JPS61164117A - Instrument for measuring flow rate of gas - Google Patents
Instrument for measuring flow rate of gasInfo
- Publication number
- JPS61164117A JPS61164117A JP559385A JP559385A JPS61164117A JP S61164117 A JPS61164117 A JP S61164117A JP 559385 A JP559385 A JP 559385A JP 559385 A JP559385 A JP 559385A JP S61164117 A JPS61164117 A JP S61164117A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- pressure
- temperature
- correction
- moisture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Volume Flow (AREA)
- Details Of Flowmeters (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、湿シ気体の流量を水分補正して算出すること
ができる気体流量測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a gas flow rate measuring device that can calculate the flow rate of wet gas by correcting the moisture content.
〈従来技術〉
湿シ気体の流量を差圧方式で測定する場合は、温度補正
及び圧力補正すると共に水分補正も必要である。即ち、
現実には測定ガス中に占める水分の影響は無視できない
程大きく、水分の影響も考慮した正確な流量を測定する
ことは、省エネの点からも必要なことである。<Prior Art> When measuring the flow rate of moist gas using a differential pressure method, temperature correction, pressure correction, and moisture correction are also required. That is,
In reality, the influence of moisture in the measurement gas is so large that it cannot be ignored, and it is necessary from the point of view of energy conservation to accurately measure the flow rate while taking the influence of moisture into account.
一般に湿す気体の流量QNfの補正式は、次式で与えら
れる。Generally, the correction formula for the flow rate QNf of the humidifying gas is given by the following formula.
目の根号は圧縮!数、第5番目の根号は水分補正項をそ
些ぞれ表わしている。The radical of the eye is compression! The fifth radical sign represents the moisture correction term.
ここに、
γNbtr:設計基準組成の湿シ気体中の乾燥気体分圧
下按おけるその気体の些重量を標
準状態に換算した値
γNftr:使用状態組成の湿シ気体中の乾燥環体分圧
下におけるその気体の比重量を標
準状態に換算した値
Tb:設計基準状態の絶対温度
Tf:使用状態の絶対温度
Pb:設計基準状態の絶対圧力
Pf:使用状態の絶対圧力
zNftr ’使用状態組成の流体の標準状態における
圧縮係数
Zbtr:設計基準状態の乾燥気体の圧縮係数”Nbj
r ’設計基準組成の流体の標準状態における圧縮係数
zftr ’使用状態の乾燥気体の圧縮係数QNO:
’設計基準状態の見かけ容積流量を標準状態に換算した
見かけ容積流量
(1)式における水分補正項には相対湿度ψf1.ψb
により次のように表わされる。Here, γNbtr: The value obtained by converting the trivial weight of the gas under the partial pressure of the dry gas in the wet gas with the design standard composition to the standard state. Value obtained by converting the specific weight of gas to the standard state Tb: Absolute temperature in design reference state Tf: Absolute temperature in use state Pb: Absolute pressure in design reference state Pf: Absolute pressure in use state zNftr 'Standard for fluid with composition in use state Compression coefficient Zbtr in state: Compression coefficient of dry gas in design standard state “Nbj
r'Compression coefficient of fluid with design standard composition in standard state zftr'Compression coefficient of dry gas in use state QNO:
'The moisture correction term in the apparent volumetric flow rate (1), which converts the apparent volumetric flow rate in the design standard state to the standard state, includes the relative humidity ψf1. ψb
It is expressed as follows.
