JPH0259363B2 - - Google Patents

Info

Publication number
JPH0259363B2
JPH0259363B2 JP57160455A JP16045582A JPH0259363B2 JP H0259363 B2 JPH0259363 B2 JP H0259363B2 JP 57160455 A JP57160455 A JP 57160455A JP 16045582 A JP16045582 A JP 16045582A JP H0259363 B2 JPH0259363 B2 JP H0259363B2
Authority
JP
Japan
Prior art keywords
combustion
heat transfer
gas
block
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57160455A
Other languages
Japanese (ja)
Other versions
JPS5949494A (en
Inventor
Ryozo Echigo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP16045582A priority Critical patent/JPS5949494A/en
Publication of JPS5949494A publication Critical patent/JPS5949494A/en
Publication of JPH0259363B2 publication Critical patent/JPH0259363B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/006Flameless combustion stabilised within a bed of porous heat-resistant material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Air Supply (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は熱交換装置に関し、一層詳細には、
燃焼ゾーンと伝熱ゾーンとの一体化を図ることに
より極めてコンパクトな装置構成を実現し、また
該燃焼伝熱ゾーンに供給される混気燃料の均一な
燃焼を行なつて、窒素酸化物(NOx)や、一酸
化炭素(CO)等の発生および未燃物の発生を抑
制して大気汚染を有効に阻止し得る、熱伝達効率
に優れた熱交換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a heat exchange device, and more specifically,
By integrating the combustion zone and the heat transfer zone, we have achieved an extremely compact equipment configuration, and by uniformly burning the mixed fuel supplied to the combustion heat transfer zone, we are able to eliminate nitrogen oxides (NOx). ), carbon monoxide (CO), etc., and the generation of unburned substances, thereby effectively preventing air pollution, and relates to a heat exchange device with excellent heat transfer efficiency.

従来技術 伝熱管中で水を循環させ、この伝熱管を外部よ
り加熱して給湯を行なう湯沸器その他の蒸気ボイ
ラは、伝熱部において熱交換を行なう一種の熱交
換装置である。その加熱源としては、燃料燃焼ガ
スが一般に多用されるが、この場合燃焼室中で燃
焼反応が進行している火炎に、水が循環している
冷たい伝熱管を直接接触させると、直ちに不完全
燃焼を起して未燃炭化水素(UHC)を発生する。
従つてこの種の湯沸器や蒸気ボイラ等では、必ず
燃焼室とその上方に位置する伝熱室との空間が確
保され、熱伝熱室中に蛇管等の伝熱管が配設され
るようになつている。
Prior Art A water heater or other steam boiler that circulates water in a heat transfer tube and heats the heat transfer tube from the outside to supply hot water is a type of heat exchange device that exchanges heat in a heat transfer section. Generally, fuel combustion gas is often used as a heating source, but in this case, if a cold heat transfer tube with circulating water is brought into direct contact with a flame in which a combustion reaction is progressing in the combustion chamber, it will immediately become incomplete. Combustion occurs and produces unburned hydrocarbons (UHC).
Therefore, in this type of water heater or steam boiler, there is always a space between the combustion chamber and the heat transfer chamber located above it, and a heat transfer tube such as a coiled pipe is installed in the heat transfer chamber. It's getting old.

すなわち、火炎を伴う燃焼反応を燃焼ゾーン中
で進行させ、該反応の終了した高温の燃焼ガスを
伝熱ゾーンに導いて、この燃焼ガスを伝熱管に接
触させることにより熱交換が行なわれる。このよ
うに燃焼空間は、燃焼反応が促進される燃焼ゾー
ンと、高温の燃焼ガスが通過して熱交換が行なわ
れる伝熱ゾーンとに区別されるため、従来の熱交
換装置では必然的に燃焼空間が大きくなり、従つ
て小型化には限界があつた。
That is, heat exchange is performed by allowing a combustion reaction accompanied by a flame to proceed in the combustion zone, guiding the high-temperature combustion gas after the reaction to the heat transfer zone, and bringing the combustion gas into contact with the heat transfer tube. In this way, the combustion space is divided into the combustion zone, where combustion reactions are promoted, and the heat transfer zone, where high-temperature combustion gas passes through and heat exchange takes place. The space became large, and therefore there was a limit to miniaturization.

