JPH0259768B2 - - Google Patents

Info

Publication number
JPH0259768B2
JPH0259768B2 JP14935384A JP14935384A JPH0259768B2 JP H0259768 B2 JPH0259768 B2 JP H0259768B2 JP 14935384 A JP14935384 A JP 14935384A JP 14935384 A JP14935384 A JP 14935384A JP H0259768 B2 JPH0259768 B2 JP H0259768B2
Authority
JP
Japan
Prior art keywords
methyl
pentene
propylene
heat
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14935384A
Other languages
Japanese (ja)
Other versions
JPS6129540A (en
Inventor
Shunji Abe
Hiroshi Kiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP14935384A priority Critical patent/JPS6129540A/en
Publication of JPS6129540A publication Critical patent/JPS6129540A/en
Publication of JPH0259768B2 publication Critical patent/JPH0259768B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明はヒヌトシヌル性に優れたポリ−メチ
ル−−ペンテンを基材ずした積局フむルムに関
する。 〔埓来の技術〕 ポリ−メチル−−ペンテンはその透明性、
耐熱性、耐薬品性等を掻かしお、ビヌカヌ、メス
シリンダヌ等の化孊実隓甚噚具、泚射噚のシリン
ゞ、光孊枬定甚セル、電子レンゞ甚トレヌあるい
は玙にコヌトしおベヌキングカヌトン等に䜿甚さ
れおいる。しかしながらポリ−メチル−−ペ
ンテンは融点が高く、耐熱性が良奜である反面、
ヒヌトシヌル性に劣るずいう欠点を有しおいる。
ヒヌトシヌル性を改良する方法ずしおは、ポリ゚
チレン、ポリプロピレン等ポリ−メチル−−
ペンテンに比べお融点が䜎く、ヒヌトシヌル性に
優れた暹脂ずポリ−メチル−−ペンテンずを
貌り合わせる方法が最も䞀般的であるが、ポリ゚
チレンやポリプロピレンずポリ−メチル−−
ペンテンずは同じポリオレフむンでありながら接
着性に劣り、単に積局しただけでは党く実甚に䟛
し埗ず、たたポリ−メチル−−ペンテンフむ
ルムにアンカヌコヌト剀ずしおりレタン系接着剀
等を塗垃しおポリ゚チレンフむルム等を積局しお
も、ポリ−メチル−−ペンテンフむルムは衚
面濡れ性に乏しく、積局フむルムの接着匷床が䜎
く、ヒヌトシヌル性は巊皋改良されないのが珟状
であ぀た。 〔発明が解決しようずする問題点〕 かかる状況に鑑み、本発明者は、ポリ−メチ
ル−−ペンテンフむルムのヒヌトシヌル性を改
良すべく皮々怜蚎した結果、ポリ−メチル−
−ペンテンフむルムずポリ゚チレンフむルムもし
くはポリプロピレンフむルムずを積局する際に、
接着局ずしお、特定のプロピレン・α−オレフむ
ンランダム共重合䜓を甚いるこずにより、接着匷
床が改良され、ヒヌトシヌル性に優れた積局フむ
ルムが埗られるこずが分かり、先に特願昭59−
1387ずしお出願した。その埌曎に怜蚎した結果、
前蚘プロピレン・α−オレフむンランダム共重合
䜓にポリ−メチル−−ペンテンを添加混合し
た組成物を接着局に甚いるこずにより、曎に接着
匷床が改良されるこずが分かり、本発明に到達し
た。 〔問題を解決するための手段〕 すなわち、本発明はポリ−メチル−−ペン
テン(A)局の少なくずも片面に、プロピレン含有率
50ないし87モル及び瀺差走査型熱量蚈DSC
の熱分析に基づく結晶融解熱量が10ないし
80Jouleのプロピレン・α−オレフむンラン
ダム共重合䜓(B)95ないし40重量ずポリ−メチ
ル−−ペンテンA2ないし60重量ずか
らなる組成物(C)局を介しお、炭玠数ないしの
α−オレフむンを䞻成分ずするポリオレフむン(D)
局を積局しおなるこずを特城ずするヒヌトシヌル
性に優れた積局フむルムを提䟛するものである。 〔䜜甚〕 本発明に甚いるポリ−メチル−−ペンテン
(A)及びポリ−メチル−−ペンテンA2ず
は−メチル−−ペンテンの単独重合䜓もしく
は−メチル−−ペンテンず他のα−オレフむ
ン、䟋えば゚チレン、プロピレン、−ブテン、
−ヘキセン、−オクテン、−デセン、−
テトラデセン、−オクタデセン等の炭玠数な
いし20のα−オレフむンずの共重合䜓で通垞−
メチル−−ペンテンを85モル以䞊含む−メ
チル−−ペンテンを䞻䜓ずした重合䜓である。
ポリ−メチル−−ペンテン(A)及びポリ−メ
チル−−ペンテンA2のメルトフロヌレヌ
トMFR5、荷重Kg、枩床260℃は奜た
しくは0.5ないし20010minの範囲のものであ
る。メルトフロヌレヌトが0.510min未満の