エエ、 ″ゝ
Pfs:使用状態における飽和水蒸気絶対圧力Pb8:
設計基準状態における飽和水蒸気絶対圧力
ψf :使用状態における相対湿度
ψb:設計基準状態における相対湿度
PN:標準状態の絶対圧力
γbs:設計基準状態における飽和水蒸気比重量
γfs:使用状態における飽和水蒸気比重量(2)式よ
り明らかなように、水分補正項が余りにも複雑であり、
高精度の補正は極めて複雑な演算処理を必要として現実
的でなく、相対湿度の測定も直接測定は困難で換算演算
を必要とする等装置が複雑高価となる問題点がある。``ゝPfs: Absolute saturated water vapor pressure Pb8 in use condition:
Saturated water vapor absolute pressure in the design standard state ψf: Relative humidity in the operating state ψb: Relative humidity in the design reference state PN: Absolute pressure in the standard state γbs: Saturated water vapor specific weight in the design reference state γfs: Saturated water vapor specific weight in the operating state ( 2) As is clear from the equation, the moisture correction term is too complicated;
High-precision correction requires extremely complicated arithmetic processing, which is impractical, and direct measurement of relative humidity is difficult and requires conversion calculations, resulting in complicated and expensive equipment.
〈発明が解決しようとする問題点〉
本発明の目的は、流体の温度、圧力の状態変化に影響を
受けず、かつ−次式による近似補正が可能な流量測定装
置の提供にある。<Problems to be Solved by the Invention> An object of the present invention is to provide a flow rate measuring device that is not affected by changes in the temperature and pressure of the fluid and is capable of approximate correction using the following equation.
〈問題点を解決するための手段〉
本発明の構成上の特徴は、湿シ気体の流量を温度、圧力
補正すると共に水分補正を含めて差圧方式で測定する場
合において、水分補正係数を絶対湿度の関数として求め
、気体流量を測定するに際し気体の測定絶対湿度に応じ
た補正係数を設計基準状態における容積流量に温度補正
項、圧力補正項と共に乗じて水分補正した湿り気体流量
を算出するようにした点にある。<Means for Solving the Problems> The structural feature of the present invention is that when the flow rate of humid gas is corrected for temperature and pressure and is measured using a differential pressure method including moisture correction, the moisture correction coefficient is absolutely fixed. It is calculated as a function of humidity, and when measuring gas flow rate, the volumetric flow rate in the design standard state is multiplied together with the temperature correction term and pressure correction term to calculate the moisture-corrected humid gas flow rate. That's what I did.
〈作用〉
差圧式で流量が測定される際に温度、圧力と共に絶対湿
度検出器によって絶対湿度が検出され、所定の演算式に
基づいて湿度の補正係数が演算され、又はあらかじめ記
憶されたテーブルより読出され、温度、圧力補正と同時
に湿度が補正演算され標準状態における湿度に換算され
た容積流量信号に変換される。<Function> When flow rate is measured using the differential pressure method, absolute humidity is detected by an absolute humidity detector along with temperature and pressure, and a humidity correction coefficient is calculated based on a predetermined calculation formula or from a pre-stored table. The humidity is read out, temperature and pressure are corrected, and humidity is corrected and converted into a volumetric flow signal converted into humidity in a standard state.
〈実施例〉
第1図は本発明の一実施例を示す構成図であシ、1はそ
の中を湿り気体Pが流れる配管、2は配管中に配された
差圧伝送器でΔPはその出力、3は配管中の気体圧力を
検出する圧力検出器でPはその出力、4は配管中の気体
の温度を検出すイ湛度検出器でTはその出力、5は配管
中の気体の絶対湿度を検出する絶対湿度検出器でH(は
その出力を示す。<Embodiment> Fig. 1 is a configuration diagram showing an embodiment of the present invention. 1 is a pipe through which wet gas P flows, 2 is a differential pressure transmitter disposed in the pipe, and ΔP is its output, 3 is the pressure detector that detects the gas pressure in the piping, P is its output, 4 is the pressure detector that detects the temperature of the gas in the piping, T is its output, and 5 is the pressure of the gas in the piping. H (indicates the output of an absolute humidity detector that detects absolute humidity).