また、従来の熱交換装置では、燃焼空間中にお
ける均一な燃焼が達成困難であり、局所的に温度
の高い部分や低い部分が存在して、燃焼副産物と
しての窒素酸化物(NOx)や一酸化炭素(CO)、
その他未燃炭化水素(HUC)が容易に発生する
傾向がある。このため、行政上の公害防止の見地
より排出量規制が強化されるに伴い、硫黄分や窒
素分の少ない燃料への転換、排煙脱硝装置の設置
等、低NOx化への努力がなされているが、設備
費用その他技術的な問題から規制値の達成が困難
な現状となつている。
In addition, with conventional heat exchange equipment, it is difficult to achieve uniform combustion in the combustion space, and there are locally high and low temperature areas, resulting in the production of nitrogen oxides (NOx) and monoxide as combustion byproducts. carbon (CO),
Other unburned hydrocarbons (HUC) tend to be generated easily. For this reason, as emissions regulations have been tightened from the standpoint of administrative pollution prevention, efforts have been made to reduce NOx, such as switching to fuels with lower sulfur and nitrogen content and installing flue gas denitrification equipment. However, it is currently difficult to achieve the regulated values due to equipment costs and other technical issues.

発明が解決しようとする課題 このような所謂「サーマルNOx」は、燃料の
燃焼時に空気中の窒素と酸素とが反応して生成す
るものであるが、燃焼温度が高くなるにつれて前
記反応が激しくなり、従つてその最大温度により
サーマルNOx排出量が決定されることが判明し
ている。そして、通常の炎燃焼では温度分布が一
定していないため、局部的に高温(例えば1400
℃)の個所を生じ、これがサーマルNOx発生増
大の原因となつている。
Problems to be Solved by the Invention Such so-called "thermal NOx" is produced by the reaction of nitrogen and oxygen in the air during fuel combustion, but as the combustion temperature increases, the reaction becomes more intense. , and therefore its maximum temperature determines the thermal NOx emissions. In normal flame combustion, the temperature distribution is not constant, so locally high temperatures (for example, 1400
℃), which is the cause of increased thermal NOx generation.

また、前記一酸化炭素(CO)や未燃炭化水素
(UHC)の発生も、燃焼ガスの燃焼温度と密接に
関連しており、後述するる触媒を用いた接触燃焼
実験によれば、燃焼温度が900℃以下の場合に
CO、UHCは急激に増大し、1000℃以上では、
CO、UHCとも殆んど発生しないことが確認され
ている。このようなサーマルNOxやCO、UHC
は、燃焼温度と密接に関係するため、高性能の触
媒を用いた接触燃焼法が近時研究され、1000℃以
上の高温度領域での燃焼を均一かつ安定に行なう
ことにより、NOx等の発生を有効かつ大幅に低
減させる実績が得られている。
Furthermore, the generation of carbon monoxide (CO) and unburned hydrocarbons (UHC) is also closely related to the combustion temperature of combustion gas, and according to catalytic combustion experiments using catalysts described below, the combustion temperature is below 900℃
CO and UHC increase rapidly, and above 1000℃,
It has been confirmed that almost no CO or UHC is generated. Such thermal NOx, CO, UHC
Since this is closely related to the combustion temperature, catalytic combustion methods using high-performance catalysts have been recently researched. We have a track record of effectively and significantly reducing the

しかしながら、この触媒を使用する接触燃焼法
をボイラ等の熱交換装置に応用するに際してネツ
クとなるのは、高温領域で長寿命を保持し得る触
媒は未だ開発されておらず、また、これに近い性
能の触媒は極めて高価となるため、ランニングコ
スト経済上見合わないことである。
However, the problem with applying the catalytic combustion method using this catalyst to heat exchange equipment such as boilers is that a catalyst that can maintain a long life in a high-temperature region has not yet been developed, and there are Since a high-performance catalyst is extremely expensive, it is not worth it in terms of running cost.