ものは溶解粘床が高く成圢性に劣り、メルトフロ
ヌレヌトが20010minを越えるものは溶融粘
床が䜎く成圢性に劣り、たた機械的匷床も䜎い。 尚、本発明においおはポリ−メチル−−ペ
ンテン(A)ずポリ−メチル−−ペンテンA2
ずは䞊蚘範囲内のものであれば、同䞀であ぀おも
異な぀たものであ぀おもよい。 本発明に甚いるプロピレン・α−オレフむン共
重合䜓(B)ずは、プロピレン含有率が50ないし87モ
ル、奜たしくは60ないし80モル及び瀺差走査
型熱量蚈DSCの熱分析に基づく結晶融解熱
量が10ないし80Joule、奜たしくは20ないし
70Jouleのものであり、奜たしくはメルトフ
ロヌレヌトMFR2ASTM  1238、が
0.5ないし20010min、曎に奜たしくはない
し5010min、奜たしくは融点が90ないし130
℃、曎に奜たしくは105ないし125℃の範囲のもの
である。 プロピレン含有率が87モルあるいは結晶融解
熱量が80Jouleを越えるものは、いずれも前
蚘ポリ−メチル−−ペンテン(A)ずの接着性に
劣り、埌述のポリオレフむン(D)ず積局しおもヒヌ
トシヌル性は改善されない。䞀方、プロピレン含
有率が50モルあるいは結晶融解熱量が
10Joule未満のものは、接着性は有するが、
接着匷床が匱く、しかも耐熱性も劣るので、ヒヌ
トシヌル性の改善効果も少なく、ポリ−メチル
−−ペンテン本来の特城である耐熱性を損う虞
れがあるので奜たしくない。 たた、MFRが䞊蚘範囲倖のものは、成圢性に
劣る堎合があり、融点が䞊蚘範囲以倖のものも接
着性に劣る傟向にある。 たた、本発明に甚いるプロピレン・α−オレフ
むンランダム共重合䜓(B)は、前蚘特性に加えお、
個のプロピレン連鎖でみたミクロアむ゜タクテ
むシテむ以䞋MITず略すが0.7以䞊、曎には
0.8以䞊及び沞隰−ヘプタン䞍溶分が重量
以䞋、曎には重量以䞋のものが奜たしい。
MITが0.7未満のものを甚いた堎合には、゚むゞ
ング埌、フむルムの界面に䜎分子量物質がブリヌ
ドアりトしお、接着匷床を䜎䞋させる堎合があ
り、沞隰−ヘプタン䞍溶分が倚いこずは、プロ
ピレンがブロツク的に重合された成分の量が倚い
ためであり、そのような共重合䜓を甚いるず、接
着性の改良効果が少ない堎合がある。 前蚘ランダム共重合䜓(B)においお、プロピレン
ず共重合されるα−オレフむンずは、通垞プロピ
レンを陀く炭玠数ないし20のα−オレフむンで
あり、具䜓的には、䟋えば゚チレン、−ブテ
ン、−メチル−−ペンテン、−ヘキセン、
−オクテン、−デセン、−テトラデセン、
−オクタデセン等が挙げられる。これらの䞭で
は、炭玠数ないし10のものがずくに奜たしい。 なお、本発明におけるランダム共重合䜓(B)の融
解熱量の枬定は瀺差走査型熱量蚈による共重合䜓
の完党溶融状態の比熱曲線奜たしくは160℃以
侊240℃以䞋で瀺される比熱曲線を䜎枩偎に盎
接倖挿しお埗られる盎線をベヌスラむンずしお蚈
算される倀である。 融解熱量及び融点の枬定は以䞋の枬定条件で行
う。すなわち、詊料を200℃で分間攟眮埌、10
℃minの速床で−40℃たで冷华し、−40℃で
分間攟眮する。その埌20℃minの昇枩速床で−
40℃から200℃たで枬定を行う。 ミクロアむ゜タクテむシテむずは 13C栞磁気共
鳎スペクトルによ぀お個のプロピレン連鎖の郚
分に着目し、個のプロピレンがアむ゜タクテむ
クに配列しおいる分率を定量した倀である。 沞隰−ヘプタン䞍溶分の定量は以䞋の方法に
より行う。すなわち、玄mm×mm×mm皋床の
现片詊料およびガラスビヌズを円筒ガラスフむル
タヌG3に入れ、゜ツクスレヌ抜出噚により
14時間抜出を行う。この堎合リフラツクス頻床は
回分皋床ずする。䞍溶分の重量は溶融郚
分、又は䞍溶分を秀量するこずによ぀お求める。 前蚘のような諞性質を有するプロピレン含有率
50ないし87モルのプロピレン・α−オレフむン
ランダム共重合䜓(B)は、䟋えば(a)少なくずもマグ
ネシりム、チタンおよびハロゲンを含有する耇合
䜓、(b)呚期埋衚第族ないし第族金属の有機金
属化合物および(c)電子䟛䞎䜓ずから圢成される觊
媒を甚いお、プロピレンずα−オレフむンずをラ
ンダム共重合させるこずによ぀お埗られる。䞊蚘
電子䟛䞎䜓(c)の䞀郚又は党郚は、耇合䜓(a)の䞀郚
又は党郚に固定されおいおもよく、又、䜿甚に先
立぀お有機金属化合物(b)ず予備接觊させおいおも
よい。ずくに奜たしいのは、電子䟛䞎䜓(c)の䞀郚
が耇合䜓(a)に固定されおおり、残郚をそのたた重
合系に加えるかあるいは有機金属化合物(b)ず予備
接觊させお䜿甚する態様である。この堎合、耇合
䜓(a)に固定された電子䟛䞎䜓ず、重合系にそのた
た加えお䜿甚するかたたは(b)ず予備接觊させお䜿
甚する電子䟛䞎䜓ずは同䞀のものでも異なるもの
であ぀おもよい。 本発明に甚いる組成物(C)局は前蚘プロピレン・
α−オレフむンランダム共重合䜓(B)95ないし40重
量、奜たしくは90ないし50重量ず前蚘ポリ
−メチル−−ペンテンA2ないし60重量
、奜たしくは10ないし50重量ずから構成され
る。ポリ−メチル−−ペンテンA2の量
が重量未満では接着匷床がそれほど改善され
ず、䞀方60重量を越えるず埌述のポリオレフむ
ン(D)局ずの接着匷床が䜎䞋し、ヒヌトシヌル匷床
が改善されない。 本発明に甚いるポリオレフむン(D)ずは、炭玠数
ないしのα−オレフむンを䞻成分ずするポリ
オレフむン、すなわち゚チレン、プロピレン、
−ブテンを䞻成分ずする結晶性の重合䜓である。
これらポリオレフむンずしおは具䜓的にはポリ゚
チレン(E)、ポリプロピレン(F)及びポリ−ブテン
(G)が挙げられるが、これらはいずれも単独重合䜓
に限らず、それらオレフむンを䞻成分ずする限
り、他の炭玠数ないし20のα−オレフむンある
いは酢酞ビニル、塩化ビニル、アクリル酞、メタ
アクリル酞、スチレン等のビニル化合物ずの共重
合䜓をも含むものであり、又曎には無氎マレむン
酞、マレむン酞、アクリル酞等の䞍飜和カルボン
酞あるいはその誘導䜓でグラフト倉性されたグラ
フト共重合䜓でもよい。たたこれらポリオレフむ
ン(D)は混合物であ぀おもよい。 前蚘ポリ゚チレン(E)の具䜓䟋ずしおは、䟋えば
高圧法䜎密床ポリ゚チレン所謂LDPE、゚チ
レン・プロピレン共重合䜓、゚チレン−−ブテ
ン共重合䜓、゚チレン−−メチル−−ペンテ
ン共重合䜓、゚チレン−−ヘキセン共重合䜓、
高密床ポリ゚チレン所謂HDPE、゚チレン−
酢酞ビニル共重合䜓、゚チレン−アクリル酞共重
合䜓等が挙げられる。これらの䞭では、LDPE、
゚チレン・α−オレフむン共重合䜓、゚チレン・
酢酞ビニル共重合䜓等が透明性、䜎枩ヒヌトシヌ
ル性に優れるので奜たしく、ずりわけ密床が
0.910ないし0.960及び融点TnASTM 
3418が100ないし135℃の範囲のものが奜たし
い。尚、ポリ゚チレン(E)のメルトフロヌレヌト
MFR3ASTM  1238、はずくに限定
はされないが、成圢性の点から通垞0.01ないし30
10min、曎には0.1ないし1010minの範囲
のものが奜たしい。 前蚘ポリプロピレン(F)の具䜓䟋ずしおは、䟋え
ばポリプロピレンプロピレンホモポリマヌ、
プロピレン・゚チレンランダム共重合䜓、プロピ
レン・゚チレン・−ブテンランダム共重合䜓及
びプロピレン・−ブテンランダム共重合䜓等の
プロピレンランダムコポリマヌプロピレン含有
量が通垞90モル以䞊、奜たしくは95モル以
䞊、プロピレン・゚チレンブロツク共重合䜓
゚チレン含有量が通垞ないし30モル等が
挙げられる。これらの䞭ではホモポリマヌ、ラン
ダムコポリマヌが透明性に優れるので奜たしく、
ずくに融点TmASTM  3418が130ない
し140℃のランダムコポリマヌがヒヌトシヌル性
に優れるので奜たしい。尚、ポリプロピレン(F)の
MFR2はずくに限定はされないが、成圢性の点か
ら通垞0.5ないし3010min、曎には0.5ないし
1010minの範囲のものが奜たしい。 前蚘ポリ−ブテン(G)の具䜓䟋ずしおは、䟋え
ば−ブテン単独重合䜓、−ブテン・゚チレン
共重合䜓、−ブテン・プロピレン共重合䜓、
−ブテン・−メチル−−ペンテン共重合䜓が
挙げられる。尚ポリ−ブテン(G)のメルトフロヌ
レヌトMFR3ASTM  1238、はずく
に限定はされないが、成圢性の点から通垞0.01な
いし10010min、曎には0.03ないし30
10minの範囲のものが奜たしい。 本発明の積局フむルムは、前蚘ポリ−メチル
−−ペンテン(A)局の少なくずも片面に、前蚘プ
ロピレン・α−オレフむンランダム共重合䜓(B)ず
ポリ−メチル−−ペンテンA2ずの組成
物(C)局を介しお前蚘ポリオレフむン(D)局を積局し
おなる積局フむルムである。 本発明の積局フむルムを補造する方法は皮々公
知の方法、䟋えば予めポリ−メチル−−ペン
テン(A)フむルムを成圢した埌、組成物(C)及びポリ
オレフむン(D)を抌出コヌテむングする方法、予め
ポリ−メチル−−ペンテン(A)フむルムを成圢
した埌別途成圢したポリオレフむン(D)フむルムを
組成物(C)を甚いお抌出ラミネヌトする方法、ある
いはポリ−メチル−−ペンテン(A)、組成物(C)
及びポリオレフむン(D)を少なくずも䞉局構造を有
する倚局構造を有する倚局ダむを甚い、組成物(C)
を䞭間局ずしお共抌出し成圢する方法等が挙げら
れるが、共抌出し成圢法が操䜜が簡䟿でしかもよ
り局間接着力に優れた積局フむルムが埗られるの
で奜たしい。共抌出し成圢法ずしおはフラツト・
ダむを甚いる−ダむ法ずサヌキナラヌ・ダむを
甚いるむンフレヌシペン法ずがある。フラツト・
ダむはブラツク・ボツクスを䜿甚したシングル・
マニフオヌルド圢匏あるいはマルチ・マニフオヌ
ルド圢匏のいずれを甚いおも良い。むンフレヌシ
ペン法に甚いるダむに぀いおもいずれも公知のダ
むを甚いるこずができる。 本発明の積局フむルムの各局の厚さは、ずくに
限定はされないが、通垞ポリ−メチル−−ペ
ンテン(A)局が10ないし100Ό、奜たしくは10ない
し50Ό、通垞組成物(C)局がないし50Ό、奜たし
くは10ないし30Ό、通垞ポリオレフむン(D)のヒヌ
トシヌル局が10ないし100Ό、奜たしくは10ない
し50Όの範囲である。 本発明の積局フむルムは、ポリ−メチル−
−ペンテン(A)局組成物(C)局ポリオレフむン(D)
局を構成芁件ずする限り、ずくに限定はされず、
ポリ−メチル−−ペンテン(A)局の䞡面に組成
物(C)局を介しおポリオレフむン(D)のヒヌトシヌル
局を積局しおいおもよいし、曎には、耐ガス透過
性等を付䞎する為に、ポリ塩化ビニリデン系暹