6は第1演算手段で差圧ΔPiCP/Tを乗じて開平し
、温度、圧力を標準状態に換算した流量QNOを出力す
る。7は本発明の主要部であワミ検出された絶対湿度I
((に基づいて標準状態に換算した流量QNfを出力す
る。この場合の補正係数をKwとすると
QNf =Kw −QNo
(3)となる。6 is a first calculating means which multiplies the differential pressure ΔPiCP/T and square root, and outputs the flow rate QNO obtained by converting the temperature and pressure to the standard state. 7 is the absolute humidity I detected in the main part of the present invention.
(Outputs the flow rate QNf converted to the standard state based on (). If the correction coefficient in this case is Kw, QNf = Kw - QNo
(3) becomes.
以下KwをH(により表わすプロセスを説明する。The process of expressing Kw by H() will be explained below.
まず気体は理想気体として扱えるものと仮定する。First, we assume that the gas can be treated as an ideal gas.
まず、目盛基準が標準状態である計器の指示値(見かけ
の容積流量)QNbから、標準状態の真の容積QNfを
求める補正式を誘導する。First, a correction formula for calculating the true volume QNf in the standard state is derived from the indicated value (apparent volumetric flow rate) QNb of the meter whose scale reference is in the standard state.
乾き空気の重量流量は、状態変化に対して不変なので、
次の式(4)、 (5)、 (6)が成立する。Since the weight flow rate of dry air does not change with respect to state changes,
The following equations (4), (5), and (6) hold true.
Qf・γfd冨QNf帝γNfd (真の流量)(4)
Qb′rba=QNb’77Nha (見かけの流量)
(5)式(4)、 (s)を(6)へ代入して、結果を
整理すると式(7)が得られる。Qf・γfd wealth QNf emperor γNfd (true flow rate) (4)
Qb'rba=QNb'77Nha (apparent flow rate)
(5) By substituting equations (4) and (s) into (6) and rearranging the results, equation (7) is obtained.
ここに、
Qf:使用状態の容積流量
Qb:設計基準状態の容積流量
QNf:Qfの標準状態への換算値
QNb:Qbの標準状態への換算値
γfd:使用状態における乾き空気の比重量γbd=設
計基準状態における乾き空気の比重量
γNfd ’γfdの標準状態への換算値7Ny :
ybdの標準状態への換算値使用状態の比重量について
は、
γf :rfd” rfω= rfb(1+XO(8)
ては、次の式6[I、uが成立する。Where, Qf: Volumetric flow rate in use condition Qb: Volumetric flow rate in design standard condition QNf: Conversion value of Qf to standard condition QNb: Conversion value of Qb to standard condition γfd: Specific weight of dry air in use condition γbd= Specific weight of dry air in design standard condition γNfd 'Conversion value of γfd to standard condition 7Ny:
Regarding the conversion value of ybd to the standard state and the specific weight of the used state, γf :rfd” rfω= rfb(1+XO(8)
Then, the following equation 6 [I, u holds true.
γb:γbd+γbω8γbd(”Xb)
(ト)ここK。γb: γbd+γbω8γbd(”Xb)
(G) Here K.