発明の目的 このような現状に鑑み発明者は、熱伝達効率に
優れ、構造がコンパクトでしかもサーマルNOx
やCO、UHC等の発生を抑制し得る新規な熱交換
装置を得るべく研究試作に努めた結果、空隙率の
充分大きい所謂通気性固体を使用して燃焼伝熱ブ
ロツクを構成し、この燃焼伝熱ブロツク中に熱負
荷となる伝熱媒体を介在させ、この燃焼伝熱ブロ
ツク中で燃料ガスと空気との混合物からなる混気
燃料を燃焼させるようにすれば、後に述べるよう
に通気性固体の大きな表面積(伝熱面積)故に、
近接する気体は個体と殆んど等しい温度になり、
一方、固体間は強い輻射の授受により温度分布が
平滑化されて均一に燃焼し、その結果としてサー
マルNOxの発生が抑制され、また未燃焼分も高
温の細線に接触して再燃焼し、COやUHCの発生
が抑制されることを突き止めた。しかも、燃焼ゾ
ーンと伝熱ゾーンとは一体化されるため、全体構
造も極めてコンパクトになり、また後述する所謂
通気性固体中で燃焼が行なわれる結果として、大
量の固体輻射熱を発生し、熱伝達率を一挙に増大
させ得ることも判明した。
Purpose of the Invention In view of the current situation, the inventor has developed a system that has excellent heat transfer efficiency, a compact structure, and a thermal NOx
As a result of our efforts in research and prototyping to obtain a new heat exchange device that can suppress the generation of CO, UHC, etc., we constructed a combustion heat transfer block using a so-called breathable solid with a sufficiently large porosity. If a heat transfer medium serving as a heat load is interposed in the heat block, and a mixed fuel consisting of a mixture of fuel gas and air is combusted in this combustion heat transfer block, air-permeable solids can be used as described later. Due to the large surface area (heat transfer area),
A nearby gas has almost the same temperature as the solid,
On the other hand, the temperature distribution between solids is smoothed due to the exchange of strong radiation, resulting in uniform combustion. As a result, the generation of thermal NOx is suppressed, and the unburned matter also comes into contact with the hot thin wire and re-burns, resulting in CO It was found that the occurrence of UHC was suppressed. Moreover, since the combustion zone and the heat transfer zone are integrated, the overall structure becomes extremely compact, and as a result of combustion being carried out in a so-called breathable solid, which will be described later, a large amount of solid radiant heat is generated, which improves heat transfer. It has also been found that the rate can be increased all at once.

課題を解決するための手段 前記の課題を克服し、所期の目的を達成するた
め本発明は、燃料ガスおよび酸素含有気体を供給
する管体の開口側に、空隙率の充分大きい通気性
固体からなる燃焼伝熱ブロツクを接続し、この燃
焼伝熱ブロツク中に熱負荷としての伝熱媒体を介
在させるよう構成した熱交換装置において、 前記管体の開口側と燃焼伝熱ブロツクとの間
に、燃料ガスおよび酸素含有気体を均一に分散し
て流通させるための整流手段を介在させると共
に、 前記燃焼伝熱ブロツクの燃焼ガス排出側に、該
ブロツクを構成する通気性固体よりも空隙率の小
さい通気性固体を接触配置したことを特徴とす
る。
Means for Solving the Problems In order to overcome the above-mentioned problems and achieve the intended purpose, the present invention provides an air-permeable solid material having a sufficiently large porosity on the opening side of a pipe body for supplying fuel gas and oxygen-containing gas. In a heat exchange device configured to connect a combustion heat transfer block consisting of a combustion heat transfer block and interposing a heat transfer medium as a heat load in the combustion heat transfer block, there is a gap between the opening side of the tube body and the combustion heat transfer block. , a rectifying means for uniformly dispersing and circulating the fuel gas and oxygen-containing gas is interposed, and on the combustion gas discharge side of the combustion heat transfer block, the porosity is smaller than that of the air-permeable solid constituting the block. It is characterized by a breathable solid being placed in contact with it.

また本願における別発明は、燃料ガスおよび酸
素含有体を供給する管体の開口側に、空隙率の小
さい通気性固体を介して空隙率の充分大きい通気
性固体からなる燃焼伝熱ブロツクを接続し、 この燃焼伝熱ブロツク中に熱負荷を構成する伝
熱媒体を介在させると共に、前記燃焼伝熱ブロツ
クの燃焼ガス排出側に、該ブロツクを構成する通
気性固体よりも空隙率の小さい通気性固体を接続
配置したことを特徴とする。
Another invention of the present application is to connect a combustion heat transfer block made of an air-permeable solid with a sufficiently large porosity to the opening side of a pipe body for supplying fuel gas and an oxygen-containing body through an air-permeable solid with a small porosity. A heat transfer medium constituting the heat load is interposed in this combustion heat transfer block, and a permeable solid having a smaller porosity than the permeable solid constituting the block is provided on the combustion gas discharge side of the combustion heat transfer block. It is characterized by being connected and arranged.

