JP2899590B1 - Drift detection method of pressure gauge incorporated in piping system - Google Patents

Drift detection method of pressure gauge incorporated in piping system

Info

Publication number
JP2899590B1
JP2899590B1 JP15986898A JP15986898A JP2899590B1 JP 2899590 B1 JP2899590 B1 JP 2899590B1 JP 15986898 A JP15986898 A JP 15986898A JP 15986898 A JP15986898 A JP 15986898A JP 2899590 B1 JP2899590 B1 JP 2899590B1
Authority
JP
Japan
Prior art keywords
pressure
value
control valve
pressure gauge
drift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15986898A
Other languages
Japanese (ja)
Other versions
JPH11337436A (en
Inventor
一夫 川辺
Original Assignee
核燃料サイクル開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 核燃料サイクル開発機構 filed Critical 核燃料サイクル開発機構
Priority to JP15986898A priority Critical patent/JP2899590B1/en
Application granted granted Critical
Publication of JP2899590B1 publication Critical patent/JP2899590B1/en
Publication of JPH11337436A publication Critical patent/JPH11337436A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

【要約】 【課題】 プラントの運転を継続したままであっても、
圧力計におけるドリフト現象の発生を早期検知でき、そ
のドリフト量を把握できるようにする。 【解決手段】 圧力調節弁と、圧力計と、該圧力計の指
示値に基づき前記圧力調節弁の弁開度を制御するコント
ローラとからなる自動調節弁ユニットを、多数個組み込
んだ配管系における圧力計のドリフト検知方法である。
予め求められている圧力調節弁に固有の弁開度とCv値
の関係を利用して、当該圧力調節弁の弁開度からCv値
を求め、該Cv値から圧力を算出し、その圧力算出値と
圧力計による圧力計測値の一致・不一致から圧力計のド
リフトの有無を検知する。また圧力指示値と圧力算出値
との差によってドリフト量を見積もる。
Abstract: [PROBLEMS] Even if the operation of a plant is continued,
It is possible to detect the occurrence of a drift phenomenon in a pressure gauge at an early stage, and to grasp the drift amount. SOLUTION: The pressure in a piping system in which a plurality of automatic control valve units each including a pressure control valve, a pressure gauge, and a controller for controlling a valve opening degree of the pressure control valve based on an indication value of the pressure gauge is incorporated. It is a drift detection method of the meter.
The Cv value is obtained from the valve opening degree of the pressure control valve using the relationship between the valve opening degree and the Cv value inherent to the pressure control valve, which is obtained in advance, the pressure is calculated from the Cv value, and the pressure calculation is performed. The presence / absence of drift of the pressure gauge is detected from the coincidence / mismatch between the pressure value and the pressure measured value by the pressure gauge. The drift amount is estimated from the difference between the pressure instruction value and the calculated pressure value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多数の圧力調節弁
ユニットを組み込んだ配管系において圧力計のドリフト
現象を検知する方法に関し、更に詳しく述べると、圧力
調節弁に固有の弁開度とCv値の関係を利用して圧力を
算出し、圧力計による計測値との一致・不一致から圧力
計のドリフトの有無を検知する方法に関するものであ
る。この技術は、流体ガスを取り扱うプラントを運転し
たままで、圧力計のドリフト現象を早期検知するのに有
用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of detecting a drift phenomenon of a pressure gauge in a piping system incorporating a plurality of pressure control valve units. More specifically, the present invention relates to a method of detecting a valve opening degree and Cv specific to a pressure control valve. The present invention relates to a method of calculating pressure using a value relationship, and detecting the presence / absence of drift of the pressure gauge based on coincidence / mismatch with a value measured by a pressure gauge. This technique is useful for early detection of a drift phenomenon of a pressure gauge while operating a plant that handles fluid gas.

【0002】[0002]

【従来の技術】流体ガスを取り扱う各種プラントにおい
ては、圧力調節弁と、圧力計と、該圧力計の指示値に基
づき前記圧力調節弁の弁開度を制御するコントローラと
からなる自動調節弁ユニットを、多数個組み込んで、配
管系を流れる流体ガスの流量などを制御することが行わ
れている。
2. Description of the Related Art In various plants handling fluid gas, an automatic control valve unit comprising a pressure control valve, a pressure gauge, and a controller for controlling a valve opening of the pressure control valve based on a value indicated by the pressure gauge. Are controlled by controlling the flow rate of a fluid gas flowing through a piping system.

【0003】例えば、図1に示すように、配管10に圧
力調節弁12を組み込み、上流側の圧力計14と流量計
16及び必要に応じて下流側の圧力計18を接続する。
ここでは、上流側の圧力計14の圧力指示値P1 を目標
圧力にするために、コントローラ20により圧力指示値
1 と目標圧力を比較し、偏差分の弁開度調整指示を圧
力調節弁12に出力している。圧力調節弁12は、その
指示を受け、弁開度を自動的に変更する。上流側の圧力
計14の圧力指示値P1 ではなく、下流側の圧力計18
の圧力指示値P2 で制御する場合もある。圧力調節弁1
2と圧力計(ここでは上流側の圧力計14)とコントロ
ーラ20とが自動調節弁ユニットを構成している。
For example, as shown in FIG. 1, a pressure control valve 12 is incorporated in a pipe 10 and an upstream pressure gauge 14 and a flow meter 16 and, if necessary, a downstream pressure gauge 18 are connected.
Here, the pressure gauge 14 pressure instruction value P 1 of the upstream side to the target pressure, the controller 20 by comparing the pressure readings P 1 and the target pressure, deviations of the valve opening control instruction pressure regulating valve 12 is output. The pressure control valve 12 receives the instruction and automatically changes the valve opening. Rather than pressure gauge 14 pressure instruction value P 1 of the upstream side, the downstream pressure gauge 18
Sometimes controlled by the pressure instruction value P 2. Pressure control valve 1
The pressure gauge 2, the pressure gauge (here, the pressure gauge 14 on the upstream side), and the controller 20 constitute an automatic control valve unit.