脂、ポリビニルアルコヌル、゚チレン・酢酞ビニ
ル共重合䜓鹞化物、ポリアミド、ポリ゚ステルあ
るいは玙、アルミニりム箔等を積局しおもよい。 本発明の積局フむルムを構成するポリ−メチ
ル−−ペンテン(A)局、組成物(C)局およびポリオ
レフむン(D)のヒヌトシヌル局のいずれかの局ある
いは党局に、耐候安定剀、耐熱安定剀、垯電防止
剀、防曇剀、抗ブロツキング剀、スリツプ剀、滑
剀、顔料、染料、流滎剀、栞剀等の通垞ポリオレ
フむンに添加しお䜿甚される各皮配合剀を本発明
の目的を損わない範囲で添加しおもよいし、ヒヌ
トシヌル局ずなるポリオレフむン(D)局には、曎に
ヒヌトシヌル性を改良する目的で、䜎結晶性もし
くは非晶性の゚チレン・プロピレン共重合䜓、゚
チレン・−ブテン共重合䜓等の゚チレン・α−
オレフむン共重合䜓、゚チレン・酢酞ビニル共重
合䜓等を添加しおもよい。 〔発明の効果〕 本発明の積局フむルムはポリ−メチル−−
ペンテンの耐熱性、透明性、衚面光沢、撥氎性等
を有し、䞔぀ヒヌトシヌル性が改良されおいるの
で、その特性を掻かしお、各皮食品䟋えば野
菜、菓子、肉類及びパン類、氎産物等の包装材
ずしお奜適である。 〔実斜䟋〕 次に実斜䟋を挙げお本発明を曎に詳しく説明す
るが、本発明はその芁旚を越えない限りこれらの
䟋に䜕ら制玄されるものではない。 実斜䟋  密床0.835cm3及びMFR52610minの
−メチル−−ペンテン−−デセン共重合䜓
以䞋TPX−ず略す、プロピレン含有率
71.0モル、結晶融解熱量50Joule、融
点110℃、MFR27.010min、沞隰−ヘ
プタン䞍溶分0.5、沞隰酢酞メチル可溶分
0.5及びMIT0.94のプロピレン・−ブテン
ランダム共重合䜓以䞋PBR−ず略す70重
量ずTPX−30重量ずからなる組成物−
及び密床0.917cm3、MFR36.5
10min及びTm105℃の高圧法ポリ゚チレン以
例LDPE−ず略すを組成物−を䞭間局ずし
お、各々40mmφ抌出機シリンダヌ枩床270
℃、40mmφ抌出機シリンダヌ枩床250℃及
び40mmφ抌出機シリンダヌ枩床250℃で溶
融埌、䞉局むンフレヌシペンフむルム成圢甚スパ
むラルダむダむ枩床260℃より抌出し氎冷
しお、TPX−20Ό、組成物−20Ό及び
LDPE−20Όからなる共抌出䞉局フむルムを
埗た。次いで以䞋の方法により物性の評䟡を行぀
た。 接着匷床15mm 15mm幅の詊隓片を切り取りクロスヘツド速床
200mmminで各暹脂局間で剥離した際の匷床で
瀺した。 ヒヌトシヌル郚剥離匷床15mm ポリオレフむン局を重ね合せ120℃、250℃の枩
床でKgcm2の圧力で秒間幅10mmのシヌルバ
ヌでヒヌトシヌルした埌攟冷する。これから15mm
幅の詊隓片を切り取り、クロスヘツド速床200
mmminでヒヌトシヌル郚を剥離した際の匷床で
瀺した。 結果を第衚に瀺す。 実斜䟋  実斜䟋の䞭間局である組成物−の代わりに
PBR−50重量ずTPX−50重量から
なる組成物−を䜿甚する以倖は実斜䟋ず同様
に行぀た。結果を第衚に瀺す。 実斜䟋  実斜䟋のLDPE−の代りに、密床0.91
cm3、MFR10min及びTm140℃の
プロピレン−゚チレンランダム共重合䜓以䞋
PP−ず略すを甚い、PP−の抌出機のシリ
ンダヌ枩床を270℃にする以倖は実斜䟋ず同様
に行぀た。結果を第衚に瀺す。 実斜䟋  実斜䟋のPBR−の代わりに、プロピレン
含有率80.5モル、結晶融解熱量61Joule、
融点124℃、MFR23.110min、沞隰−
ヘプタン䞍溶分1.2、沞隰酢酞メチル可溶
分0.4及びMIT0.97のプロピレン・−ブ
テンランダム共重合䜓PBR−を甚いる以
倖は実斜䟋ず同様に行぀た。結果を第衚に瀺
す。 比范䟋  実斜䟋の䞭間局である組成物−の代わりに
PBR−を䜿甚する以倖は実斜䟋ず同様に行
぀た。結果を第衚に瀺す。
[Industrial Field of Application] The present invention relates to a laminated film based on poly-4-methyl-1-pentene having excellent heat-sealability. [Prior art] Poly-4-methyl-1-pentene is known for its transparency,
Taking advantage of its heat resistance and chemical resistance, it is used for chemical experiment equipment such as beakers and graduated cylinders, syringes for syringes, optical measurement cells, microwave oven trays, and baking cartons by coating paper. However, while poly-4-methyl-1-pentene has a high melting point and good heat resistance,
It has the disadvantage of poor heat sealability.
As a method for improving heat sealability, polyethylene, polypropylene, etc., poly(4-methyl-1-
The most common method is to bond poly-4-methyl-1-pentene with a resin that has a lower melting point than pentene and has excellent heat-sealability.
Although pentene is a polyolefin, it has poor adhesive properties and cannot be put to practical use simply by laminating it.Also, polyethylene is produced by applying a urethane adhesive or the like as an anchor coating agent to poly4-methyl-1-pentene film. Even when films and the like are laminated, poly-4-methyl-1-pentene film has poor surface wettability, the adhesive strength of the laminated film is low, and the heat-sealability is not improved as much. [Problems to be Solved by the Invention] In view of this situation, the present inventor conducted various studies to improve the heat-sealability of poly-4-methyl-1-pentene film, and as a result, developed poly-4-methyl-1-pentene film.
- When laminating pentene film and polyethylene film or polypropylene film,
It was found that by using a specific propylene/α-olefin random copolymer as the adhesive layer, adhesive strength was improved and a laminated film with excellent heat sealability could be obtained.
It was filed as 1387. After further consideration,
It was found that the adhesive strength was further improved by using a composition prepared by adding and mixing poly4-methyl-1-pentene to the propylene/α-olefin random copolymer for the adhesive layer, and the present invention was achieved based on this finding. [Means for solving the problem] That is, the present invention provides a poly-4-methyl-1-pentene (A) layer with a propylene content on at least one side.
50 to 87 mol% and differential scanning calorimetry (DSC)
The heat of crystal fusion is 10 or more based on thermal analysis of
80 Joule/g of propylene/α-olefin random copolymer (B) 95 to 40% by weight and poly4-methyl-1-pentene (A 2 ) 5 to 60% by weight through the composition (C) layer. Polyolefin (D) whose main component is α-olefin having 2 to 4 carbon atoms.
The object of the present invention is to provide a laminated film with excellent heat-sealability, which is characterized by being formed by laminating layers. [Function] Poly-4-methyl-1-pentene used in the present invention
(A) and poly-4-methyl-1-pentene (A 2 ) are homopolymers of 4-methyl-1-pentene or 4-methyl-1-pentene and other α-olefins, such as ethylene, propylene, -butene,
1-hexene, 1-octene, 1-decene, 1-
Copolymer with α-olefin having 2 to 20 carbon atoms such as tetradecene and 1-octadecene, usually 4-
It is a polymer mainly composed of 4-methyl-1-pentene, which contains 85 mol% or more of methyl-1-pentene.
The melt flow rate (MFR 5 , load: 5Kg, temperature: 260°C) of poly4-methyl-1-pentene (A) and poly4-methyl-1-pentene (A 2 ) is preferably 0.5 to 200g/10min. It's a range of things. Those with a melt flow rate of less than 0.5 g/10 min have high melt viscosity and poor moldability, and those with a melt flow rate of more than 200 g/10 min have low melt viscosity and poor moldability, and also have low mechanical strength. In addition, in the present invention, poly4-methyl-1-pentene (A) and poly4-methyl-1-pentene (A 2 )
may be the same or different as long as they are within the above range. The propylene/α-olefin copolymer (B) used in the present invention has a propylene content of 50 to 87 mol%, preferably 60 to 80 mol%, and crystals based on thermal analysis using a differential scanning calorimeter (DSC). Heat of fusion is 10 to 80 Joule/g, preferably 20 to 80 Joule/g
70 Joule/g, preferably melt flow rate (MFR 2 :ASTM D 1238, L)
0.5 to 200g/10min, more preferably 2 to 50g/10min, preferably melting point 90 to 130
℃, more preferably in the range of 105 to 125℃. If the propylene content exceeds 87 mol% or the heat of crystal fusion exceeds 80 Joule/g, they will have poor adhesion to the poly4-methyl-1-pentene (A), and will not be laminated with the polyolefin (D) described below. However, the heat sealability is not improved. On the other hand, if the propylene content is 50 mol% or the heat of crystal fusion is
Those with less than 10 Joule/g have adhesive properties, but
Since the adhesive strength is weak and the heat resistance is also poor, the effect of improving heat sealability is small, and there is a risk that the heat resistance, which is an inherent characteristic of poly-4-methyl-1-pentene, may be impaired, which is not preferable. Furthermore, those with MFR outside the above range may have poor moldability, and those with melting points outside the above range also tend to have poor adhesiveness. In addition to the above properties, the propylene/α-olefin random copolymer (B) used in the present invention also has the following properties:
The microisotacticity (hereinafter abbreviated as MIT) of three propylene chains is 0.7 or more, and
0.8 or more and boiling n-heptane insoluble content is 5% by weight
Preferably, the content is preferably 3% by weight or less.
If a film with an MIT of less than 0.7 is used, low molecular weight substances may bleed out to the film interface after aging, reducing adhesive strength. This is because the amount of block-polymerized components is large, and when such a copolymer is used, the effect of improving adhesion may be small. In the random copolymer (B), the α-olefin copolymerized with propylene is usually an α-olefin having 2 to 20 carbon atoms excluding propylene, and specifically, for example, ethylene, 1-butene, 4-methyl-1-pentene, 1-hexene,
1-octene, 1-decene, 1-tetradecene,
Examples include 1-octadecene. Among these, those having 4 to 10 carbon atoms are particularly preferred. The heat of fusion of the random copolymer (B) in the present invention is measured by measuring the specific heat curve of the copolymer in a completely molten state (preferably the specific heat curve shown at 160°C or higher and 240°C or lower) using a differential scanning calorimeter. This is a value calculated using a straight line obtained by direct extrapolation to the low temperature side as the baseline. The heat of fusion and melting point are measured under the following measurement conditions. That is, after leaving the sample at 200℃ for 5 minutes,
Cool down to -40℃ at a rate of ℃/min, and cool down to -40℃ for 5 minutes.
Leave for a minute. After that, at a heating rate of 20℃/min -
Measurements are taken from 40℃ to 200℃. Microisotacticity is a value determined by focusing on three propylene chains using 13 C nuclear magnetic resonance spectroscopy and quantifying the fraction in which three propylene chains are arranged in an isotactic manner. The amount of boiling n-heptane insoluble matter is determined by the following method. That is, a small sample of approximately 1 mm x 1 mm x 1 mm and glass beads are placed in a cylindrical glass filter (G3) and extracted using a Soxhlet extractor.
Extract for 14 hours. In this case, the reflux frequency is approximately once/5 minutes. The weight percent of insoluble matter is determined by weighing the molten part or insoluble matter. Propylene content with the above properties
The 50 to 87 mol% propylene/α-olefin random copolymer (B) is, for example, (a) a composite containing at least magnesium, titanium, and halogen, (b) a metal from Group 1 to Group 3 of the periodic table. It is obtained by random copolymerization of propylene and α-olefin using a catalyst formed from an organometallic compound and (c) an electron donor. Part or all of the electron donor (c) may be immobilized on part or all of the complex (a), or may be brought into preliminary contact with the organometallic compound (b) prior to use. Good too. Particularly preferred is an embodiment in which a part of the electron donor (c) is immobilized on the complex (a), and the remainder is added to the polymerization system as it is or is used after being brought into preliminary contact with the organometallic compound (b). be. In this case, the electron donor immobilized on the complex (a) and the electron donor used by directly adding it to the polymerization system or by pre-contacting it with (b) may be the same or different. It's okay. The composition (C) layer used in the present invention is the propylene
α-olefin random copolymer (B) 95 to 40% by weight, preferably 90 to 50% by weight and the poly(4)
-Methyl-1-pentene ( A2 ) 5 to 60% by weight, preferably 10 to 50% by weight. If the amount of poly4-methyl-1-pentene (A 2 ) is less than 5% by weight, the adhesive strength will not be improved much, while if it exceeds 60% by weight, the adhesive strength with the polyolefin (D) layer described below will decrease. Heat seal strength is not improved. The polyolefin (D) used in the present invention refers to a polyolefin whose main component is α-olefin having 2 to 4 carbon atoms, that is, ethylene, propylene, 1
- It is a crystalline polymer whose main component is butene.
Specifically, these polyolefins include polyethylene (E), polypropylene (F), and poly-1-butene.
(G), but all of these are not limited to homopolymers, as long as these olefins are the main component, other α-olefins having 2 to 20 carbon atoms, vinyl acetate, vinyl chloride, acrylic acid, meth It also includes copolymers with vinyl compounds such as acrylic acid and styrene, and also graft copolymers graft-modified with unsaturated carboxylic acids such as maleic anhydride, maleic acid, and acrylic acid, or their derivatives. But that's fine. Further, these polyolefins (D) may be a mixture. Specific examples of the polyethylene (E) include high-pressure low density polyethylene (so-called LDPE), ethylene-propylene copolymer, ethylene-1-butene copolymer, and ethylene-4-methyl-1-pentene copolymer. , ethylene-1-hexene copolymer,
High-density polyethylene (so-called HDPE), ethylene
Examples include vinyl acetate copolymers and ethylene-acrylic acid copolymers. Among these, LDPE,
Ethylene/α-olefin copolymer, ethylene/
Vinyl acetate copolymers are preferred because they have excellent transparency and low-temperature heat-sealing properties.
0.910 to 0.960 and melting point (T n :ASTM D
3418) is preferably in the range of 100 to 135°C. The melt flow rate (MFR 3 : ASTM D 1238, E) of polyethylene (E) is not particularly limited, but is usually 0.01 to 30 from the viewpoint of moldability.
g/10 min, preferably in the range of 0.1 to 10 g/10 min. Specific examples of the polypropylene (F) include polypropylene (propylene homopolymer),
Propylene random copolymers such as propylene/ethylene random copolymer, propylene/ethylene/1-butene random copolymer, and propylene/1-butene random copolymer (propylene content usually 90 mol% or more, preferably 95 mol%) above), propylene/ethylene block copolymers (ethylene content usually 5 to 30 mol%), and the like. Among these, homopolymers and random copolymers are preferred because they have excellent transparency.
In particular, a random copolymer having a melting point (Tm: ASTM D 3418) of 130 to 140°C is preferable because it has excellent heat sealability. Furthermore, polypropylene (F)
MFR 2 is not particularly limited, but from the point of view of formability, it is usually 0.5 to 30g/10min, and even 0.5 to 30g/10min.
A range of 10g/10min is preferable. Specific examples of the poly-1-butene (G) include 1-butene homopolymer, 1-butene/ethylene copolymer, 1-butene/propylene copolymer,
-butene/4-methyl-1-pentene copolymer. The melt flow rate (MFR 3 : ASTM D 1238, E) of poly-1-butene (G) is not particularly limited, but from the viewpoint of moldability it is usually 0.01 to 100 g/10 min, and more preferably 0.03 to 30 g/10 min.
A range of 10 min is preferable. The laminated film of the present invention includes the propylene/α-olefin random copolymer (B) and poly4-methyl-1-pentene (A 2 ) on at least one side of the poly4-methyl-1-pentene (A) layer. This is a laminated film formed by laminating the above polyolefin (D) layer via a composition (C) layer with ). The laminated film of the present invention can be produced by various known methods, such as a method in which a poly4-methyl-1-pentene (A) film is formed in advance and then extrusion coated with the composition (C) and the polyolefin (D); A method in which a poly4-methyl-1-pentene (A) film is preformed and then a separately molded polyolefin (D) film is extrusion laminated using the composition (C), or a poly4-methyl-1-pentene (A) film is extrusion laminated using the composition (C). ), composition (C)
and polyolefin (D) using a multilayer die having a multilayer structure having at least three layers, composition (C)
Examples include a method of coextrusion molding using the intermediate layer as an intermediate layer, but coextrusion molding is preferred because it is easy to operate and can provide a laminated film with better interlayer adhesion. As a coextrusion molding method, flat
There are a T-die method using a die and an inflation method using a circular die. Flat
The die is a single die using black box.
Either a manifold type or a multi-manifold type may be used. Any known die can be used for the die used in the inflation method. The thickness of each layer of the laminated film of the present invention is not particularly limited, but the poly4-methyl-1-pentene (A) layer is usually 10 to 100Ό, preferably 10 to 50Ό, and the composition (C) layer is usually 10 to 100Ό. 5 to 50Ό, preferably 10 to 30Ό, usually the heat seal layer of polyolefin (D) ranges from 10 to 100Ό, preferably 10 to 50Ό. The laminated film of the present invention is poly4-methyl-1
-Pentene (A) layer/Composition (C) layer/Polyolefin (D)
As long as the layer is a constituent requirement, there are no particular limitations,
A heat-sealing layer of polyolefin (D) may be laminated on both sides of the poly-4-methyl-1-pentene (A) layer via a composition (C) layer. For application, polyvinylidene chloride resin, polyvinyl alcohol, saponified ethylene/vinyl acetate copolymer, polyamide, polyester, paper, aluminum foil, etc. may be laminated. A weathering stabilizer, The purpose of the present invention is to use various compounding agents that are usually added to polyolefins, such as heat-resistant stabilizers, antistatic agents, antifogging agents, antiblocking agents, slip agents, lubricants, pigments, dyes, droplet agents, and nucleating agents. may be added to the polyolefin (D) layer that becomes the heat-sealing layer, in order to further improve the heat-sealability, a low-crystalline or amorphous ethylene-propylene copolymer may be added to the polyolefin (D) layer that will become the heat-sealing layer. , ethylene/α- such as ethylene/1-butene copolymer
Olefin copolymers, ethylene/vinyl acetate copolymers, etc. may be added. [Effects of the Invention] The laminated film of the present invention is made of poly4-methyl-1-
It has the heat resistance, transparency, surface gloss, water repellency, etc. of pentene, and has improved heat-sealability, so it can be used to make use of its properties to be used in various foods (e.g. vegetables, confectionery, meat), breads, and marine products. It is suitable as a packaging material for etc. [Examples] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples as long as the gist thereof is not exceeded. Example 1 4-methyl-1-penten-1-decene copolymer (hereinafter abbreviated as TPX-) with density: 0.835 g/cm 3 and MFR 5 : 26 g/10 min, propylene content:
71.0 mol%, heat of crystal fusion: 50 Joule/g, melting point: 110°C, MFR 2 : 7.0 g/10 min, boiling n-heptane insoluble content: 0.5%, boiling methyl acetate soluble content:
Composition consisting of 70% by weight of propylene/1-butene random copolymer (hereinafter abbreviated as PBR-) of 0.5% and MIT: 0.94 and 30% by weight of TPX-
and density: 0.917g/cm 3 , MFR 3 : 6.5g/
10min and Tm: 105℃ high pressure polyethylene (hereinafter abbreviated as LDPE) was used as an intermediate layer, and each was extruded using a 40mmφ extruder (cylinder temperature: 270℃).
After melting in a 40mmφ extruder (cylinder temperature: 250℃) and a 40mmφ extruder (cylinder temperature: 250℃), it was extruded through a spiral die for three-layer inflation film molding (die temperature: 260℃) and cooled with water. , TPX-: 20ÎŒ, composition-: 20ÎŒ and
A coextruded three-layer film consisting of LDPE-:20Ό was obtained. Next, the physical properties were evaluated by the following method. Adhesive strength (g/15mm): Cut a 15mm wide test piece and crosshead speed.
The strength is shown as the strength when peeling between each resin layer at 200 mm/min. Peel strength of heat-sealed part (g/15mm): Polyolefin layers are stacked and heat-sealed at a temperature of 120℃ and 250℃ with a pressure of 2Kg/cm 2 for 1 second using a sealing bar with a width of 10mm, and then allowed to cool. 15mm from now
Cut a width specimen and crosshead speed 200
It is expressed as the strength when the heat-sealed part is peeled off in mm/min. The results are shown in Table 1. Example 2 Instead of the intermediate layer composition of Example 1
The same procedure as in Example 1 was carried out except that a composition consisting of 50% by weight of PBR and 50% by weight of TPX was used. The results are shown in Table 1. Example 3 Instead of LDPE in Example 1, density: 0.91
g/cm 3 , MFR: 5g/10min and Tm: 140℃ propylene-ethylene random copolymer (hereinafter
The same procedure as in Example 1 was conducted except that PP- (abbreviated as PP-) was used and the cylinder temperature of the PP- extruder was set at 270°C. The results are shown in Table 1. Example 4 Instead of PBR- in Example 3, propylene content: 80.5 mol%, heat of crystal fusion 61 Joule/g,
Melting point: 124℃, MFR 2 : 3.1g/10min, boiling n-
The same procedure as in Example 3 was carried out except for using a propylene/1-butene random copolymer (PBR-) having a heptane insoluble content of 1.2%, a boiling methyl acetate soluble content of 0.4%, and an MIT of 0.97. The results are shown in Table 1. Comparative Example 1 Instead of the composition which is the intermediate layer of Example 1
The same procedure as in Example 1 was carried out except that PBR- was used. The results are shown in Table 1.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  ポリ−メチル−−ペンテン(A)局の少なく
ずも片面に、プロピレン含有率50ないし87モル
及び瀺差走査型熱量蚈DSCの熱分析に基づ
く結晶融解熱量が10ないし80Jouleのプロピ
レン・α−オレフむンランダム共重合䜓(B)95ない
し40重量ずポリ−メチル−−ペンテン
A2ないし60重量ずからなる組成物(C)局を
介しお、炭玠数ないしのα−オレフむンを䞻
成分ずするポリオレフむン(D)局を積局しおなるこ
ずを特城ずする積局フむルム。
1 Propylene content 50 to 87 mol% on at least one side of the poly4-methyl-1-pentene (A) layer
and 95 to 40% by weight of propylene/α-olefin random copolymer (B) having a heat of crystal fusion of 10 to 80 Joule/g based on thermal analysis by differential scanning calorimeter (DSC) and poly4-methyl-1-pentene. (A 2 ) A layer of polyolefin (D) mainly composed of α-olefin having 2 to 4 carbon atoms is laminated via a layer of composition (C) consisting of 5 to 60% by weight. laminated film.
JP14935384A 1984-07-20 1984-07-20 Laminated film Granted JPS6129540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14935384A JPS6129540A (en) 1984-07-20 1984-07-20 Laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14935384A JPS6129540A (en) 1984-07-20 1984-07-20 Laminated film

Publications (2)

Publication Number Publication Date
JPS6129540A JPS6129540A (en) 1986-02-10
JPH0259768B2 true JPH0259768B2 (en) 1990-12-13

Family

ID=15473269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14935384A Granted JPS6129540A (en) 1984-07-20 1984-07-20 Laminated film

Country Status (1)

Country Link
JP (1) JPS6129540A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729405B2 (en) * 1987-05-28 1995-04-05 䞉井石油化孊工業株匏䌚瀟 Laminated film
JP2592500B2 (en) * 1988-06-01 1997-03-19 䞉井石油化孊工業株匏䌚瀟 Laminated film
US6265083B1 (en) 1997-08-22 2001-07-24 Mitsui Chemicals, Inc. Poly (4-methyl-1-pentene) resin laminates and uses thereof
JPWO2022186208A1 (en) * 2021-03-02 2022-09-09

Also Published As

Publication number Publication date
JPS6129540A (en) 1986-02-10

Similar Documents

Publication Publication Date Title
US5527608A (en) Oriented multilayer heat sealable packaging film capable of withstanding high altitude effects
JP2592500B2 (en) Laminated film
JPH0411584B2 (en)
HU202897B (en) Process for producing copolymere from propylene, an alpha-olefine and ocassionally ethylene, and wrapping sintered foil and laminated foil
US5077123A (en) Laminated film having poly(4-methyl-1-penetene) base layer
JPS6142626B2 (en)
US4404242A (en) Film laminate food wrap and food pouch therefrom
JPH0259768B2 (en)
CN116981733A (en) Resin composition and laminate having layer formed from the resin composition
JP2002524307A (en) Multilayer polymer structure containing layers of ethylene copolymer
BR112018075907B1 (en) MULTILAYER FILM AND FOOD PACKAGING
JPH0259767B2 (en)
JPS6034463B2 (en) Multilayer laminated structure
JPH09194653A (en) Polypropylene resin composition and laminate prepared by using the same
JPH0156909B2 (en)
JPH024425B2 (en)
JP2704895B2 (en) Laminated film with excellent low-temperature heat sealability
JPH02155736A (en) Elongated laminated film and wrapping material consisting of this film
JPH025182B2 (en)
BR112019014162A2 (en) POLYMER MIXTURES FOR USE IN MULTIPLE LAYER STRUCTURE AND MULTIPLE LAYER STRUCTURES THAT UNDERSTAND THE SAME
JPS58197048A (en) Laminate
JPS6255979B2 (en)
JPH02155718A (en) Manufacture of oriented laminate film
JPH0144224B2 (en)