なお、本願発明において所謂通通気性固体は、
極めて重要なウエイトを占めるものであるので、
好適実施例の説明に先立ち、この通気性固体の概
略を述べることとする。本明細書に所謂通気性固
体とは、金属、セラミツクス等の耐熱性材料を網
状、ハニカム状、繊維状等の各種形態に成形して
通気性を持たせ、かつ光その他熱線を透過させ難
い適宜厚さの固体媒体と定義することができる。
In addition, in the present invention, the so-called breathable solid is
Because it occupies an extremely important weight,
Before describing preferred embodiments, an overview of this breathable solid will be provided. In this specification, the so-called breathable solid refers to heat-resistant materials such as metals and ceramics that are formed into various shapes such as net, honeycomb, and fiber to provide air permeability and that are difficult for light and other heat rays to pass through. It can be defined as a solid medium of thickness.

これは、細線または細粒が多数集合して構成さ
れたものと考えられ、その実質的な表面積は極め
て大きい。そして、固体の輻射射出能力は気体よ
りも充分高いものであるから、前記通気性固体に
燃焼ガスを通過させると、燃焼ガスの顕熱が表面
積の極めて大きい固体と接触して高効率の熱交換
が行なわれ、大量の固体輻射熱を発生する。この
ような特性を有する固体伝熱変換素子を通気性固
体と称する。なお、この通気性固体は、燃焼ガス
の下流で熱交換により熱を奪つても、上流側には
殆ど影響がでない、という特性がある。
This is considered to be composed of a large number of thin wires or fine grains, and its substantial surface area is extremely large. Since the radiation emitting ability of a solid is sufficiently higher than that of a gas, when the combustion gas is passed through the air-permeable solid, the sensible heat of the combustion gas comes into contact with the solid with an extremely large surface area, resulting in highly efficient heat exchange. is carried out, generating a large amount of solid-state radiant heat. A solid heat transfer element having such characteristics is called a breathable solid. Note that this breathable solid has the characteristic that even if it removes heat through heat exchange downstream of the combustion gas, it has almost no effect on the upstream side.

前記通気性固体Sの輻射熱射出状態について、
第1図に示す模式図により説明すると、通気性固
体Sは燃焼ガスGの流通方向に厚さXを有するた
め、燃焼ガスGが固体Sを通過するとその層内で
対流熱伝達が行なわれ、曲線Cで示す温度勾配を
生じる。そして各層x1…x5において燃焼ガスの顕
熱を固体輻射熱y1…y5、z1…z5に変換され、夫々
燃焼ガスGの上流側(y)および下流側(z)に
向かうが、この固体輻射熱の内y4、y5およびz1
z2は通気性固体Sの前後方向の厚みに応じて遮蔽
されて減衰し、その結果大部分の輻射熱Rが燃焼
ガスGの上流側(y)に射出される。
Regarding the radiant heat emission state of the breathable solid S,
To explain using the schematic diagram shown in FIG. 1, since the breathable solid S has a thickness X in the direction of flow of the combustion gas G, when the combustion gas G passes through the solid S, convective heat transfer takes place within the layer. A temperature gradient shown by curve C results. Then , in each layer x 1 ... , of this solid radiant heat, y 4 , y 5 and z 1 ,
z 2 is shielded and attenuated according to the thickness of the breathable solid S in the front-rear direction, and as a result, most of the radiant heat R is emitted to the upstream side (y) of the combustion gas G.