【0004】圧力計としては、図2に示すようなシール
ダイアフラム式の構造が一般的である。筐体30の内部
空間をシールダイアフラム32で区画し、一方に圧力導
入部34を設け、他方に封入液36を充填する。封入液
36に面して、背後の基準圧室38との間に半導体圧力
センサ40を設け、信号線42を引き出す。プロセスか
ら導入された絶対圧力は、シールダイアフラム32に加
わり、封入液36を介して半導体圧力センサ40に伝わ
る。この結果、ピエゾ抵抗効果により、半導体拡散ゲー
ジの抵抗値が変化する。これをブリッジ回路により取り
出し、増幅して圧力信号を得る。
As a pressure gauge, a seal diaphragm type structure as shown in FIG. 2 is generally used. The internal space of the housing 30 is partitioned by a seal diaphragm 32, one of which is provided with a pressure introducing portion 34, and the other is filled with a sealed liquid 36. A semiconductor pressure sensor 40 is provided between the reference pressure chamber 38 facing the filling liquid 36 and the signal line 42 is drawn out. The absolute pressure introduced from the process is applied to the seal diaphragm 32 and transmitted to the semiconductor pressure sensor 40 via the filling liquid 36. As a result, the resistance value of the semiconductor diffusion gauge changes due to the piezoresistance effect. This is taken out by a bridge circuit and amplified to obtain a pressure signal.

【0005】圧力計による圧力指示値(Pa,Pa′)
が正常であれば、図3の(A)に示すように、実際の圧
力(Pb,Pb′)と同等の圧力値を示し(Pa=P
b,Pa′=Pb′)、圧力変化の偏差分は圧力調節弁
の弁開度調整(L→L′)により目標圧力になるように
調節される。
[0005] Pressure indication value by pressure gauge (Pa, Pa ')
Is normal, a pressure value equivalent to the actual pressure (Pb, Pb ') is shown (Pa = P) as shown in FIG.
b, Pa '= Pb'), and the deviation of the pressure change is adjusted to the target pressure by adjusting the valve opening of the pressure control valve (L → L ').

【0006】ところが長期間にわたる使用中に、圧力計
の指示値が、突然、実際の値からずれていく現象(これ
を「ドリフト現象」という)が生じることがある。これ
は、主としてシールダイアフラムの塑性変形などに起因
するものと考えられる。圧力計の指示値に基づき圧力調
節弁の弁開度をコントローラで制御する自動調節弁ユニ
ットでは、実際の値からずれた指示値によって圧力調節
弁が制御されてしまうことから、目標とした圧力が得ら
れない。
However, a phenomenon in which the indicated value of the pressure gauge suddenly deviates from the actual value during use for a long period of time (this phenomenon is referred to as "drift phenomenon") may occur. It is considered that this is mainly due to plastic deformation of the seal diaphragm. In an automatic control valve unit that controls the valve opening of a pressure control valve with a controller based on the indicated value of a pressure gauge, the pressure control valve is controlled by an indicated value that deviates from an actual value. I can't get it.

【0007】[0007]

【発明が解決しようとする課題】このようなドリフト現
象が生じると、圧力調節弁ユニットでは、圧力計の指示
値の変化を打ち消す方向に圧力調節弁の弁開度が自動的
に調節され、見掛け上の圧力値が保持されることから、
通常の圧力計指示値の監視ではドリフト現象の発見が極
めて困難である。そのため従来の技術では、プラントの
運転を停止し圧力計を排気して零点確認を行わなけれ
ば、ドリフトの有無を検知し、ドリフト量を確認するこ
とができなかった。
When such a drift phenomenon occurs, in the pressure control valve unit, the valve opening of the pressure control valve is automatically adjusted in a direction to cancel the change in the indicated value of the pressure gauge, and the apparent value is apparent. Since the above pressure value is maintained,
It is extremely difficult to detect drift phenomena by monitoring normal gauge readings. Therefore, in the related art, unless the operation of the plant is stopped, the pressure gauge is exhausted, and the zero point is not confirmed, the presence or absence of the drift cannot be detected and the drift amount cannot be confirmed.

【0008】すなわち図3の(B)に示すように、圧力
指示値にΔP分のドリフトが発生した場合、圧力指示値
のΔP分の偏差は圧力調節弁の弁開度調整(L→L′)
により目標圧力になるように調節される。しかし実際の
圧力は、Pa=Pbであるはずのところが、Pa=Pb
−ΔP=Pb′というように、圧力指示値よりΔP分ず
れた値となる。そして、そのような異常な状態のまま、
その異常が発見できずに配管系を流体ガスが流れ、製品
の性能がばらついたり、甚だしい場合には所望の性能の
製品が製造できないことになる。しかるに、その原因が
どこにあるのか特定し難い。
That is, as shown in FIG. 3B, when a drift of ΔP occurs in the indicated pressure value, the deviation of the indicated pressure value by ΔP is adjusted by adjusting the valve opening of the pressure regulating valve (L → L ′). )
Is adjusted to reach the target pressure. However, although the actual pressure should be Pa = Pb, Pa = Pb
The value is shifted by ΔP from the indicated pressure value, such as −ΔP = Pb ′. And in such an abnormal state,
If the abnormality cannot be found, the fluid gas flows through the piping system, and if the performance of the product varies or is severe, a product with the desired performance cannot be manufactured. However, it is difficult to identify where the cause is.