γf :使用状態の湿り空気の比重量
rfoa :使用状態の水蒸気の比重量γb :設計基
準状態の湿り空気の比重量γbo:設計基準状態の水蒸
気の比重量Tf:使用状態の湿υ空気の絶対温度
T6 ’設計基準状態の湿り空気の絶対温度TN
’標準状態の湿り空気の絶対温度P(’使用状態の湿り
空気の全圧
(Pf=Pfd+Pf(、J)
Pfd ’使用状態の乾き空気の分圧
P(m ’使用状態の、水蒸気の分圧
pb’R計基準状、態の湿シ空気の全圧(Pb ”’
pba +Pbal)
pbd’設計基準状態の乾き空気の分圧Pbat :設
計基準状態の水蒸気の分圧PN:標準状態の乾き空気の
圧力
Xf:使用状態の絶対湿度(Xf=γ畑/γfd)Xb
:設計基準状態の絶対湿度(Xb=γb、/γbd)e
f:使用状態の圧力比(ef=Pfa+/PI)eb:
設計基準状態の圧力比(eb=Pb(、/Pb)式(8
)、 (9)、(ト)、α力を式(7)へ代入して結果
を整理すると、次の式(6)が得られる。γf : Specific weight of humid air in use condition rfoa : Specific weight of water vapor in use condition γb : Specific weight of humid air in design standard condition γbo : Specific weight of water vapor in design standard condition Tf : Absolute of humid υ air in use condition Temperature T6 ' Absolute temperature TN of humid air in design standard state
'Absolute temperature of humid air in standard condition P ('Total pressure of humid air in service condition (Pf = Pfd + Pf (, J) Pfd 'Partial pressure of dry air in service condition P (m) 'Partial pressure of water vapor in service condition pb'R meter reference state, total pressure of humid air (Pb"'
pba + Pbal) pbd' Partial pressure of dry air in design standard condition Pbat : Partial pressure of water vapor in design standard condition PN : Pressure of dry air in standard condition Xf : Absolute humidity in operating condition (Xf = γ field/γfd) Xb
:Absolute humidity in design standard state (Xb=γb, /γbd)e
f: Pressure ratio in use (ef=Pfa+/PI)eb:
Pressure ratio in design standard state (eb=Pb(,/Pb) Formula (8
), (9), (g) By substituting the α force into equation (7) and rearranging the results, the following equation (6) is obtained.
正係数KT、(3)項は圧力補正係数Kp、(4)項は
湿度槽4正係数KWである。したがって、
となる。The positive coefficient KT, the (3) term is the pressure correction coefficient Kp, and the (4) term is the humidity tank 4 positive coefficient KW. Therefore, .
次に圧力比と絶対湿度との関係を考察する。一般に絶対
湿度Xと乾き空気の分圧Pd、水蒸気の分圧P。の間に
は、次の関係があることが知られてる。Next, consider the relationship between pressure ratio and absolute humidity. In general, absolute humidity X, partial pressure Pd of dry air, and partial pressure P of water vapor. It is known that there is the following relationship between:
ここK。Here K.
Md:空気の分子量(Md= 28.95)Mo:水蒸
気の分子ffi (Ma+ = 1111.0106)
圧力比eは、弐〇〇を用いて次のように表わされる。Md: Molecular weight of air (Md = 28.95) Mo: Molecule of water vapor ffi (Ma+ = 1111.0106)
The pressure ratio e is expressed as follows using 2〇〇.
ここに、P = Pd+ P。Here, P = Pd + P.
とこで式α力を03へ代入すると、 的が
得られ、湿度補正係数Kwを絶対湿度Xだけで表わすこ
とができる。Now, by substituting the formula α force into 03, the following result is obtained, and the humidity correction coefficient Kw can be expressed only by the absolute humidity X.
また、絶対湿度が乾き空気1(Nm”]中の水蒸気の重
量Hog)で表示される場合、乾き空気の0℃、76゜
rITrIHzにおける比重量は1293 (g/Nm
3)であるから、X: □
(2)となる。したがって、湿度
補正係数Kwは次の式%式%
Hf:使用状態の絶対湿度Cg/Nm”)Hb:設計基
準状態の絶対湿度Cg/Nm3)Md=28.95、M
、=18.0106を代入すると、次の式%式%
ここで、絶対湿度H(の範−5〜60 (g/ Nm3
) K対する補正係数Kwの計算例を次表に示す。この
場合の設計基準はHb=20〔27m3〕であり、従っ
て式(13C)の分子は、
何i肩ばi石〒i=吊πi1賛1市i
である。Furthermore, when absolute humidity is expressed as the weight of water vapor in dry air 1 (Nm"), the specific weight of dry air at 0°C and 76°rITrIHz is 1293 (g/Nm").
3), so X: □
(2) becomes. Therefore, the humidity correction coefficient Kw is calculated using the following formula.
, = 18.0106, the following formula % formula % Here, the range of absolute humidity H (-5 to 60 (g/Nm3
) An example of calculating the correction coefficient Kw for K is shown in the following table. The design standard in this case is Hb = 20 [27 m3], and therefore the numerator of formula (13C) is: how many i shoulder i stones 〒i=hang πi1 san 1 city i.
湿度変化と湿度補正係数の関係
(表) 〔式(13c)による〕
ここで明らかなように、KWは1.0150よj90.
9620まで変化するが、各データ間の差ΔKWはほぼ
一定値となることが注目され、これは絶対湿度の変化に
対して補正係数がほぼ直線で近似し得ることを示してい
る。Relationship between humidity change and humidity correction coefficient (table) [Based on formula (13c)] As is clear here, KW is 1.0150 to j90.
However, it is noted that the difference ΔKW between each data is a substantially constant value, which indicates that the correction coefficient can be approximately linearly approximated to a change in absolute humidity.
第2図はこの関係をグラフにしたもので、直線的関係が
得られることが明らかである。FIG. 2 is a graph of this relationship, and it is clear that a linear relationship is obtained.
本発明における第2演算手段7における補正演算は、補
正のタイミング毎にコンピュータ手段によって(13c
)式を演算して補正係数−を求めてもよいし、絶対湿度
の範囲があらかじめ予測され石場合は、前出の表を頭等
のテーブルに記憶しておいて検出絶対湿度Hfに対応す
る補正係数−を読出してくるようKしてもよい。又アナ
ログ的な折線関数発生手段を用いることも可能である。The correction calculation in the second calculation means 7 in the present invention is carried out by computer means (13c) at each correction timing.
) formula to find the correction coefficient -, or if the range of absolute humidity is predicted in advance, the above table can be stored in a table in the head etc. and the correction coefficient - can be calculated by calculating the range of absolute humidity Hf. K may also be used to read out the correction coefficient -. It is also possible to use analog polygonal function generating means.
本発明において使用される絶対湿度の検出器としては、
ジルコニア式湿度計尋応答が早く高精度の絶対湿度計が
提供されており、これを用いることによシ実現は容易で
ある。又デエーセル露点計醇で露点温度を検出し、絶対
湿度に換算する手段を用いることも出来る。The absolute humidity detector used in the present invention is as follows:
Zirconia-type hygrometer A high-precision absolute hygrometer with a quick response is available, and by using this, it is easy to implement the hygrometer. Alternatively, it is also possible to use a means of detecting the dew point temperature with a deacel dew point meter and converting it into absolute humidity.
〈効果〉
以上説明したように、本発明によれば絶対湿度の検出に
よって1次式の近似補正により極めて簡単に湿り気体の
水分補正を温度や圧力に無関係に実行でき、高精度の流
量測定装置を安価に実現することが可能となる。<Effects> As explained above, according to the present invention, moisture correction of humid gas can be performed extremely easily by linear approximation correction by detecting absolute humidity, regardless of temperature or pressure, and a highly accurate flow rate measuring device can be obtained. can be realized at low cost.
第1図は本発明の一実施例を示す構成図、第2図は絶対
湿度と補正係数の関係を示すグラフである。
F・・・被測定湿り気体、1・・・配管、2・・・差圧
伝送器、3・・・圧力検出器、4・・・温度検出器、5
・・・絶対湿度検出器、6・・・第1演算手段、7・・
・第2演算手段。FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between absolute humidity and correction coefficient. F... Moist gas to be measured, 1... Piping, 2... Differential pressure transmitter, 3... Pressure detector, 4... Temperature detector, 5
... Absolute humidity detector, 6... First calculating means, 7...
-Second calculation means.
Claims (1)
含めて差圧方式で測定する場合において、水分補正係数
を絶対湿度の関数として求め、気体流量を測定するに際
し気体の測定絶対湿度に応じた補正係数を設計基準状態
における容積流量に温度補正項、圧力補正項と共に乗じ
て水分補正した湿り気体流量を算出するようにしたこと
を特徴とする気体流量測定装置。When measuring the flow rate of humid gas using the differential pressure method, which includes temperature and pressure correction as well as moisture correction, the moisture correction coefficient is calculated as a function of absolute humidity, and when measuring the gas flow rate, it is calculated according to the measured absolute humidity of the gas. A gas flow measuring device characterized in that a volumetric flow rate in a design reference state is multiplied by a correction coefficient together with a temperature correction term and a pressure correction term to calculate a moisture-corrected wet gas flow rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP559385A JPS61164117A (en) | 1985-01-16 | 1985-01-16 | Instrument for measuring flow rate of gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP559385A JPS61164117A (en) | 1985-01-16 | 1985-01-16 | Instrument for measuring flow rate of gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61164117A true JPS61164117A (en) | 1986-07-24 |
JPH0327845B2 JPH0327845B2 (en) | 1991-04-17 |
Family
ID=11615529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP559385A Granted JPS61164117A (en) | 1985-01-16 | 1985-01-16 | Instrument for measuring flow rate of gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61164117A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02221817A (en) * | 1988-12-16 | 1990-09-04 | Honeywell Inc | Correction of fluid composition for flowmeter |
JP2006506636A (en) * | 2002-11-20 | 2006-02-23 | アイエムティー メディカル アクチエンゲゼルシャフト | Gas flow measuring device |
-
1985
- 1985-01-16 JP JP559385A patent/JPS61164117A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02221817A (en) * | 1988-12-16 | 1990-09-04 | Honeywell Inc | Correction of fluid composition for flowmeter |
JP2006506636A (en) * | 2002-11-20 | 2006-02-23 | アイエムティー メディカル アクチエンゲゼルシャフト | Gas flow measuring device |
Also Published As
Publication number | Publication date |
---|---|
JPH0327845B2 (en) | 1991-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4262523A (en) | Measurement of fluid density | |
DK0657021T3 (en) | flow meter | |
JPS61164117A (en) | Instrument for measuring flow rate of gas | |
JPS61265548A (en) | Device for measuring supercompression rate of flowing gas | |
US4237904A (en) | Medical apparatus for the measurement of respiratory flow independent of gaseous composition | |
van der Beek et al. | Gas oil piston prover, primary reference values for gas-volume | |
JP3138327B2 (en) | Continuous working gas analyzer | |
CN104296817A (en) | Method for improving measurement accuracy of thermal mass flowmeter by means of dynamic temperature compensation | |
JPS58215521A (en) | Water leakage detector | |
JPH0227220A (en) | Differential pressure type steam flowmeter | |
JPS5679230A (en) | Leakage detecting method for pipeline | |
JPS6326735Y2 (en) | ||
RU2488105C2 (en) | Method of measuring detached vapour voidage and moist steam phase velocity in steam pipe of steam generator | |
JPS6042690A (en) | Gas analyzer in container for nuclear reactor | |
JP3040555B2 (en) | Automatic calibration gas flow meter | |
SU909410A1 (en) | Apparatus for measuring dryness degree of wet steam | |
JPH01116414A (en) | Flow rate measurement | |
RU2156960C2 (en) | Process of measurement of mass, flow rate and volume of gas while it is released from closed vessel and gear for its implementation | |
JPS6367131B2 (en) | ||
JPS6367132B2 (en) | ||
JPS62132117A (en) | Apparatus for measuring flow amount of gaseous fluid | |
JPS63285492A (en) | Differential pressure type apparatus for measuring water level of reactor | |
JPS60205316A (en) | Measuring instrument for air flow rate | |
SU1462131A2 (en) | Method of graduating vacuum gauges | |
RU1795287C (en) | Method of measuring gas mass flow rate |