressor
US7722331B2 (en) * 2005-09-30 2010-05-25 Hitachi, Ltd. Control system for air-compressing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181982A (en) * 1981-05-01 1982-11-09 Hiroaki Murakami Power saved operation of compressor by pressure difference

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181982A (en) * 1981-05-01 1982-11-09 Hiroaki Murakami Power saved operation of compressor by pressure difference

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154294A (en) * 2011-01-28 2012-08-16 Hitachi Industrial Equipment Systems Co Ltd Gas compressor control system
JPWO2016016982A1 (en) * 2014-07-31 2017-04-27 三菱重工業株式会社 Compressor control device, compressor control system, and compressor control method

Also Published As

Publication number Publication date
JPS58127216A (en) 1983-07-29

Similar Documents

Publication Publication Date Title
CN101839737B (en) Mass flow meter, mass flow controller, and mass flow meter system and mass flow controller system including the same
JP4204400B2 (en) Differential pressure type flow meter and differential pressure type flow control device
JPS6330520B2 (en)
CN102096420B (en) Mass flow controller
US20210262688A1 (en) Multi-split air-conditioning system, and method for calculating heat exchange capacity thereof
US5406839A (en) Incidence probe with multiple pressure inlets
ITMI952233A1 (en) IMPROVED SYSTEM FOR MEASUREMENT AND REGULATION OF GAS MASS FLOW RATE
JPH0261634B2 (en)
DE69309939T2 (en) FLOWMETER
JP3516772B2 (en) Steam dryness control device
JP3891261B2 (en) Air supply system
US4052897A (en) Methods and apparatus for determining total flow rate of gaseous fluids
CN111853533B (en) Compressed air production apparatus and target pressure adjustment method
JPH0612116B2 (en) Variable speed water supply device
JP3736723B2 (en) Flow rate adjustment method for fluid flowing through multiple lines
JPH05118280A (en) Operation control system for variable speed water supply device
JPS63117125A (en) Exhaust gas straightening device for gas turbine
JPS588002B2 (en) Terminal pressure control method for wide area pipe water distribution equipment
JPS631900A (en) Odorizing agent adding device
JPS61164117A (en) Instrument for measuring flow rate of gas
JPS59177618A (en) Pressure control method
JPH0419489Y2 (en)
JP2899590B1 (en) Drift detection method of pressure gauge incorporated in piping system
Smith Importance of flow transmitter selection for return fan control in VAV systems.
JPH03262935A (en) Pressure difference measuring instrument