【0009】また、たとえ圧力指示値の異常を推定でき
ても、流体ガスの供給を一旦停止させた状態で各圧力計
の校正を実施しなければ、ドリフト現象であることが特
定できない。
[0009] Even if the abnormality of the pressure indication value can be estimated, the drift phenomenon cannot be specified unless calibration of each pressure gauge is performed while the supply of the fluid gas is temporarily stopped.

【0010】本発明の目的は、プラントの運転を継続し
たままであっても、圧力計におけるドリフト現象の発生
を早期検知できる方法を提供することである。本発明の
他の目的は、圧力計にドリフト現象が発生した時に、そ
のドリフト量を把握できる方法を提供することである。
It is an object of the present invention to provide a method capable of early detecting the occurrence of a drift phenomenon in a pressure gauge even when the operation of a plant is continued. Another object of the present invention is to provide a method capable of grasping a drift amount when a drift phenomenon occurs in a pressure gauge.

【0011】[0011]

【課題を解決するための手段】本発明は、圧力調節弁
と、圧力計と、該圧力計の指示値に基づき前記圧力調節
弁の弁開度を制御するコントローラとからなる自動調節
弁ユニットを、多数個組み込んだ配管系における圧力計
のドリフト検知方法である。本発明では、予め求められ
ている圧力調節弁に固有の弁開度とCv値の関係を利用
して、当該圧力調節弁の弁開度からCv値を求め、該C
v値から圧力を算出し、その圧力算出値と圧力計による
圧力計測値の一致・不一致から圧力計のドリフトの有無
を検知するように構成している。
According to the present invention, there is provided an automatic control valve unit comprising a pressure control valve, a pressure gauge, and a controller for controlling a valve opening of the pressure control valve based on a value indicated by the pressure gauge. This is a method for detecting drift of a pressure gauge in a piping system incorporating a large number of the components. In the present invention, the Cv value is obtained from the valve opening degree of the pressure control valve by using the relationship between the valve opening degree and the Cv value inherent to the pressure control valve, which is obtained in advance.
The pressure is calculated from the v value, and the presence / absence of the drift of the pressure gauge is detected from the coincidence / mismatch between the calculated pressure value and the pressure measurement value obtained by the pressure gauge.

【0012】具体的には、多数の自動調節弁ユニットを
組み込んだ配管系においては、例えば配管系の出口部の
実測流量値を使用して最も下流側の自動調節弁ユニット
の圧力計について圧力算出値と圧力計測値の差の有無を
求め、順次その上流側の自動調節弁ユニットの圧力計に
ついても圧力算出値と圧力計測値の一致・不一致を求
め、不一致が生じている一連の自動調節弁ユニットのう
ちの最上流側の自動調節弁ユニットの圧力計でドリフト
が生じていると判定する。あるいは、予め求められてい
る圧力調節弁に固有の弁開度とCv値の関係を利用し
て、当該圧力調節弁の弁開度からCv値を求め、該Cv
値から圧力を算出し、その算出値と圧力計の計測値との
一致・不一致を求め、多数の自動調節弁ユニットについ
ての圧力算出値と圧力計による圧力計測値の差の有無の
相関から異常を示す自動調節弁ユニットを求めることも
できる。
More specifically, in a piping system incorporating a large number of automatic control valve units, for example, a pressure gauge is calculated for the pressure gauge of the most downstream automatic control valve unit by using an actually measured flow rate value at the outlet of the piping system. The difference between the pressure measurement value and the pressure measurement value is determined, and then the pressure gauge of the automatic control valve unit on the upstream side also determines the match / mismatch between the calculated pressure value and the measured pressure value. It is determined that drift has occurred in the pressure gauge of the automatic control valve unit on the most upstream side of the unit. Alternatively, the Cv value is obtained from the valve opening degree of the pressure control valve using the relationship between the valve opening degree and the Cv value inherent to the pressure control valve, which is obtained in advance.
Calculates the pressure from the value, finds the match / mismatch between the calculated value and the value measured by the pressure gauge, and anomalies from the correlation of the difference between the pressure calculated value for many automatic control valve units and the pressure measured value by the pressure gauge. An automatic control valve unit indicating

【0013】また本発明によれば、上記の方法によりド
リフトが生じている自動調節弁ユニットを検知し、当該
自動調節弁ユニットにおける圧力算出値と圧力計測値の
差を圧力計測値に加えて補正し、当該自動調節弁ユニッ
トがその補正値に基づき制御することで、プラントの運
転をそのまま継続することができる。
According to the present invention, an automatic control valve unit having a drift caused by the above method is detected, and a difference between a calculated pressure value and a measured pressure value in the automatic control valve unit is corrected by adding the measured pressure value to the measured pressure value. However, the operation of the plant can be continued as it is by controlling the automatic control valve unit based on the correction value.