実施例 次に、本発明に係る熱交換装置につき、好適な
実施例を挙げて、添付図面を参照しながら以下詳
細に説明する。第2図は本発明装置の1実施例を
示すものであつて、燃料ガス(例えば都市ガス、
天然ガス、炉頂廃ガス等の可燃性気体)と空気と
の混合物からなる混気燃料MFが燃料供給源(図
示せず)から加圧されて、混気燃料供給管10に
送給されるようになつている。なお、燃焼ガス排
出側から吸引フアン等により燃焼排ガスを吸引す
るようにすれば、湿気燃料MFを加圧供給しなく
てもよい。また、混気燃料MFは後述のブロツク
体に流入する直前で燃料ガスと空気とを混合する
ようにしてもよい。図中、参照符号12は、空隙
率の充分大きな通気性固体からなる適宜立体形状
のブロツク体を示し、このブロツク体12の内部
で後述するように燃料の燃焼および伝熱作用が行
なわれるので、以下これを燃焼伝熱ブロツクと称
する。前記混気燃料供給管10は図示の如く長形
の開口部14を有し、この開口側に、前記空隙率
の充分大きな通気性固体からなる燃焼伝熱ブロツ
ク12が配置接続されている。この場合、供給管
10の開口部14と燃焼伝熱ブロツク12との間
には、セラミツクプレートに多数の細孔を穿設し
てなる整流格子の如き整流手段16を介在させ
て、供給管10から供給される混気燃料MFを均
一に分散した後、燃焼ブロツク12中に送り込む
よう構成してある。
Embodiments Next, the heat exchange device according to the present invention will be described in detail below by giving preferred embodiments and referring to the accompanying drawings. FIG. 2 shows one embodiment of the device of the present invention, in which fuel gas (for example, city gas,
A fuel mixture MF consisting of a mixture of air and combustible gas (natural gas, top waste gas, etc.) is pressurized from a fuel supply source (not shown) and fed to the fuel mixture supply pipe 10. It's becoming like that. Note that if the combustion exhaust gas is sucked from the combustion gas exhaust side using a suction fan or the like, it is not necessary to pressurize and supply the humid fuel MF. Further, the fuel mixture MF may be mixed with fuel gas and air immediately before flowing into a block body to be described later. In the figure, reference numeral 12 indicates a suitably three-dimensional block made of an air-permeable solid with a sufficiently large porosity, and combustion of fuel and heat transfer are performed inside this block 12 as will be described later. Hereinafter, this will be referred to as a combustion heat transfer block. The mixed fuel supply pipe 10 has an elongated opening 14 as shown in the figure, and a combustion heat transfer block 12 made of an air-permeable solid having a sufficiently large porosity is arranged and connected to the opening side. In this case, a rectifying means 16 such as a rectifying grid made of a ceramic plate with a large number of holes is interposed between the opening 14 of the supply pipe 10 and the combustion heat transfer block 12. After uniformly dispersing the mixed fuel MF supplied from the combustion block 12, it is configured to be sent into the combustion block 12.

この燃焼伝熱ブロツク12を構成する通気性固
体の空隙率は、99%またはそれ以上(換言すれ
ば、充填率1%またはそれ以下)とするのが好ま
しく、このように空隙率の充分大きい通気性固体
としては、例えば耐熱性の金属細線を綿状に集塊
させたブロツク体や、耐熱金網の多重積層体、そ
の他セラミツクス材料を軽石状に発泡固化させた
多孔質物体等が好適に使用される。この場合、通
気性固体がどの程度の空隙率であれば、「充分大
きい」と云い得るかが問題となるが、金網のよう
にメツシユ数で実現するよりも、光学的厚さを基
準として判断するのが最も適当である。
The porosity of the air permeable solid constituting this combustion heat transfer block 12 is preferably 99% or more (in other words, the filling ratio is 1% or less). Suitable examples of suitable solids include blocks made of heat-resistant thin metal wires agglomerated into flocculent shapes, multi-laminates of heat-resistant wire mesh, and porous objects made by foaming and solidifying other ceramic materials in the form of pumice. Ru. In this case, the question is how much porosity the breathable solid should have to be considered "sufficiently large", but it is better to make a judgment based on the optical thickness rather than the number of meshes as in the case of wire mesh. It is most appropriate to do so.

ここに「光学的厚さ」とは、輻射の減衰程度を
表わす変数であつて、その測定は、光源と照度計
との間に被測定対象物となる通気性固体を介在さ
せ、光がどれ位吸収されているかを前記照度計で
求めることによりなされ、この際に金属細線の線
径その他吸収係数が考慮される。本実施例の場
合、燃焼伝熱ブロツク12を構成する通気性固体
として、燃焼伝熱ブロツク12の大きさに応じ光
学的厚さが1〜10の範囲にある金属細線の集塊を
使用して好適な結果が得られた。
Here, "optical thickness" is a variable that represents the degree of attenuation of radiation, and its measurement is performed by interposing an air permeable solid object between the light source and the illumination meter, and determining how much light is transmitted. This is done by determining how much energy is being absorbed using the illuminance meter, and at this time, the diameter of the thin metal wire and other absorption coefficients are taken into consideration. In the case of this embodiment, as the breathable solid constituting the combustion heat transfer block 12, an agglomerate of fine metal wires having an optical thickness in the range of 1 to 10 depending on the size of the combustion heat transfer block 12 is used. Good results were obtained.

前記燃焼伝熱ブロツク12中には、熱負荷を構
成する伝熱媒体18(例えば、蒸発生用の水管)
が、埋設その他の手段により介在している。この
伝熱媒体18としては、典型的には前記水管の如
き伝熱管が使用されるが、その他用途に応じて熱
容量の大きい金属線の中実棒体を使用し、これを
蓄熱体として熱蓄積および熱放散を行なわせるよ
うにしてもよい。また、伝熱媒体18と燃焼伝熱
ブロツク12との伝熱面積を大きくするために、
前記伝熱媒体18は、ブロツク中で蛇行させた
り、渦巻状に巻回させたりするのが好ましい。
In the combustion heat transfer block 12, there is a heat transfer medium 18 (for example, a water pipe for evaporation generation) constituting the heat load.
is interposed by burial or other means. As the heat transfer medium 18, a heat transfer tube such as the above-mentioned water tube is typically used, but depending on the purpose, a solid rod of metal wire with a large heat capacity may be used to store heat as a heat storage medium. Also, heat dissipation may be performed. Furthermore, in order to increase the heat transfer area between the heat transfer medium 18 and the combustion heat transfer block 12,
Preferably, the heat transfer medium 18 is meandered or spirally wound within the block.

また燃焼伝熱ブロツク12の燃焼ガス排出側
に、該ブロツク12を構成する通気性固体よりも
空隙率の小さい通気性固体22が接続配置されて
いる。この通気性固体22の空隙率は、90〜95%
またはそれ以上(換言すれば、充填率10〜5%ま
たはそれ以下)とするのが好ましい。更に、燃焼
伝熱ブロツク12および通気性固体22は、混気
燃料が流入する上流側および燃焼ガスが排出され
る下流側を除き、耐火性の断熱材料20で囲繞し
て該ブロツク外周からの輻射熱の逃出を遮蔽蔽す
るよう構成してある。
Further, a gas permeable solid 22 having a smaller porosity than the gas permeable solid constituting the block 12 is connected to the combustion gas discharge side of the combustion heat transfer block 12. The porosity of this breathable solid 22 is 90 to 95%.
or more (in other words, the filling rate is preferably 10 to 5% or less). Further, the combustion heat transfer block 12 and the air permeable solid 22 are surrounded by a fire-resistant heat insulating material 20, except for the upstream side where the mixed fuel flows in and the downstream side where the combustion gas is discharged, to prevent radiant heat from the outer periphery of the block. It is constructed to shield the escape of

第3図は、本願に係る別の発明の実施例を示す
ものであつて、燃焼伝熱ブロツク12の燃焼ガス
上流側および下流側に、夫々該ブロツク12を構
成する通気性固体よりも空隙率の小さい通気性固
体24を接続配置したものである。この通気性固
体24の空隙率は90〜95%またはそれ以上(換言
すれば、充填率10〜5%またはそれ以下)とする
のが好ましい。この実施例の場合、混気燃料供給
管10の開口部14は、一方の通気性固体24に
接続されていて、供給管10から加圧送給された
混気燃料は、この通気性固体24を通過する際に
均一に分散されるので、第2図に示す実施例のよ
うに整流手段16を別途配設する必要はない。但
し、燃焼伝熱ブロツク12および通気性固体2
4,24の外周から輻射熱が逃出するのを遮蔽す
る目的で、耐火性の断熱材料20により図示の通
り囲繞してあることは、第2図に示す実施例と同
様である。
FIG. 3 shows another embodiment of the invention according to the present application, in which the combustion gas upstream side and the downstream side of the combustion heat transfer block 12 have a porosity lower than that of the air permeable solid constituting the block 12, respectively. A small air permeable solid body 24 is connected and arranged. The porosity of this air-permeable solid 24 is preferably 90 to 95% or more (in other words, the filling rate is 10 to 5% or less). In this embodiment, the opening 14 of the fuel mixture supply pipe 10 is connected to one of the air permeable solids 24, and the fuel mixture fed under pressure from the supply pipe 10 passes through this air permeable solid 24. Since the liquid is uniformly dispersed during passage, there is no need to separately provide a rectifying means 16 as in the embodiment shown in FIG. However, the combustion heat transfer block 12 and the breathable solid 2
Similar to the embodiment shown in FIG. 2, it is surrounded by a fire-resistant heat insulating material 20 as shown in the figure for the purpose of shielding radiant heat from escaping from the outer periphery of the parts 4 and 24.

