JPH0260975B2 - - Google Patents

Info

Publication number
JPH0260975B2
JPH0260975B2 JP56131558A JP13155881A JPH0260975B2 JP H0260975 B2 JPH0260975 B2 JP H0260975B2 JP 56131558 A JP56131558 A JP 56131558A JP 13155881 A JP13155881 A JP 13155881A JP H0260975 B2 JPH0260975 B2 JP H0260975B2
Authority
JP
Japan
Prior art keywords
light
sample
scattered
particle size
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56131558A
Other languages
Japanese (ja)
Other versions
JPS5833107A (en
Inventor
Kyoichi Tatsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56131558A priority Critical patent/JPS5833107A/en
Publication of JPS5833107A publication Critical patent/JPS5833107A/en
Publication of JPH0260975B2 publication Critical patent/JPH0260975B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、微小な粒子の径を測定する粒径測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a particle size measuring device for measuring the diameter of minute particles.

(従来の技術) 従来より光の散乱を利用した粒径測定装置の1
つに第1図に示すような装置がある。これはレー
ザー光を試料に照射し、試料により散乱された光
のθ方向の分布I(θ)を測定し、回折理論ある
いはMie散乱理論を用いて散乱分布I(θ)より
粒径分布n(D)(D:粒径)を計算する装置であ
る。粒径がDである1粒子による散乱分布i(D,
θ)は回折理論あるいはMie散乱理論により求め
ることができるので、試料の粒径分布をn(D)とす
ると散乱光分布I(θ)は、 I(θ)=∫i(D,θ)・n(D)dD ……(1)式 と表わせる。(1)式の積分方程式をn(D)について解
いたり、粒径分布n(D)として対数正規分布、
Rosin−Rammler分布を仮定して、その分布パラ
メータを(1)式を用いて計算で求めることにより試
料の粒径分布を求めている。
(Conventional technology) One of the conventional particle size measuring devices that utilizes light scattering.
There is a device as shown in FIG. This is done by irradiating a sample with laser light, measuring the distribution I(θ) of the light scattered by the sample in the θ direction, and using diffraction theory or Mie scattering theory to calculate the particle size distribution n( D) (D: particle size). Scattering distribution i(D,
θ) can be determined by diffraction theory or Mie scattering theory, so if the particle size distribution of the sample is n(D), the scattered light distribution I(θ) is I(θ) = ∫i(D, θ)・n(D)dD...It can be expressed as equation (1). (1) can be solved for n(D), and the particle size distribution n(D) can be calculated using a lognormal distribution.
Assuming Rosin-Rammler distribution, the particle size distribution of the sample is determined by calculating its distribution parameters using equation (1).

この従来の方法ではレーザー光1はコヒーレン
ト光であることが必要であり、第2図に示すよう
に試料からの散乱光を受光レンズ4を用いてレン
ズの焦点面に集光している。これは試料の位置に
よらず、散乱角がθである光はすべて焦点面のγ
≒θfの位置に集光させるためである。このような
光学系であるとレンズの口径に限度があるために
散乱光分布を測定する範囲が0〜15゜以内に限定
されてしまう。散乱光分布の範囲が0〜15゜に限
定されると、第3図に示すように、1.0μm〓以下
の比較的小さい粒子の散乱光分布を相対的に区別
することがむずかしい。又、光源もコヒーレント
光でなければならない等の種々の欠点を有する。
This conventional method requires that the laser beam 1 be a coherent beam, and as shown in FIG. 2, the scattered light from the sample is focused on the focal plane of the lens using a light receiving lens 4. This does not depend on the position of the sample, and all light whose scattering angle is θ is γ at the focal plane.
This is to focus the light on the position of ≒θ f . In such an optical system, since there is a limit to the aperture of the lens, the range in which the scattered light distribution can be measured is limited to within 0 to 15 degrees. When the range of the scattered light distribution is limited to 0 to 15 degrees, it is difficult to relatively distinguish the scattered light distribution of relatively small particles of 1.0 μm or less, as shown in FIG. Furthermore, it has various drawbacks, such as the fact that the light source must be coherent light.

(発明が解決しようとする課題) 上記の如く、従来の粒径測定装置にあつては、
散乱光分布の範囲が限定されるので、比較的小さ
い粒子の散乱光分布を求めることがむずかしく、
又、光源も制限されたものとなる。
(Problem to be solved by the invention) As mentioned above, in the conventional particle size measuring device,
Since the range of scattered light distribution is limited, it is difficult to obtain the scattered light distribution of relatively small particles.
Furthermore, the light source is also limited.

そこで、本発明の目的は、光源の制限を受ける
ことなく比較的小さい粒径の領域においても、粒
径を求めることが可能となるように、いかなる散
乱角範囲においても散乱光分布を測定できる粒径
測定装置を提供することにある。
Therefore, an object of the present invention is to create a particle that can measure the scattered light distribution in any scattering angle range, so that the particle size can be determined even in a relatively small particle size region without being limited by the light source. An object of the present invention is to provide a diameter measuring device.

[発明の構成] (課題を解決するための手段) 第4図に散乱角が0〜180゜の範囲について散乱
光分布を示す。図に示すように散乱角を広くとる
か、あるいは40゜より大きくとると1.0μm〓以下の
粒子による散乱光分布を相対的に区別でき、1.0μ
m〓以下の粒径を測定することができる。
[Structure of the Invention] (Means for Solving the Problems) FIG. 4 shows the scattered light distribution in the range of scattering angles from 0 to 180 degrees. As shown in the figure, if the scattering angle is set wide or larger than 40°, the scattered light distribution due to particles of 1.0 μm or less can be relatively distinguished, and 1.0 μm
It is possible to measure particle sizes of m or less.

本願発明は、上記の観点からなされたもので、
上記課題を解決する本発明の粒径測定装置は、単
色光を発する光源と、粒径を測定すべき複数の粒
子から成る試料に前記光源からの単色光を照射し
てこの試料から散乱する散乱光のうちレンズの光
軸に平行な光のみを測定し、前記試料の散乱光の
散乱角方向に複数配置される受光系と、この受光
系で測定された前記試料の散乱光強度分布とあら
かじめ求められている複数の粒子の異なる粒径ご
との散乱光強度分布とを照合して前記試料の粒径
分布を求める信号処理系とを具備してなるもの及
び単色光を発する光源と、粒径を測定すべき複数
の粒子から成る試料に前記光源からの単色光を照
射してこの試料から散乱する散乱光のうちレンズ
の光軸に平行な光のみを測定する受光系と、この
受光系を前記試料の散乱光の散乱角方向に走査す
る駆動装置と、前記受光系で測定された前記試料
の散乱光強度分布とあらかじめ求められている複
数の粒子の異なる粒径ごとの散乱光強度分布とを
照合して前記試料の粒径分布を求める信号処理系
とを具備してなるものである。
The present invention has been made from the above viewpoint,
The particle size measuring device of the present invention that solves the above problems includes a light source that emits monochromatic light, and a sample that is composed of a plurality of particles whose particle size is to be measured. A light receiving system that measures only the light that is parallel to the optical axis of the lens and is arranged in multiple directions in the direction of the scattering angle of the scattered light of the sample, and a scattered light intensity distribution of the sample measured by this light receiving system and a a signal processing system that determines the particle size distribution of the sample by comparing the scattered light intensity distribution for each different particle size of a plurality of particles being sought; a light source that emits monochromatic light; and a light source that emits monochromatic light; A light receiving system that irradiates a sample consisting of a plurality of particles to be measured with monochromatic light from the light source and measures only the light parallel to the optical axis of the lens among the scattered light scattered from the sample; a driving device that scans the scattered light of the sample in the direction of the scattering angle; a scattered light intensity distribution of the sample measured by the light receiving system; and a predetermined scattered light intensity distribution for each different particle size of a plurality of particles; and a signal processing system that collates the data to determine the particle size distribution of the sample.

(作用) 本発明の粒測定装置では、光源としてレーザー
等の単色光のインコヒーレント光(コヒーレント
光でもよい)を用い、多数の粒子による散乱光の
散乱角方向の強度分布(散乱光強度分布)を測定
し、あらかじめ信号処理系(パソコン等の演算装
置)に格納されているいろいろな粒径の粒子によ
る散乱光強度分布(例えば第4図)と照合するこ
とにより粒径分布を求めるようにするものであ
る。
(Function) In the particle measuring device of the present invention, monochromatic incoherent light (coherent light may be used) such as a laser is used as a light source, and the intensity distribution of scattered light by a large number of particles in the scattering angle direction (scattered light intensity distribution) The particle size distribution is determined by measuring and comparing it with the scattered light intensity distribution (for example, Figure 4) from particles of various particle sizes stored in the signal processing system (computing device such as a personal computer) in advance. It is something.

これにより、光源の制限なく、広い範囲で散乱
光分布を求めることができる。
Thereby, the scattered light distribution can be determined over a wide range without restrictions on the light source.

(実施例) 本発明の第1の実施例を第5図に基づいて説明
する。インコヒーレントで単色光であるレーザー
1及びビーム成形系2により成形されたビーム1
2を試料3に照射し、試料により散乱された光
を、受光レンズ9、ピンホール40、フオトデイ
テクタ6より成る受光系で検出する。そしてアン
プ7で信号を増幅したのち、この散乱光の強度分
布をあらかじめ第4図に示すような種々の粒径の
粒子による散乱光強度分布がデータとして格納さ
れている信号処理系8で照合することにより粒径
分布を求めるようにするものである。
(Example) A first example of the present invention will be described based on FIG. 5. Beam 1 shaped by incoherent and monochromatic laser 1 and beam shaping system 2
2 is irradiated onto a sample 3, and the light scattered by the sample is detected by a light receiving system comprising a light receiving lens 9, a pinhole 40, and a photodetector 6. After the signal is amplified by the amplifier 7, the intensity distribution of this scattered light is collated by the signal processing system 8, which stores the scattered light intensity distribution by particles of various particle sizes as data, as shown in Fig. 4. This allows the particle size distribution to be determined.

本発明は、Mie散乱理論に基づき、ランダムな
位置に粒子がある場合の散乱光強度から粒径分布
を求めるようにしたもので、このことにより角度
θに散乱された光を第6図に示すように角度θに
配置したフオトデイテクタで測定することができ
ることにしたことである。粒径分布を求める際に
は、インコヒーレント光を照射した場合の1粒子
による散乱光強度i(D,θ)としてMie散乱理
論に基づいて計算しておかなければならない。
The present invention is based on the Mie scattering theory, and the particle size distribution is determined from the intensity of scattered light when particles are located at random positions. It was decided that the measurement could be performed using a photodetector placed at an angle θ. When determining the particle size distribution, it is necessary to calculate the scattered light intensity i (D, θ) by one particle when irradiated with incoherent light based on the Mie scattering theory.

第6図に受光系を示す。受光系は、受光レンズ
9の焦点にピンホール10を置き、その後にフオ
トデイテクタ6を置くことにより受光レンズ9の
光軸に平行な散乱光のみ、すなわち散乱角θへ散
乱された光のみがフオトデイテクタ6に入力する
ようにセツトする。この受光系を駆動装置11に
より散乱角方向に走査すれば、試料の位置に影響
を受けないので、いかなる散乱光の範囲について
の散乱分布を測定することができる。
Figure 6 shows the light receiving system. In the light receiving system, a pinhole 10 is placed at the focal point of the light receiving lens 9, and a photodetector 6 is placed after that, so that only the scattered light parallel to the optical axis of the light receiving lens 9, that is, only the light scattered at the scattering angle θ, is transmitted to the photodetector 6. Set to input. If this light receiving system is scanned in the direction of the scattering angle by the driving device 11, the scattering distribution for any range of scattered light can be measured since it is not affected by the position of the sample.

第7図の実施例は、受光系を散乱角の方向に多
数配置したものでこのように構成しても、同様の
散乱光分布が得られ、駆動装置11が不要とな
る。
In the embodiment shown in FIG. 7, a large number of light receiving systems are arranged in the direction of the scattering angle, and even with this configuration, a similar scattered light distribution can be obtained and the driving device 11 is not required.

第8図は、受光系に光フアイバを用いたもの
で、このように構成することにより受光系の配置
に融通性を持たせることができる。従つて、ター
ビン中の水滴などいろいろな環境において粒径を
測定することができる。
FIG. 8 shows an example in which an optical fiber is used for the light receiving system, and by configuring it in this way, flexibility can be provided in the arrangement of the light receiving system. Therefore, the particle size can be measured in various environments such as water droplets in a turbine.

[発明の効果] 以上の説明で明らかなように本願発明を用いれ
ば、インコヒーレント光を用いることができ、か
つ広い範囲で散乱光分布を求めることができるの
で、1.0μm〓以下の小さい粒径をも測定すること
が可能となる等の優れた効果を奏することができ
る。
[Effects of the Invention] As is clear from the above explanation, if the present invention is used, incoherent light can be used and the scattered light distribution can be determined over a wide range, so small particle diameters of 1.0 μm or less can be obtained. It is possible to achieve excellent effects such as making it possible to measure even

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の方法を示すブロツク図、第2図
は従来の受光系を説明するための概略図、第3図
及び第4図は散乱光分布を示す特性図、第5図は
本発明の第1の実施例を示す概略図、第6図は第
1の実施例の光学系を説明するための概略図、第
7図は本発明の第2の実施例を示す概略図、第8
本発明の第3の実施例を示す概略図である。 1……レーザー、2……ビーム成形系、3……
試料、4,9,9′,9″……受光レンズ、5,1
1……駆動装置、6,6′,6″……フオトデイテ
クタ、7,7′,7″……アンプ、8……信号処理
系、10……ピンホール、12……ビーム(レー
ザービーム)、13,13′,13″、……光フア
イバ。
Fig. 1 is a block diagram showing the conventional method, Fig. 2 is a schematic diagram for explaining the conventional light receiving system, Figs. 3 and 4 are characteristic diagrams showing the scattered light distribution, and Fig. 5 is the invention of the present invention. FIG. 6 is a schematic diagram for explaining the optical system of the first embodiment. FIG. 7 is a schematic diagram showing the second embodiment of the present invention.
It is a schematic diagram showing a third example of the present invention. 1... Laser, 2... Beam shaping system, 3...
Sample, 4, 9, 9', 9''... Light receiving lens, 5, 1
1... Drive device, 6, 6', 6"... Photo detector, 7, 7', 7"... Amplifier, 8... Signal processing system, 10... Pinhole, 12... Beam (laser beam), 13, 13', 13'', ... optical fiber.

Claims (1)

【特許請求の範囲】 1 単色光を発する光源と、粒径を測定すべき複
数の粒子からなる試料に前記光源からの単色光を
照射してこの試料から散乱する散乱光のうちレン
ズの光軸に平行な光のみを測定し、前記試料の散
乱光の散乱角方向に複数配置される受光系と、こ
の受光系で測定された前記資料の散乱光強度分布
とMie散乱理論により予め求められる複数の粒子
の異なる粒径ごとの散乱光強度分布とを照合して
前記試料の粒径分布を求める信号処理系とを具備
してなることを特徴とする粒径測定装置。 2 単色光を発する光源と、粒径を測定すべき複
数の粒子からなる試料に前記光源からの単色光を
照射してこの試料から散乱する散乱光のうちレン
ズの光軸に平行な光のみを測定する受光系と、こ
の受光系を前記試料の散乱光の散乱角方向に走査
する駆動装置と、前記受光系で測定された前記試
料の散乱光強度分布とMie散乱理論により予め求
められる複数の粒子の異なる粒径ごとの散乱光強
度分布とを照合して前記試料の粒径分布を求める
信号処理系とを具備してなることを特徴とする粒
径測定装置。
[Scope of Claims] 1. A light source that emits monochromatic light and a sample consisting of a plurality of particles whose particle size is to be measured is irradiated with monochromatic light from the light source, and among the scattered light scattered from the sample, the optical axis of the lens A light-receiving system that measures only light parallel to the sample and is arranged in multiple directions in the direction of the scattering angle of the scattered light of the sample, and a plurality of light-receiving systems that are determined in advance based on the scattered light intensity distribution of the material measured by this light-receiving system and Mie scattering theory. A particle size measuring device comprising: a signal processing system that determines the particle size distribution of the sample by comparing the intensity distribution of scattered light for different particle sizes of the particles. 2. A sample consisting of a light source that emits monochromatic light and a plurality of particles whose particle size is to be measured is irradiated with monochromatic light from the light source, and of the scattered light scattered from this sample, only the light that is parallel to the optical axis of the lens is detected. A light receiving system to be measured, a driving device that scans this light receiving system in the scattering angle direction of the scattered light of the sample, and a plurality of light receiving systems that are determined in advance based on the scattered light intensity distribution of the sample measured by the light receiving system and Mie scattering theory. 1. A particle size measuring device comprising: a signal processing system that determines the particle size distribution of the sample by comparing scattered light intensity distributions for different particle sizes of particles.
JP56131558A 1981-08-24 1981-08-24 Device for measuring size of particle Granted JPS5833107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56131558A JPS5833107A (en) 1981-08-24 1981-08-24 Device for measuring size of particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56131558A JPS5833107A (en) 1981-08-24 1981-08-24 Device for measuring size of particle

Publications (2)

Publication Number Publication Date
JPS5833107A JPS5833107A (en) 1983-02-26
JPH0260975B2 true JPH0260975B2 (en) 1990-12-18

Family

ID=15060869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56131558A Granted JPS5833107A (en) 1981-08-24 1981-08-24 Device for measuring size of particle

Country Status (1)

Country Link
JP (1) JPS5833107A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656358B2 (en) * 1985-05-20 1994-07-27 リオン株式会社 Light scattering type particle measuring device
US6798508B2 (en) * 2002-08-23 2004-09-28 Coulter International Corp. Fiber optic apparatus for detecting light scatter to differentiate blood cells and the like
GB2429058B (en) * 2004-03-06 2008-12-03 Michael Trainer Method and apparatus for determining the size and shape of particles
WO2019202648A1 (en) * 2018-04-16 2019-10-24 株式会社島津製作所 Light scattering detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191776A (en) * 1974-08-28 1976-08-11 Ekitainaino kendakubutsushitsuno nodosokuteisochi
JPS54114260A (en) * 1978-02-24 1979-09-06 Kyoto Giken Kk Measuring of microparticles within liquid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53155690U (en) * 1977-05-13 1978-12-07
JPS5682645U (en) * 1979-11-28 1981-07-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191776A (en) * 1974-08-28 1976-08-11 Ekitainaino kendakubutsushitsuno nodosokuteisochi
JPS54114260A (en) * 1978-02-24 1979-09-06 Kyoto Giken Kk Measuring of microparticles within liquid

Also Published As

Publication number Publication date
JPS5833107A (en) 1983-02-26

Similar Documents

Publication Publication Date Title
JP2825644B2 (en) Particle size analysis method and apparatus
US5416580A (en) Methods and apparatus for determining small particle size distribution utilizing multiple light beams
JPS59173886A (en) Particle counter
CN108627432A (en) particle characterization
JPH0337702B2 (en)
JP3446410B2 (en) Laser diffraction particle size distribution analyzer
JP2910596B2 (en) Particle size distribution analyzer
JPH0260975B2 (en)
JPH09189653A (en) Optical axis adjusting method for use in scattering type particle size distribution measuring device
JPS6273143A (en) Optical type web monitor device
US6104490A (en) Multiple pathlength sensor for determining small particle size distribution in high particle concentrations
JP2694304B2 (en) Light diffraction, scattering type particle size distribution analyzer
JPH0462455A (en) Particle size distribution measuring instrument
JPS6180018A (en) Color detecting apparatus
US4190367A (en) Device for establishing a condition at the surface of a subject
JP2626009B2 (en) Particle size distribution analyzer
JPH02193041A (en) Particle size distribution apparatus
EP0291708A3 (en) Apparatus for measuring the velocity of light scattering moving particles
JPS62247203A (en) Noncontact type surface irregularity measurement method
JP2746852B2 (en) Transmitted light measurement device
JPH1090158A (en) Apparatus for measuring concentration and grain size of air-borne particles
JPH0650243B2 (en) Light wave interferometer
JPS58201005A (en) Device for measuring particle diameter
JP2009300165A (en) Scattering characteristic evaluating apparatus
JP2001074645A (en) Method and device for measuring small amount of fine particle