【0014】[0014]

【発明の実施の態様】圧力調節弁の一例を図4に示す。
軸受50により弁箱52に対して軸方向に摺動自在に保
持されている弁棒54の下端に弁体56が取り付けられ
て弁座58に対して接離自在となっている。弁棒54に
はコイルバネ60が装着され、常時弁閉止方向に弾撥力
が加わっている。また、弁棒54の基端は空気室62に
達し、該弁棒54の基端は、該空気室62を気密的に区
画しているダイアフラム64に固着されている。空気室
62内の一方の領域には電空ポジショナー66を介して
加圧空気が供給されるようになっており、外部からの電
気信号によって弁棒54の変位を制御可能となってい
る。更に、弁棒54の変位、換言すると弁開度は、電気
的な信号として及び/又は機械的な指針の変位として、
供用期間中でも外部から直接随時検知できるようになっ
ている。本発明は、この弁開度を外部から常時検知でき
る点を利用するものである。
FIG. 4 shows an example of a pressure regulating valve.
A valve body 56 is attached to the lower end of a valve rod 54 that is slidably held in the axial direction with respect to a valve box 52 by a bearing 50 so that the valve body 56 can be freely moved toward and away from a valve seat 58. A coil spring 60 is mounted on the valve rod 54, and a resilient force is constantly applied in the valve closing direction. The proximal end of the valve stem 54 reaches the air chamber 62, and the proximal end of the valve stem 54 is fixed to a diaphragm 64 that partitions the air chamber 62 in an airtight manner. Pressurized air is supplied to one region in the air chamber 62 via an electropneumatic positioner 66, and the displacement of the valve rod 54 can be controlled by an external electric signal. Further, the displacement of the valve stem 54, in other words, the valve opening, can be determined as an electrical signal and / or as a mechanical pointer displacement.
Even during the service period, it can be detected directly from outside at any time. The present invention utilizes the fact that the valve opening can always be detected from the outside.

【0015】各弁について、その弁開度とCv値との関
係は、通常、弁製作時あるいは弁校正時に予め測定され
ている。本発明では、この各弁に固有の弁開度とCv値
との関係を利用する。弁の特性を近似する手法には幾つ
かあるが、いずれにしてもCv値の算出式は弁開度L
(%)の関数となる。即ち、 Cv=f(L) である。近似の仕方としては、 イコールパーセント特性 Cv=Cv100 ×50((L-100)/100) 2段イコールパーセント特性 Cv=Cv100 ×3.3323×333((L-100)/100)
(0〜50%) Cv=Cv100 ×30((L-100)/100) (50〜100
%) リニア特性 Cv=Cv100 ×L/100 などがある。そこで組み込まれている弁の特性に合わせ
て選択した近似式を用いる。但し、Cv100 は、弁開度
100%の時のCv値である。
The relationship between the valve opening and the Cv value of each valve is usually measured in advance when the valve is manufactured or when the valve is calibrated. In the present invention, the relationship between the valve opening degree unique to each valve and the Cv value is used. There are several methods for approximating the characteristics of the valve. In any case, the formula for calculating the Cv value is represented by the valve opening L
(%). That is, Cv = f (L). As an approximation method, equal percent characteristics Cv = Cv 100 × 50 ((L-100) / 100) Two-stage equal percent characteristics Cv = Cv 100 × 3.3323 × 333 ((L-100) / 100)
(0-50%) Cv = Cv 100 × 30 ((L-100) / 100) (50-100
%) Linear characteristics Cv = Cv 100 × L / 100. Therefore, an approximate expression selected according to the characteristics of the valve incorporated is used. Here, Cv 100 is a Cv value when the valve opening is 100%.

【0016】圧力調節弁の弁開度は、上記のように、電
気的な信号として及び/又は機械的な指針の変位とし
て、外部から直接検出できる。従って、検出した弁開度
Lを用いて、上記の近似式によりCv値が算出できる。
As described above, the opening degree of the pressure control valve can be directly detected from the outside as an electric signal and / or as a displacement of a mechanical pointer. Therefore, the Cv value can be calculated from the approximate expression using the detected valve opening L.

【0017】圧力調節弁のCv値の算出式は、 ・モデル1…クリチカル((P1 −P2 )≧P1 /2の
場合) Cv=(Q/249P1 )(γT)1/2 …(1) ・モデル2…ノンクリチカル((P1 −P2 )<P1 /2の場合) Cv=(Q/287)(γT/(P1 2 −P2 2 ))1/2 …(2) 但し、P1 :圧力調節弁上流圧力(kg/cm2 ) P2 :圧力調節弁下流圧力(kg/cm2 ) Q:基準状態換算の供試ガスの体積換算流量(m3
h) at(760Torr 15.6℃) γ:供試ガスの比重量比(kg/mol)ガス/(kg/mol)空
気 T:絶対温度(K) である。
[0017] The formula for calculating the Cv value of the pressure control valve, model 1 ... critical ((P 1 -P 2) In the case of ≧ P 1/2) Cv = (Q / 249P 1) (γT) 1/2 ... (1) model 2 ... Nonkurichikaru ((P 1 -P 2) <in the case of P 1/2) Cv = ( Q / 287) (γT / (P 1 2 -P 2 2)) 1/2 ... ( 2) However, P 1 : upstream pressure of the pressure control valve (kg / cm 2 ) P 2 : downstream pressure of the pressure control valve (kg / cm 2 ) Q: volumetric flow rate of the test gas converted to the standard condition (m 3 /
h) at (760 Torr 15.6 ° C.) γ: specific weight ratio of test gas (kg / mol) gas / (kg / mol) air T: absolute temperature (K)