実施例の作用 次に、このように構成した実施例に係る熱交換
装置の作用につき以下説明する。第2図に示す実
施例において、供給管10を介して混気燃料MF
を供給すると、この混気燃料は整流手段16によ
りその流れを整えられると共に均一に分散して、
燃焼伝熱ブロツク12中に送給される。符号26
で示す点火手段(例えばヒータまたはスパークプ
ラグ)により混気燃料に点火すると、燃焼は通気
性固体のブロツク12における空間中に封じ込め
られた状態で開始される。先じ述べたように通気
性固体は、実質的な比表面積が極めて大きく、固
体の輻射射出能力は気体よりも充分に高いもので
あるから、燃焼反応が終了した高温の燃焼ガスが
通気性固体に接触することにより高効率の熱交換
が行なわれ、燃焼ガス中の顕熱は大量の固体輻射
熱に変換される。また燃焼伝熱ブロツツク12の
燃焼ガス排出側に通気性固体22が接続されてい
るので、高温の燃焼ガスは更に通気性固体22に
流入して、ここでも高効率の熱交換が行われ、該
燃焼ガス中の顕熱が大量の固体輻射熱に変換され
る。しかも、得られる大量の輻射熱の大部分は燃
焼ガスの上流側、すなわち燃焼伝熱ブロツク12
に向けて射出されるから、該ブロツク12中の輻
射熱は一層増大し、伝熱媒体18における伝熱効
率が更に促進されることになる。
Effects of the Embodiment Next, the effects of the heat exchange device according to the embodiment configured as described above will be explained below. In the embodiment shown in FIG. 2, the mixed fuel MF is
When supplied, the flow of this mixed fuel is adjusted by the rectifying means 16 and is uniformly dispersed.
is fed into the combustion heat transfer block 12. code 26
When the fuel mixture is ignited by an ignition means (e.g. a heater or spark plug), combustion is initiated in a confined space within the air-permeable solid block 12. As mentioned earlier, air permeable solids have an extremely large practical specific surface area, and the radiation emission ability of solids is sufficiently higher than that of gas, so the high temperature combustion gas after the combustion reaction is transferred to air permeable solids. Highly efficient heat exchange occurs by contacting the combustion gas, and the sensible heat in the combustion gas is converted into a large amount of solid radiant heat. In addition, since the air permeable solid 22 is connected to the combustion gas discharge side of the combustion heat transfer block 12, the high temperature combustion gas further flows into the air permeable solid 22, and highly efficient heat exchange is performed here as well. Sensible heat in the combustion gas is converted into a large amount of solid radiant heat. Moreover, most of the obtained large amount of radiant heat is on the upstream side of the combustion gas, that is, in the combustion heat transfer block 12.
Since the heat is emitted toward the block 12, the radiant heat in the block 12 is further increased, and the heat transfer efficiency in the heat transfer medium 18 is further promoted.

このとき、固体接触の効果により燃焼ガスの低
い温度のところは引上げられ、また高い温度のと
ころは押えられるため、全体として温度が平坦化
し、均一な燃焼が得られる(通常の火炎燃焼で
は、火炎面に局部的に高い温度や低い温度のとこ
ろが生じる)。このように温度が均一化される結
果として、サーマルNOxの発生が低減化される。
これは、サーマルNOxは燃焼温度が高くなると
共に窒素と酸素との反応が激しくなるが、好施例
に係る装置では、その原因となる局所的な温度上
昇がないからである。また、通常サーマルNOx
を低減させるべく燃焼温度を降下させると、CO
やUHC等の未燃分が発生するが、本発明装置で
は、未燃分は、高温の金属細線等の通気性固体の
接触して燃焼がなされるため、COやUHC等の未
燃分が発生して大気を汚染する惧れがない。
At this time, due to the effect of solid contact, the low temperature parts of the combustion gas are pulled up, and the high temperature parts are suppressed, so the overall temperature becomes flat and uniform combustion is obtained (in normal flame combustion, the flame (localized high or low temperature areas occur on the surface). As a result of the temperature being made uniform in this way, the generation of thermal NOx is reduced.
This is because thermal NOx reacts more intensely with nitrogen and oxygen as the combustion temperature increases, but in the device according to the preferred embodiment, there is no local temperature rise that would cause this. Also, normal thermal NOx
By lowering the combustion temperature to reduce CO
However, in the device of the present invention, unburnt substances such as CO and UHC are generated because the unburned substances are combusted by contact with a breathable solid such as a high-temperature thin metal wire. There is no risk of it occurring and polluting the atmosphere.

しかも、従来は燃焼ゾーンに伝熱管のような伝
熱媒体18を介在させると、直ちに不完全燃焼を
生じてCOやUHC発生の原因となるため、火炎の
燃焼反応を進行させる燃焼空間と、高温の燃焼ガ
スによる伝熱を行なわせる伝熱空間とを、別個に
確保する必要があつたことは既述の通りである。
しかるに実施例装置では、燃焼ゾーンに伝熱媒体
を介在させたので、未燃分がでても先に述べたよ
うにこの未燃分は高温に加熱された通気性固体に
接触して完全燃焼がなされ、燃焼ゾーンと伝熱ゾ
ーンとを別個に確保する必要がない。
Moreover, conventionally, when a heat transfer medium 18 such as a heat transfer tube is interposed in the combustion zone, incomplete combustion occurs immediately and causes the generation of CO and UHC. As mentioned above, it was necessary to separately secure a heat transfer space for heat transfer by the combustion gas.
However, in the example device, a heat transfer medium was interposed in the combustion zone, so even if unburned components were produced, they would come into contact with the permeable solid heated to a high temperature and be completely combusted. This eliminates the need for separate combustion zones and heat transfer zones.

すなわち、通気性固体からなるブロツク体12
は、燃焼ゾーンと伝熱ゾーンとの一体化が図ら
れ、構造的にも極めてコンパクトになつている。
この燃焼伝熱ブロツク12中において、高温の燃
焼ガスが伝熱媒体18(例えば水管)に接触して
熱交換が行なわれるが、該ブロツク12を構成す
る通気性固体中において大量の固体輻射熱が得ら
れるため、極めて効率の高い熱交換が達成され
る。
That is, the block body 12 made of breathable solid
The combustion zone and heat transfer zone are integrated, making the structure extremely compact.
In this combustion heat transfer block 12, high-temperature combustion gas contacts a heat transfer medium 18 (for example, a water pipe) to exchange heat, and a large amount of solid radiant heat is obtained in the air permeable solid constituting the block 12. As a result, extremely efficient heat exchange is achieved.

また第3図に示す実施例では、燃焼伝熱ブロツ
ク12を挟んで両側に通気性固体24が夫々接続
配置されている。そして、混気燃料MFの燃焼
は、第2図に示す実施例と同様に、燃焼伝熱ブロ
ツク12中で行なわれる訳であるから、各通気性
固体24に対する燃焼ガスの上流側は、常に当該
ブロツク12中に存在することになる。従つて、
該ブロツク12中で生成した高温の燃焼ガスが、
各通気性固体24に流入してガス中の顕熱を大量
の固体輻射熱に変換させると、得られた輻射熱
は、第2図に示す実施例と同様に、燃焼ガスの上
流側である燃焼伝熱ブロツク12に向けて射出さ
れることになる。しかも本実施例の場合は、ブロ
ツク12を挟んで両側から輻射熱が射出されるよ
うになつているので、伝熱媒体18に対する伝熱
効率は最も良好となる。
In the embodiment shown in FIG. 3, air permeable solids 24 are connected to each other on both sides of the combustion heat transfer block 12. Since the combustion of the mixed fuel MF is carried out in the combustion heat transfer block 12 as in the embodiment shown in FIG. It will be present in block 12. