JPH0156909B2 - - Google Patents

Info

Publication number
JPH0156909B2
JPH0156909B2 JP57021178A JP2117882A JPH0156909B2 JP H0156909 B2 JPH0156909 B2 JP H0156909B2 JP 57021178 A JP57021178 A JP 57021178A JP 2117882 A JP2117882 A JP 2117882A JP H0156909 B2 JPH0156909 B2 JP H0156909B2
Authority
JP
Japan
Prior art keywords
ethylene
density
flow rate
film
melt flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57021178A
Other languages
Japanese (ja)
Other versions
JPS58140248A (en
Inventor
Hiromi Shigemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP2117882A priority Critical patent/JPS58140248A/en
Publication of JPS58140248A publication Critical patent/JPS58140248A/en
Publication of JPH0156909B2 publication Critical patent/JPH0156909B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は共押出多層フイルムに関する。更に詳
しくは、ヒートシール性、低温耐衝撃性が改善さ
れたポリプロピレン/ポリエチレン系共押出多層
フイルムに関する。 結晶性ポリプロピレンフイルムは、引張強さ、
剛性率、表面硬度、衝撃強度などの機械的特性や
光沢、透明性などの光学的特性、あるいは無毒
性、無臭性なので食品衛生性にも優れているため
に食品包装の分野に広く使用されている。しか
し、ポリプロピレンフイルムは単層ではヒートシ
ール可能な温度が高く、かつ適正温度範囲が狭い
ため、ポリプロピレンフイルムを基材とし、それ
に低融点を有する樹脂を積層させてヒートシール
性を改良することが行われている。このヒートシ
ール性の改良に用いられる樹脂としては、高圧法
低密度ポリエチレン、エチレン酢酸ビニル共重合
体等のエチレン系樹脂がポリプロピレンフイルム
の低温耐衝撃性をも改善できるので、一般に広く
用いられている。 しかしながら、ポリプロピレンフイルムとエチ
レン系樹脂フイルムとは層間接着性が不足してい
るため、使用時に層間剥離を起こすことがある。 そこで本発明者らは、かかる欠点を改良する目
的で検討した結果、ポリプロピレンフイルムとエ
チレン系樹脂フイルムとの間に特定のエチレン・
α−オレフイン共重合体を介在させることによ
り、両フイルム間の層間接着性が良好なヒートシ
ール性、低温耐衝撃性、簡易ボイル性等に優れた
多層フイルムが得られることが分かり本発明に到
達した。 すなわち、本発明はポリプロピレン(A)、中間層
としてメルトフローレート:0.5ないし20g/
10min、密度:0.910ないし0.940g/cm3、X線に
よる結晶化度:40ないし70%、融点:115ないし
130℃のエチレンと炭素数4ないし20のα−オレ
フインとからとる共重合体(B)、次いでメルトフロ
ーレート:0.5ないし30g/10min及び密度:
0.950ないし0.970g/cm3の範囲の高密度ポリエチ
レン(C)、メルトフローレート:0.5ないし40g/
10min及び密度:0.910ないし0.930g/cm3の範囲
の高圧法低密度ポリエチレン(D)及びメルトフロー
レート:0.5ないし30g/10min、密度:0.920な
いし0.970g/cm3及び酢酸ビニル含有量30重量%
以下のエチレン・酢酸ビニル共重合体(E)より選択
されたエチレン系樹脂を積層してなることを特徴
とする共押出多層フイルムを提供するものであ
る。 本発明の多層フイルムに用いるポリプロピレン
(A)とはプロピレンの単独重合体もしくはプロピレ
ンと15重量%以下の1種以上の他のα−オレフイ
ン、例えばエチレン、1−ブテン、1−ヘキセ
ン、4−メチル−1−ペンテン等との共重合体お
よびプロピレンとエチレンと5重量%以下のポリ
エン成分、例えば5−エチリデン−2−ノルボル
ネンまたは5−メチレン−2−ノルボルネンまた
は1,4−ヘキサジエンとの多元共重合体を含
み、通常融点が130℃以上、メルトフローレート
が0.5ないし30g/10min(ASTM D1238L)のも
のである。 本発明の多層フイルムの中間層に用いるエチレ
ン・α−オレフイン共重合体(B)とは、メルトフロ
ーレートが0.5ないし20g/10min、好ましくは
1ないし5g/10min(ASTM D1238E)、密度が
0.910ないし0.940g/10min、好ましくは0.915な
いし0.935g/cm3、X線による結晶化度が40ない
し70%、好ましくは50ないし60%、融点が115な
いし130℃、好ましくは115ないし125℃の範囲の
エチレンと炭素数4ないし20、好ましくは6ない
し18のα−オレフインとの共重合体である。メル
トフローレートが0.5g/10min未満のものは溶
融粘度が大きく成形時に肌荒れを生じ易く、ポリ
プロピレン(A)フイルムと後述のエチレン系樹脂(C)
フイルムとの界面を荒らし、20g/10minを越え
るものは剥離強度が弱く、多層フイルムの強度低
下を来たす。密度が0.910g/cm3未満のものはポ
リプロピレン(A)フイルム及びエチレン系樹脂フイ
ルムとの層間接着力は強くなるが、耐熱性に劣
り、ボイル時に層間剥離を起こす虞れがある。密
度が0.940g/cm3を越えるものは層間接着力の改
善効果が小さく、本発明の目的に合致しない。本
発明に用いるエチレン・α−オレフイン共重合体
の密度とX線による結晶化度とは相関があり、結
晶化度が40%未満のものは、耐熱性に劣り、70%
を越えるものは層間接着力の改善効果が小さい。
又融点が115℃未満のものは層間接着力には優れ
るが耐熱性に劣り、125℃以上のものは層間接着
力の改善効果が小さい。 前記エチレンと共重合される炭素数4〜20のα
−オレフインとは具体的には、例えば、1−ブテ
ン、1−ペンテン、1−ヘキセン、1−オクテ
ン、4−メチル−1−ペンテン、1−デセン、1
−テトラデセン、1−オクタデセン等であり、1
種あるいは2種以上の混合物として用いてもよ
い。エチレンとプロピレンとの共重合体は層間接
着力に劣り、本発明の目的に合致しない。また1
−ブテンとの共重合体でも充分実用に耐える層間
接着力を有するが、とくに炭素数6以上のα−オ
レフインとの共重合体は、多層フイルムの機械的
強度、層間接着力が増すので好ましい。 本発明の多層フイルムに用いるエチレン系樹脂
とは、メルトフローレート(ASTM D1238:
E)が0.5ないし30g/10min、好ましくは1な
いし10g/10min及び密度が0.950ないし0.970
g/cm3、好ましくは0.953ないし0.965g/cm3の範
囲の高密度ポリエチレン(C)、メルトフローレート
(ASTM D1238:E)が0.5ないし40g/10min、
好ましくは1ないし20g/10min及び密度が
0.910ないし0.930g/cm3、好ましくは0.915ないし
0.925g/cm3の範囲の高圧法低密度ポリエチレン
(D)、もしくはメルトフローレート(ASTM
D1238:E)が0.5ないし30g/10min、好ましく
は1ないし20g/10min、密度が0.920ないし
0.970g/cm3、好ましくは0.926ないし0.950g/cm3
及び酢酸ビニル含有量が30重量%以下、好ましく
は20重量%以下のエチレン・酢酸ビニル共重合体
(E)より選択されたものである。中でも高圧法低密
度ポリエチレン(D)及びエチレン・酢酸ビニル共重
合体(E)がフイルムの透明性、低温ヒートシール性
に優れ、しかも前記ポリプロピレン(A)フイルムと
エチレン・α−オレフイン共重合体(B)フイルムを
介して積層した多層フイルムの透明性も優れるの
で好ましい。 本発明のポリプロピレン(A)、エチレン・α−オ
レフイン共重合体(B)及びエチレン系樹脂からなる
多層フイルムは共押出成形法により得られるもの
である。複合フイルムの製造方法としては共押出
成形法以外に押出しラミネート法、サンドイツチ
ラミネート法等が例示されるが、ポリプロピレン
フイルムにエチレン・α−オレフイン共重合体及
びエチレン系樹脂を押出しラミネートあるいはサ
ンドイツチラミネートしてもフイルム間の接着力
が弱く、使用時に界面剥離を起こす虞れがあり、
性能の良い複合フイルムは得られない。共押出し
成形法としてはフラツト・ダイを用いるT−ダイ
法とサーキユラー・ダイを用いるインフレーシヨ
ン法とがある。フラツト・ダイはマルチ・マニフ
オールド形式あるいはブラツクボツクスを使用し
たシングル・マニフオールド形式のいずれを用い
てもよい。インフレーシヨン法に用いるダイにつ
いても公知のダイを用いることができる。 本発明の多層フイルムの各層の厚みはとくに限
定されないが、通常ポリプロピレンフイルム層が
100ないし1μ、好ましくは50ないし10μ、中間層
であるエチレン・α−オレフイン共重合体層が50
ないし0.5μ、好ましくは30ないし2μ、エチレン系
樹脂フイルム100ないし1μ、好ましくは50ないし
10μの範囲の厚みである。 本発明の多層フイルムにはポリプロピレン(A)、
エチレン・α−オレフイン共重合体(B)及びエチレ
ン系樹脂のいずれかあるいは両方に耐候安定剤、
耐熱安定剤、帯電防止剤、防曇剤、アンチブロツ
キング剤、スリツプ剤、滑剤、顔料、染料、流摘
剤等の通常ポリオレフインに添加して使用される
各種配合剤を本発明の目的を損わない範囲で添加
してもよい。 従来のポリプロピレン/エチレン系樹脂からな
る多層フイルムで層間接着力の強いフイルムを得
るには、予め成形したポリプロピレンフイルムに
接着剤等をアンカーコートした後、エチレン系樹
脂をラミネートする必要があり、工程が複雑であ
るのに対して、本発明の多層フイルムは三層ダイ
より、ポリプロピレン、エチレン・α−オレフイ
ン共重合体、エチレン系樹脂を同時に押出すこと
により簡単に層間接着力に優れたフイルムを得ら
れるという利点がある。又本発明の多層フイルム
は従来のポリプロピレン/エチレン系樹脂の二層
フイルムと同様に各種用途、例えば、耐寒性ある
いは柔軟性を必要とする冷菓、パン類、水産物、
ラーメン、ピーマン等の野菜類の包装を初め菓子
類の角袋、ツイスト袋や一般食品包装等に好適で
ある。 次に実施例を挙げて本発明を更に詳しく説明す
るが、本発明はその要旨を越えない限り、これら
の例に何ら制約されるものではない。 実施例 1 メルトフローレート7.0g/10min(ASTM
D1238L)のポリプロピレン(PP−I)、メルト
フローレート2.35g/10min(ASTM D1238E)、
密度0.922g/cm3、X線による結晶化度51%およ
び融点123℃(118℃、105℃にもピーク有り)の
エチレン・4−メチル−1−ペンテン共重合体
(EMC−I)およびメルトフローレート2.5g/
10min(ASTM D1238E)、密度0.940g/cm3及び
酢酸ビニル含量19重量%のエチレン・酢酸ビニル
共重合体(EVA−I)をEMC−Iを中間層とし
て各々65mmφ押出機(シリンダー温度240℃)、40
mmφ押出機(シリンダー温度220℃)および65mm
φ押出機(シリンダー温度220℃)で溶融後、マ
ルチ・マニフオールド形式の三層T−ダイ(ダイ
温度220℃)に供給して、PP−I層20μ、EMC−
I層5μ及びEVA−I層15μの共押出多層フイルム
を得た。次いで以下の方法により物性の評価を行
つた。 霞度(%):ASTM D1003 引張試験:ASTM D638 衝撃強度(Kg・cm/cm):ASTM D3420 ヒートシール部剥離強度(g/15mm):フイルム
面を重ね合せ、90℃、100℃、110℃、120℃、
130℃、140℃の温度、2Kg/cm2の圧力で1秒
間、幅5mmのシールバーでヒートシールした後
放冷した。これから15mm幅の試験片を切り取
り、クロスヘツド速度200mm/minでヒートシ
ール部を剥離した際の強度で示した。 耐屈曲性(ピンホール数:個):282.6mm×220mm
の試料を径が90mmφ、間隔180mmの可動円板と
固定円板に円筒上に取り付け、速度50回/min
で1500回、−10℃の雰囲気下で往復捩り運動を
与えた後、試料に発生したピンホールの数を測
定した。尚可動円板のストロークは152.4mmで
88.9mm進む間に440゜捩りを与えた後63.5mmを直
進し試料を屈曲させた。 耐沸水性:フイルム面を重ね合せ、110℃、120
℃、130℃、140℃の温度、2Kg/cm2の圧力で1
秒間、幅5mmのシールバーでヒートシールをし
た。この試料を100℃の沸水の中に、30分間放
置した後取り出し放冷した。これから15mm幅の
試験片を切り取り、クロスヘツド速度200mm/
minでヒートシール部を剥離した際の強度で示
した。 結果を第1表に示す。 実施例 2 実施例1で用いたEVA−Iの代わりにメルト
フローレート4.7g/10min(ASTM D1238:E)
密度0.921g/cm3の高圧法低密度ポリエチレン
(LDPE−I)を用いる以外は実施例1と同様に
行つた。結果を第1表に示す。 実施例 3 実施例1で用いたEMC−Iの代わりにメルト
フローレート2.4g/10min、密度0.921g/cm3
X線による結晶化度50%および融点124℃(118
℃、105℃にもピーク有り)のエチレン・1−オ
クテン共重合体(EO−I)を用いる以外は実施
例1と同様に行つた。結果を第1表に示す。 比較例 1 実施例1で用いたEMC−Iの代わりに、メル
トフローレート3.6g/10min、密度0.890g/cm3
X線による結晶化度17%および融点72℃のエチレ
ン・1−ブテン共重合体(EB−I)を用いる以
外は実施例1と同様に行つた。結果を第1表に示
す。 比較例 2 実施例2で用いたLDPE−I及びPP−Iを用
い、LDPE−I/PP−Iからなる二層フイルム
を実施例1と同様な方法で成形した。但し実施例
1で用いた中間層用の40mmφ押出機は使用せず。
結果を第1表に示す。 参考例 予め成形したPP−Iからなるフイルムにイソ
シアネート系接着剤(日本曹達製商品名チタボン
ド600)を塗布した後、LDPE−Iを押出ラミネ
ートすることにより、PP−I/LDPE−Iから
なる二層フイルムを得た。次いで実施例1に記載
の方法で該二層フイルムの評価を行つた。結果を
第1表に示す。
The present invention relates to coextruded multilayer films. More specifically, the present invention relates to a polypropylene/polyethylene coextruded multilayer film with improved heat sealability and low-temperature impact resistance. Crystalline polypropylene film has tensile strength,
It is widely used in the food packaging field due to its mechanical properties such as rigidity, surface hardness, and impact strength, its optical properties such as gloss and transparency, and its excellent food hygiene properties as it is non-toxic and odorless. There is. However, polypropylene film has a high temperature at which it can be heat-sealed in a single layer, and the appropriate temperature range is narrow, so it is possible to improve heat-sealability by using polypropylene film as a base material and laminating a resin with a low melting point on it. It is being said. Ethylene-based resins such as high-pressure low-density polyethylene and ethylene-vinyl acetate copolymer are widely used as resins used to improve heat-sealing properties, as they can also improve the low-temperature impact resistance of polypropylene films. . However, since polypropylene film and ethylene resin film lack interlayer adhesion, delamination may occur during use. The inventors of the present invention conducted studies to improve this drawback, and found that a specific ethylene film was found between the polypropylene film and the ethylene resin film.
It was found that by interposing an α-olefin copolymer, a multilayer film with good interlayer adhesion between both films, excellent heat sealability, low-temperature impact resistance, easy boilability, etc., was obtained, leading to the present invention. did. That is, the present invention uses polypropylene (A) as an intermediate layer with a melt flow rate of 0.5 to 20 g/
10min, density: 0.910~0.940g/ cm3 , X-ray crystallinity: 40~70%, melting point: 115~
Copolymer (B) made from ethylene and α-olefin having 4 to 20 carbon atoms at 130°C, then melt flow rate: 0.5 to 30 g/10 min and density:
High density polyethylene (C) ranging from 0.950 to 0.970 g/ cm3 , melt flow rate: 0.5 to 40 g/cm3
High pressure low density polyethylene (D) with a melt flow rate of 0.5 to 30 g/10 min, a density of 0.920 to 0.970 g/cm 3 and a vinyl acetate content of 30% by weight.
The present invention provides a coextruded multilayer film characterized by laminating ethylene resins selected from the following ethylene/vinyl acetate copolymers (E). Polypropylene used in the multilayer film of the present invention
(A) is a homopolymer of propylene or a copolymer of propylene with up to 15% by weight of one or more other α-olefins, such as ethylene, 1-butene, 1-hexene, 4-methyl-1-pentene, etc. Polymers and multicomponent copolymers of propylene, ethylene and up to 5% by weight of polyene components, such as 5-ethylidene-2-norbornene or 5-methylene-2-norbornene or 1,4-hexadiene, usually with a melting point of 130 ℃ or higher and a melt flow rate of 0.5 to 30 g/10 min (ASTM D1238L). The ethylene/α-olefin copolymer (B) used for the intermediate layer of the multilayer film of the present invention has a melt flow rate of 0.5 to 20 g/10 min, preferably 1 to 5 g/10 min (ASTM D1238E), and a density of
0.910 to 0.940 g/10 min, preferably 0.915 to 0.935 g/cm 3 , X-ray crystallinity of 40 to 70%, preferably 50 to 60%, melting point of 115 to 130°C, preferably 115 to 125°C. It is a copolymer of ethylene and an α-olefin having 4 to 20 carbon atoms, preferably 6 to 18 carbon atoms. If the melt flow rate is less than 0.5g/10min, the melt viscosity is large and the surface is likely to become rough during molding, and polypropylene (A) film and ethylene resin (C) described below
It roughens the interface with the film, and if it exceeds 20g/10min, the peel strength will be weak, resulting in a decrease in the strength of the multilayer film. If the density is less than 0.910 g/cm 3 , the interlayer adhesion with the polypropylene (A) film and the ethylene resin film will be strong, but the heat resistance will be poor and there is a risk of interlayer peeling during boiling. If the density exceeds 0.940 g/cm 3 , the effect of improving interlayer adhesion is small and does not meet the purpose of the present invention. There is a correlation between the density of the ethylene/α-olefin copolymer used in the present invention and the degree of crystallinity measured by X-rays, and those with a degree of crystallinity of less than 40% have poor heat resistance and are 70%
If it exceeds 20%, the effect of improving interlayer adhesion is small.
Also, those with a melting point of less than 115°C have excellent interlayer adhesive strength but poor heat resistance, and those with a melting point of 125°C or higher have little effect on improving interlayer adhesive strength. α having 4 to 20 carbon atoms copolymerized with the ethylene
-Olefin specifically includes, for example, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, 1-decene, 1-
-tetradecene, 1-octadecene, etc., and 1
It may be used as a seed or a mixture of two or more types. A copolymer of ethylene and propylene has poor interlayer adhesion and does not meet the purpose of the present invention. Also 1
Although a copolymer with -butene has sufficient interlayer adhesion to withstand practical use, a copolymer with an α-olefin having 6 or more carbon atoms is particularly preferred because it increases the mechanical strength and interlayer adhesion of the multilayer film. The ethylene resin used in the multilayer film of the present invention has a melt flow rate (ASTM D1238:
E) is 0.5 to 30g/10min, preferably 1 to 10g/10min and density is 0.950 to 0.970.
g/cm 3 , preferably in the range of 0.953 to 0.965 g/cm 3 , melt flow rate (ASTM D1238:E) of 0.5 to 40 g/10 min;
Preferably 1 to 20g/10min and density
0.910 to 0.930g/cm 3 , preferably 0.915 to 0.930g/cm 3
High pressure low density polyethylene in the range of 0.925g/ cm3
(D) or melt flow rate (ASTM
D1238:E) is 0.5 to 30g/10min, preferably 1 to 20g/10min, density is 0.920 to
0.970g/cm 3 , preferably 0.926 to 0.950g/cm 3
and an ethylene/vinyl acetate copolymer with a vinyl acetate content of 30% by weight or less, preferably 20% by weight or less
This is selected from (E). Among them, high-pressure low-density polyethylene (D) and ethylene/vinyl acetate copolymer (E) have excellent film transparency and low-temperature heat-sealability. B) It is preferable because the transparency of the multilayer film laminated with the film interposed therebetween is excellent. The multilayer film of the present invention comprising polypropylene (A), ethylene/α-olefin copolymer (B), and ethylene resin is obtained by a coextrusion method. In addition to the coextrusion method, examples of manufacturing methods for composite films include extrusion lamination, Sand-German tyro-laminate, etc.; Even when laminated, the adhesion between the films is weak and there is a risk of interfacial delamination during use.
A composite film with good performance cannot be obtained. Coextrusion molding methods include a T-die method using a flat die and an inflation method using a circular die. The flat die may be of either a multi-manifold format or a single manifold format using blackboxes. A known die can also be used for the inflation method. The thickness of each layer of the multilayer film of the present invention is not particularly limited, but usually a polypropylene film layer is used.
100 to 1μ, preferably 50 to 10μ, and the intermediate layer of ethylene/α-olefin copolymer layer has a thickness of 50μ
0.5μ to 0.5μ, preferably 30 to 2μ, ethylene resin film 100 to 1μ, preferably 50 to 2μ
The thickness is in the range of 10μ. The multilayer film of the present invention includes polypropylene (A),
A weathering stabilizer is added to either or both of the ethylene/α-olefin copolymer (B) and the ethylene resin.
Various compounding agents, such as heat-resistant stabilizers, antistatic agents, antifogging agents, antiblocking agents, slip agents, lubricants, pigments, dyes, and fluxing agents, which are usually added to polyolefins, can be used for the purpose of the present invention. It may be added as long as it does not cause any damage. In order to obtain a conventional multilayer film made of polypropylene/ethylene resin with strong interlayer adhesion, it is necessary to anchor-coat a preformed polypropylene film with an adhesive and then laminate it with ethylene resin, which requires a long process. In contrast, the multilayer film of the present invention can easily obtain a film with excellent interlayer adhesion by simultaneously extruding polypropylene, ethylene/α-olefin copolymer, and ethylene resin through a three-layer die. It has the advantage of being able to In addition, the multilayer film of the present invention can be used in various applications, such as frozen desserts, breads, marine products, etc., which require cold resistance or flexibility, similar to the conventional two-layer film made of polypropylene/ethylene resin.
It is suitable for packaging vegetables such as ramen noodles and green peppers, square bags for sweets, twist bags, and general food packaging. EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way unless it goes beyond the gist thereof. Example 1 Melt flow rate 7.0g/10min (ASTM
D1238L) polypropylene (PP-I), melt flow rate 2.35g/10min (ASTM D1238E),
Ethylene/4-methyl-1-pentene copolymer (EMC-I) and melt with a density of 0.922 g/cm 3 , a crystallinity of 51% by X-rays, and a melting point of 123°C (with peaks at 118°C and 105°C) Flow rate 2.5g/
10 min (ASTM D1238E), ethylene-vinyl acetate copolymer (EVA-I) with a density of 0.940 g/cm 3 and a vinyl acetate content of 19% by weight was extruded using a 65 mmφ extruder (cylinder temperature 240°C) using EMC-I as an intermediate layer. , 40
mmφ extruder (cylinder temperature 220℃) and 65mm
After melting in a φ extruder (cylinder temperature 220℃), it is fed to a multi-manifold type three-layer T-die (die temperature 220℃) to form a PP-I layer of 20μ, an EMC-
A coextruded multilayer film with a 5μ I layer and a 15μ EVA-I layer was obtained. Next, the physical properties were evaluated by the following method. Haze (%): ASTM D1003 Tensile test: ASTM D638 Impact strength (Kg・cm/cm): ASTM D3420 Peel strength of heat-sealed part (g/15mm): Overlap film surfaces, 90℃, 100℃, 110℃ , 120℃,
It was heat sealed at a temperature of 130° C. and 140° C. and a pressure of 2 Kg/cm 2 for 1 second using a sealing bar with a width of 5 mm, and then allowed to cool. A test piece with a width of 15 mm was cut from this, and the strength was measured when the heat-sealed portion was peeled off at a crosshead speed of 200 mm/min. Flexibility (number of pinholes: 282.6mm x 220mm)
The sample was mounted on a cylinder with a diameter of 90 mmφ and a movable disk and a fixed disk with an interval of 180 mm, and the speed was 50 times/min.
After applying a reciprocating twisting motion 1500 times in an atmosphere of -10°C, the number of pinholes generated in the sample was measured. The stroke of the movable disc is 152.4mm.
The specimen was twisted by 440 degrees while traveling 88.9 mm, and then straight forward by 63.5 mm, bending the specimen. Boiling water resistance: overlapping film surfaces, 110℃, 120℃
℃, 130℃, 140℃ temperature, 2Kg/ cm2 pressure 1
Heat sealing was performed for 2 seconds using a sealing bar with a width of 5 mm. This sample was left in boiling water at 100°C for 30 minutes, then taken out and allowed to cool. A 15 mm wide test piece was cut from this, and the crosshead speed was 200 mm/
It is expressed as the strength when the heat-sealed part is peeled off at min. The results are shown in Table 1. Example 2 Melt flow rate 4.7g/10min (ASTM D1238:E) instead of EVA-I used in Example 1
The same procedure as in Example 1 was carried out except that high-pressure low-density polyethylene (LDPE-I) having a density of 0.921 g/cm 3 was used. The results are shown in Table 1. Example 3 Instead of EMC-I used in Example 1, the melt flow rate was 2.4 g/10 min, the density was 0.921 g/cm 3 ,
X-ray crystallinity 50% and melting point 124°C (118
The same procedure as in Example 1 was conducted except that ethylene/1-octene copolymer (EO-I) (with peaks at 105°C and 105°C) was used. The results are shown in Table 1. Comparative Example 1 Instead of EMC-I used in Example 1, melt flow rate was 3.6 g/10 min, density was 0.890 g/cm 3 ,
The same procedure as in Example 1 was carried out except that an ethylene/1-butene copolymer (EB-I) having a crystallinity of 17% by X-rays and a melting point of 72°C was used. The results are shown in Table 1. Comparative Example 2 Using LDPE-I and PP-I used in Example 2, a two-layer film consisting of LDPE-I/PP-I was molded in the same manner as in Example 1. However, the 40 mmφ extruder for the intermediate layer used in Example 1 was not used.
The results are shown in Table 1. Reference example: After applying an isocyanate adhesive (trade name: Titabond 600, manufactured by Nippon Soda) to a preformed film made of PP-I, a film made of PP-I/LDPE-I is made by extrusion laminating with LDPE-I. A layered film was obtained. The two-layer film was then evaluated using the method described in Example 1. The results are shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリプロピレン(A)、 中間層としてメルトフローレート:0.5ないし
20g/10min、密度:0.910ないし0.940g/cm3
X線による結晶化度:40ないし70%及び融点:
115ないし130℃のエチレンと炭素数4ないし20の
α−オレフインとからなる共重合体(B)、 次いでメルトフローレート:0.5ないし30g/
10min及び密度:0.950ないし0.970g/cm3の範囲
の高密度ポリエチレン(C)、メルトフローレート:
0.5ないし40g/cm3及び密度:0.910ないし0.930
g/cm3の範囲の高圧法低密度ポリエチレン(D)及び
メルトフローレート:0.5ないし30g/cm3、密
度:0.920ないし0.970g/cm2及び酢酸ビニル含有
量30重量%以下のエチレン・酢酸ビニル共重合体
(E)より選択されたエチレン系樹脂を積層してなる
ことを特徴とする共押出多層フイルム。
[Claims] 1. Polypropylene (A), as an intermediate layer, melt flow rate: 0.5 to 0.5
20g/10min, density: 0.910 to 0.940g/cm 3 ,
Crystallinity by X-ray: 40-70% and melting point:
Copolymer (B) consisting of ethylene and α-olefin having 4 to 20 carbon atoms at 115 to 130°C, then melt flow rate: 0.5 to 30 g/
10min and density: high density polyethylene (C) in the range of 0.950 to 0.970g/ cm3 , melt flow rate:
0.5 to 40g/ cm3 and density: 0.910 to 0.930
High-pressure low density polyethylene (D) in the range of g/cm 3 and melt flow rate: 0.5 to 30 g/cm 3 , density: 0.920 to 0.970 g/cm 2 and vinyl acetate content of 30% by weight or less. copolymer
A coextruded multilayer film characterized by laminating ethylene resins selected from (E).
JP2117882A 1982-02-15 1982-02-15 Coextrusion multilayer film Granted JPS58140248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2117882A JPS58140248A (en) 1982-02-15 1982-02-15 Coextrusion multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2117882A JPS58140248A (en) 1982-02-15 1982-02-15 Coextrusion multilayer film

Publications (2)

Publication Number Publication Date
JPS58140248A JPS58140248A (en) 1983-08-19
JPH0156909B2 true JPH0156909B2 (en) 1989-12-01

Family

ID=12047677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2117882A Granted JPS58140248A (en) 1982-02-15 1982-02-15 Coextrusion multilayer film

Country Status (1)

Country Link
JP (1) JPS58140248A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622969B2 (en) * 1984-12-03 1994-03-30 日本石油化学株式会社 New stack
JP3817990B2 (en) * 1999-10-13 2006-09-06 大日本インキ化学工業株式会社 Laminated film for packaging
JP4749539B2 (en) 2000-12-18 2011-08-17 三井化学株式会社 Sealant material for polypropylene and easy-open sealed container using the same
JP5247199B2 (en) * 2008-03-25 2013-07-24 ユニチカ株式会社 Laminated film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488982A (en) * 1977-12-14 1979-07-14 Mobil Oil Orientated polypropylene film coated with linear low density polyethylene copolymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488982A (en) * 1977-12-14 1979-07-14 Mobil Oil Orientated polypropylene film coated with linear low density polyethylene copolymer

Also Published As

Publication number Publication date
JPS58140248A (en) 1983-08-19

Similar Documents

Publication Publication Date Title
EP0144642B1 (en) A multi-layer film or sheet material
US4275119A (en) Heat sealable packaging film comprising propylene polymer substrate and a surface layer blend of olefin copolymer or interpolymer
US4340641A (en) Heat sealable packaging film comprising propylene polymer substrate and a surface layer blend of ethylene copolymer and propylene copolymer
US4297411A (en) Heat sealable packaging film comprising propylene polymer substrate and a surface layer of an ethylene copolymer and a different olefin copolymer
WO2007015415A1 (en) Polypropylene resin composition, film or sheet, stretched film obtained from such film or sheet, multilayer body, and stretched film obtained from such multilayer body
GB1580937A (en) Propylene polymer laminates
US4339498A (en) Heat sealable packaging film comprising propylene polymer substrate and a surface layer blend of olefin copolymer or interpolymer
TW200402461A (en) Sealant, a resin composition for sealant, a sealant film, laminate film and the container thereof
JP2592500B2 (en) Laminated film
US4339493A (en) Heat sealable packaging film comprising propylene polymer substrate and olefin surface layer blend of polybutene-1 and an ethylene or a propylene copolymer
JP2020192695A (en) Laminate
US4339495A (en) Heat sealable packaging film comprising propylene polymer substrate and olefin surface layer blend of polybutene-1 and ethylene or a propylene copolymer
US4339494A (en) Heat sealable packaging film comprising propylene polymer substrate and olefin surface layer blend of polybutene-1 and an ethylene or a propylene copolymer
JPH0729405B2 (en) Laminated film
JP3634475B2 (en) Polypropylene composite film for packaging
JP7112835B2 (en) Food packaging film and food package
JP7491671B2 (en) Laminate
JPH0156909B2 (en)
US4339497A (en) Heat sealable packaging film comprising propylene polymer substrate and a surface layer blend of olefin copolymer or interpolymer
JP3125300B2 (en) Polyolefin-based multilayer film
JPH0333106B2 (en)
JPS58120654A (en) Ethylene-alpha-olefin copolymer composition
JP4870285B2 (en) Polyolefin film for packaging and packaging
JP4636479B2 (en) Polyolefin multilayer film and package
JPH11221884A (en) Resin composition for sealant film, and sealant film