【0018】上記の式のCv値に弁開度から求めたCv
値を弁の特性毎に代入することで、圧力調節弁の弁開度
によるその時の流量、ガス温度、実際の上流圧力、下流
圧力の関係式ができ、それは、上流圧力を求める式に変
換できる。上流圧力をより正確に算出するためには、上
流圧力計から圧力調節弁までの配管損失値及び圧力調節
弁から下流圧力計までの配管損失値を計算又は実測によ
り求めて、前記換算式に付加する。この換算式により算
出した圧力算出値と上流圧力計の圧力指示値とを比べる
ことでドリフト量が求まる。ドリフト量は、 ドリフト量=圧力指示値−圧力算出値 である。圧力算出値が圧力指示値に一致していればドリ
フト量は零である。
The Cv value obtained from the valve opening degree is calculated based on the Cv value in the above equation.
By substituting the value for each valve characteristic, a relational expression of the flow rate, gas temperature, actual upstream pressure, and downstream pressure at that time depending on the valve opening of the pressure control valve can be obtained, which can be converted into an expression for obtaining the upstream pressure. . In order to calculate the upstream pressure more accurately, the pipe loss value from the upstream pressure gauge to the pressure control valve and the pipe loss value from the pressure control valve to the downstream pressure gauge are calculated or measured and added to the above conversion formula. I do. The drift amount is obtained by comparing the calculated pressure value calculated by the conversion formula with the indicated pressure value of the upstream pressure gauge. The drift amount is: drift amount = pressure indication value−pressure calculation value. If the calculated pressure value matches the indicated pressure value, the drift amount is zero.

【0019】予め弁開度とCv値との関係が求められて
いないで、既に弁がプラントに組み込まれているような
場合には、過去に蓄積されている実際の運転データを用
いて両者の関係を導き出せばよい。その際には、 (a)圧力計にドリフト現象、その他の異常の無い時期
の運転データ (b)圧力調節弁の弁開度を広い範囲で使用している時
期の運転データ (c)運転開始時期及び中期の運転データ (d)圧力計校正実施後の運転データ などを使用して、上記の式(1)及び式(2)によりC
v値を算出する。これを各圧力調節弁毎に行い、弁開度
とCv値のグラフを作成する。そのグラフに近似線を引
き、この近似式を求める。ここで求めた近似式を、前記
弁の特性による算出式の代用として使用し、上流圧力の
算出時にCv値として代入する。
If the relationship between the valve opening and the Cv value has not been determined in advance, and the valve is already incorporated in the plant, the actual operation data stored in the past is used to determine the relationship between the two. I just need to derive the relationship. In this case, (a) operation data during a period when there is no drift phenomenon or other abnormality in the pressure gauge (b) operation data during a period when the valve opening of the pressure control valve is used in a wide range (c) operation start (D) Operating data after pressure gauge calibration, etc., using the above formulas (1) and (2),
Calculate the v value. This is performed for each pressure control valve, and a graph of the valve opening and the Cv value is created. An approximation line is drawn on the graph to obtain this approximation formula. The approximation formula obtained here is used as a substitute for the calculation formula based on the characteristics of the valve, and is substituted as the Cv value when calculating the upstream pressure.

【0020】圧力調節弁の弁開度とCv値は、圧力一定
(目標圧力)制御の場合、図5のような関係にある。つ
まり、圧力計が正常な時には、 Cv=A×Q/P1 但し、A:定数 であり、圧力変化が発生しても、図5の(A)に示すよ
うに、圧力一定(P1 )の線上を移動するだけで、弁開
度とCv値の関係が変わるものではない。それに対して
圧力計にΔP分のドリフトが発生した場合、 Cv=A×Q/(P1 +ΔP) となり、圧力一定の線は、図5の(B)に示すように、
(P1 +ΔP)の線となり、初期の圧力調節弁の弁開度
とCv値の関係がずれることになる。
In the case of constant pressure (target pressure) control, the valve opening degree of the pressure control valve and the Cv value have a relationship as shown in FIG. That is, when the pressure gauge is normal, Cv = A × Q / P 1 where A is a constant, and even if a pressure change occurs, as shown in FIG. 5A, the pressure is constant (P 1 ). The relationship between the valve opening and the Cv value does not change simply by moving on the line. On the other hand, when a drift of ΔP occurs in the pressure gauge, Cv = A × Q / (P 1 + ΔP), and the line with a constant pressure is as shown in FIG.
The curve becomes (P 1 + ΔP), and the initial relationship between the valve opening degree of the pressure control valve and the Cv value is shifted.

【0021】以上のことから図6に示すように、弁開度
とCv値の関係を示す近似式では、ドリフト発生時には
弁開度に関係なくCv値は横ばい(破線矢印で示す動
き)となる。このような現象は、過去の実際のドリフト
現象発生時のデータで確認されている。それとは逆の現
象(弁開度が一定に対してCv値が変化する実線矢印で
示す動き)は、弁や配管に詰まりが発生した場合と推測
される。 Cv=A×Q/P で表されることから、ドリフト発生時はP+ΔPとな
り、詰まり発生時はQ−ΔQとなる。
From the above, as shown in FIG. 6, in the approximation formula showing the relationship between the valve opening and the Cv value, the Cv value becomes flat (movement indicated by a broken arrow) regardless of the valve opening when a drift occurs. . Such a phenomenon has been confirmed in past data at the time of actual drift phenomenon occurrence. The opposite phenomenon (the movement indicated by the solid arrow in which the Cv value changes with a constant valve opening) is presumed to be due to clogging of a valve or piping. Since Cv = A × Q / P, it becomes P + ΔP when drift occurs and Q−ΔQ when clogging occurs.

【0022】圧力計の設置場所及び流量測定のためのオ
リフィスなどを考慮すると、圧力調節弁の直前・直後の
正確な圧力及び上流圧力を算出するためには、配管損失
を計算又は実測して計算値を補正する。例えば図7に示
すような配管系の場合、次のようになる。 ・h3 における圧力の算出 圧力調節弁上流圧力=P1 (上流圧力計指示値)−P3
(オリフィス差圧計指示値) ・h4 における圧力の算出 圧力調節弁下流圧力=P2 (下流圧力計指示値)+h4
〜h5 の配管圧力損失値
Considering the installation location of the pressure gauge and the orifice for measuring the flow rate, etc., in order to calculate the accurate pressure immediately before and immediately after the pressure regulating valve and the upstream pressure, the pipe loss is calculated or actually measured. Correct the value. For example, in the case of a piping system as shown in FIG. And pressure in h 3 calculates a pressure regulating valve upstream pressure = P 1 (upstream pressure gauge readings) -P 3
(Orifice differential pressure gauge readings) · h-pressure calculating the pressure regulating valve of the 4 downstream pressure = P 2 (downstream pressure gauge readings) + h 4
~h 5 of the pipe pressure loss value

【0023】圧力の算出は次のように行う。図8に示す
ように連続して個々の圧力調節弁により圧力を調節して
いる場合、それぞれの圧力の算出方法は次のようにな
る。 P1 =A1 1 /Cv12 =A2 2 /Cv23 =A3 3 /Cv3 但し、P1 〜P4 :圧力計の指示値 A1 〜A3 :定数(流体ガス温度一定時) Q1 〜Q3 :流量計の指示値 このように、ある圧力計の実際の圧力を算出したい場合
には、圧力計の下流側にある圧力調節弁のCv値及び流
量計の指示値を使用して算出する。
The calculation of the pressure is performed as follows. When the pressure is continuously adjusted by the individual pressure adjusting valves as shown in FIG. 8, the method of calculating each pressure is as follows. P 1 = A 1 Q 1 / Cv 1 P 2 = A 2 Q 2 / Cv 2 P 3 = A 3 Q 3 / Cv 3 where P 1 to P 4 : pressure gauge readings A 1 to A 3 : constant (when the fluid gas temperature constant) Q 1 ~Q 3: indicated value thus flow meter, if you want to calculate the actual pressure of a pressure gauge, Cv value of the pressure regulating valve downstream of the pressure gauge and It is calculated using the indicated value of the flow meter.

【0024】ところで流量計には図2に示した圧力計と
同様の構造の差圧計を用いることが多い。その場合、差
圧計でもドリフト現象が生じる可能性があり、流量計の
計測値は必ずしも常に正確とは限らない。しかし、上記
のような圧力の算出には流量値が必要である。ところ
が、プラントでは、最も下流側(製品出口)では正確に
流量が測定できる。従って、それに基づいて最下流側の
圧力計から順次、自動調節弁ユニットの圧力計について
圧力算出値と圧力計測値の一致・不一致を求めていくこ
とで、不一致が生じている一連の自動調節弁ユニットの
うちの最上流側の自動調節弁ユニットの圧力計でドリフ
トが生じていると判定できる。また、多数の自動調節弁
ユニットが存在する場合には、最も下流側での正確な流
量を測定しなくても、各自動調節弁ユニットについての
圧力算出値と圧力計測値の差の有無の相関を利用して
も、異常を示す自動調節弁ユニットは特異な挙動を呈す
ることからそれを特定することは可能である。
Incidentally, a differential pressure gauge having a structure similar to that of the pressure gauge shown in FIG. 2 is often used as a flow meter. In that case, the drift phenomenon may occur even in the differential pressure gauge, and the measurement value of the flow meter is not always accurate. However, a flow value is required for calculating the pressure as described above. However, in a plant, the flow rate can be accurately measured on the most downstream side (product outlet). Therefore, based on the pressure gauge, based on the pressure gauge on the most downstream side, sequentially calculating the match / mismatch between the calculated pressure value and the measured pressure value of the manometer of the self-adjusting valve unit, a series of the self-regulating valves in which the mismatch occurs It can be determined that drift has occurred in the pressure gauge of the automatic control valve unit on the most upstream side of the unit. In addition, when there are many automatic control valve units, the correlation between the calculated pressure value and the measured pressure value of each automatic control valve unit can be determined without measuring the accurate flow rate at the most downstream side. Even if is used, it is possible to identify the automatic control valve unit showing the abnormality because it exhibits a peculiar behavior.

【0025】[0025]

【実施例】例えば流体ガスがUF6 の場合には、前記の
式(1)及び式(2)は、 ・モデル1 P1 =4.1547×10-2×Q×(273.15+
t)1/2 /Cv ・モデル2 P1 =3.6046×10-2×Q×(273.15+
t)1/2 /Cv+P2 となる。必要に応じて、それらに配管損失値を計算又は
実測により求めて付加することは言うまでもない。この
ようにして、算出した圧力値と上流圧力計の指示値とを
比べることでドリフトの有無、及びドリフトが発生して
いる場合にその量を求める。
For example, when the fluid gas is UF 6 , the above equations (1) and (2) are as follows: Model 1 P 1 = 4.147 × 10 −2 × Q × (273.15+
t) 1/2 / Cv Model 2 P 1 = 3.6046 × 10 −2 × Q × (273.15+
t) becomes a 1/2 / Cv + P 2. Needless to say, pipe loss values are calculated or measured and added to them as necessary. By comparing the calculated pressure value with the indicated value of the upstream pressure gauge, the presence or absence of the drift and the amount of the drift, if any, are determined.

【0026】実際にドリフト現象が生じた時の圧力推移
の一例を図9に示す。ドリフトが発生すると、圧力指示
値は一定であるにもかかわらず、圧力算出値は直ちに変
化するために異常を早期検知できる。その際の弁開度に
対するCv値の推移を図10に示す。Cv値が一定であ
るにもかかわらず、弁開度がどんどん大きくなっていく
ような変化を示した。このような現象から、ドリフトの
発生とその程度を検知することが可能となる。
FIG. 9 shows an example of a change in pressure when a drift phenomenon actually occurs. When a drift occurs, the calculated pressure value changes immediately, even though the indicated pressure value is constant, so that an abnormality can be detected early. FIG. 10 shows the transition of the Cv value with respect to the valve opening at that time. Even though the Cv value was constant, a change was observed in which the valve opening increased steadily. From such a phenomenon, it is possible to detect the occurrence and the degree of the drift.

【0027】[0027]

【発明の効果】本発明によれば、プラントの運転を継続
したまま早期にドリフトの発見及びドリフト量の把握が
可能となる。その結果、 1.ドリフト量を評価することで、プラントの運転を停
止せずに圧力計を校正することも可能となる。 2.ドリフト現象が発生しても、そのドリフト量を考慮
した運転条件を設定することで、製品の精度が損なわれ
ないように出来る。 3.連続的な監視を行うことで、ドリフト現象が徐々に
進行していく場合でも、容易に発見でき、更にドリフト
量の経時的傾向から、将来的な予測も可能となり迅速な
対応が可能となる。 4.本発明方法の応用により、詰まり等の圧力調節弁の
異常についても発見が可能になる。などの効果を奏しう
る。
According to the present invention, it is possible to detect a drift and grasp the amount of the drift early while the operation of the plant is continued. As a result: By evaluating the drift amount, the pressure gauge can be calibrated without stopping the operation of the plant. 2. Even if a drift phenomenon occurs, the accuracy of the product can be prevented from being impaired by setting the operating conditions in consideration of the drift amount. 3. By performing continuous monitoring, even if the drift phenomenon gradually progresses, the drift phenomenon can be easily found, and furthermore, a prediction can be made in the future based on the chronological tendency of the drift amount, and a prompt response can be made. 4. By applying the method of the present invention, it is also possible to discover abnormalities of the pressure control valve such as clogging. And the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】配管系に組み込んだ自動調節弁ユニットの説明
図。
FIG. 1 is an explanatory view of an automatic control valve unit incorporated in a piping system.

【図2】圧力計の一例を示す説明図。FIG. 2 is an explanatory diagram showing an example of a pressure gauge.

【図3】圧力と圧力指示値の関係を示す説明図。FIG. 3 is an explanatory diagram showing a relationship between a pressure and a pressure instruction value.

【図4】圧力調節弁の一例を示す説明図。FIG. 4 is an explanatory view showing an example of a pressure control valve.

【図5】弁開度とCv値の関係を示すグラフ。FIG. 5 is a graph showing a relationship between a valve opening and a Cv value.

【図6】ドリフト現象時の弁開度とCv値の関係を示す
説明図。
FIG. 6 is an explanatory diagram showing a relationship between a valve opening and a Cv value during a drift phenomenon.

【図7】配管系における配管損失計算の説明図。FIG. 7 is an explanatory diagram of pipe loss calculation in a pipe system.

【図8】多数の自動調節弁ユニットを組み込んだ配管系
における圧力算出の説明図。
FIG. 8 is an explanatory diagram of pressure calculation in a piping system incorporating a number of automatic control valve units.

【図9】実際のドリフト現象時の圧力推移の説明図。FIG. 9 is an explanatory diagram of a pressure transition during an actual drift phenomenon.

【図10】ドリフト現象時のCv値推移の説明図。FIG. 10 is an explanatory diagram of a Cv value transition during a drift phenomenon.

【符号の説明】[Explanation of symbols]

10 配管系 12 圧力調節弁 14 上流側の圧力計 16 流量計 18 下流側の圧力計 20 コントローラ DESCRIPTION OF SYMBOLS 10 Piping system 12 Pressure control valve 14 Pressure gauge on the upstream side 16 Flow meter 18 Pressure gauge on the downstream side 20 Controller

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧力調節弁と、圧力計と、該圧力計の指
示値に基づき前記圧力調節弁の弁開度を制御するコント
ローラとからなる自動調節弁ユニットを、多数個組み込
んだ配管系において、 予め求められている圧力調節弁に固有の弁開度とCv値
の関係を利用して、当該圧力調節弁の弁開度からCv値
を求め、該Cv値から圧力を算出し、その圧力算出値と
圧力計による圧力計測値の一致・不一致から圧力計のド
リフトの有無を検知することを特徴とする配管系に組み
込まれた圧力計のドリフト検知方法。
1. A piping system in which a plurality of automatic control valve units each including a pressure control valve, a pressure gauge, and a controller for controlling a valve opening of the pressure control valve based on an indication value of the pressure gauge are provided. The Cv value is obtained from the valve opening of the pressure control valve by using the relationship between the valve opening and the Cv value specific to the pressure control valve, which is obtained in advance, and the pressure is calculated from the Cv value. A drift detection method for a pressure gauge incorporated in a piping system, wherein the presence / absence of a drift of the pressure gauge is detected from a match / mismatch between a calculated value and a pressure measurement value obtained by the pressure gauge.
【請求項2】 配管系の出口部の実測流量値を使用して
最も下流側の自動調節弁ユニットの圧力計について圧力
算出値と圧力計測値の差の有無を求め、順次その上流側
の自動調節弁ユニットの圧力計についても圧力算出値と
圧力計測値の一致・不一致を求め、不一致が生じている
一連の自動調節弁ユニットのうちの最上流側の自動調節
弁ユニットの圧力計でドリフトが生じていると判定する
請求項1記載の配管系に組み込まれた圧力計のドリフト
検知方法。
2. A method for determining whether there is a difference between a calculated pressure value and a measured pressure value for a pressure gauge of an automatic control valve unit at the most downstream side by using an actually measured flow rate value at an outlet of a piping system. Also for the pressure gauge of the control valve unit, find the match / mismatch between the calculated pressure value and the measured pressure value.Drift occurs in the pressure gauge of the most upstream automatic control valve unit in the series of automatic control valve units where the mismatch occurs. 2. The method for detecting drift of a pressure gauge incorporated in a piping system according to claim 1, wherein the drift is determined to have occurred.
【請求項3】 圧力調節弁と、圧力計と、該圧力計の指
示値に基づき前記圧力調節弁の弁開度を制御するコント
ローラとからなる自動調節弁ユニットを、多数個組み込
んだ配管系において、 予め求められている圧力調節弁に固有の弁開度とCv値
の関係を利用して、当該圧力調節弁の弁開度からCv値
を求め、該Cv値から圧力を算出し、その算出値と圧力
計の計測値との一致・不一致を求め、多数の自動調節弁
ユニットについての圧力算出値と圧力計による圧力計測
値の差の有無の相関から異常を示す自動調節弁ユニット
を求めることを特徴とする配管系に組み込まれた圧力計
のドリフト検知方法。
3. A piping system in which a plurality of automatic control valve units each including a pressure control valve, a pressure gauge, and a controller for controlling a valve opening of the pressure control valve based on an indication value of the pressure gauge are incorporated. A Cv value is obtained from the valve opening degree of the pressure control valve using the relationship between the valve opening degree and the Cv value specific to the pressure control valve, which is obtained in advance, and the pressure is calculated from the Cv value, and the calculation is performed. Calculate the agreement / disagreement between the measured value and the measured value of the pressure gauge, and determine the automatic control valve unit that shows an abnormality from the correlation between the calculated value of many automatic control valve units and the presence or absence of the difference between the pressure measured value by the pressure gauge. A drift detection method for a pressure gauge incorporated in a piping system.
【請求項4】 請求項1乃至3のいずれかによりドリフ
トが生じている自動調節弁ユニットを検知し、当該自動
調節弁ユニットにおける圧力算出値と圧力計測値の差を
圧力計測値に加えて補正し、当該自動調節弁ユニットが
その補正値に基づき制御されるようにしたプラントの運
転方法。
4. A self-regulating valve unit in which a drift has occurred according to any one of claims 1 to 3, and a difference between a calculated pressure value and a measured pressure value in the self-adjusting valve unit is corrected by adding to the measured pressure value. A method for operating the plant, wherein the automatic control valve unit is controlled based on the correction value.
JP15986898A 1998-05-25 1998-05-25 Drift detection method of pressure gauge incorporated in piping system Expired - Fee Related JP2899590B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15986898A JP2899590B1 (en) 1998-05-25 1998-05-25 Drift detection method of pressure gauge incorporated in piping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15986898A JP2899590B1 (en) 1998-05-25 1998-05-25 Drift detection method of pressure gauge incorporated in piping system

Publications (2)

Publication Number Publication Date
JP2899590B1 true JP2899590B1 (en) 1999-06-02
JPH11337436A JPH11337436A (en) 1999-12-10

Family

ID=15702980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15986898A Expired - Fee Related JP2899590B1 (en) 1998-05-25 1998-05-25 Drift detection method of pressure gauge incorporated in piping system

Country Status (1)

Country Link
JP (1) JP2899590B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458390C (en) * 2007-10-31 2009-02-04 谢显奇 Hydraulic fine-regulating apparatus

Also Published As

Publication number Publication date
JPH11337436A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
US9870006B2 (en) Pressure type flow control system with flow monitoring
KR100740914B1 (en) Differential pressure type flowmeter and differential pressure type flowmeter controller
KR101737373B1 (en) Flow volume control device equipped with build-down system flow volume monitor
EP2805136B1 (en) System for monitoring flow through mass flow controllers in real time
US9791867B2 (en) Flow control device equipped with flow monitor
US10816434B2 (en) Apparatus and method for leak testing
CN108885471B (en) Pressure type flow rate control device and flow rate self-diagnosis method
KR101930304B1 (en) Flow meter
JP4788920B2 (en) Mass flow control device, verification method thereof, and semiconductor manufacturing device
KR101938928B1 (en) System and method for using a rate of decay measurement for real time measurement and correction of zero offset and zero drift of a mass flow controller or mass flow meter
CN102483344B (en) Upstream volume mass flow verification system and method
US10401202B2 (en) Method and apparatus for gas flow control
CN111579013B (en) Gas mass flow controller and flow calibration method thereof
US20140158211A1 (en) System for and Method of Providing Pressure Insensitive Self Verifying Mass Flow Controller
JP2015087110A5 (en)
JP3546153B2 (en) Orifice clogging detection method and detection apparatus for pressure type flow control device
CN111024327B (en) Device and method for air leakage self-checking and air leakage detection of object to be detected
JP4977669B2 (en) Differential pressure type flow meter
EP3105647B1 (en) System for and method of providing pressure insensitive self verifying mass flow controller
KR102162046B1 (en) Flow measurement method and flow measurement device
JP2899590B1 (en) Drift detection method of pressure gauge incorporated in piping system
CN112470093A (en) Flow rate control system and flow rate measuring method
US5644948A (en) Control valve with a drive operated by a pressure medium and a position controller
JP2005077310A (en) Gas measuring device and self-diagnosis method therefor
JP7249030B2 (en) Volume measuring method in flow measuring device and flow measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080312

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080312

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees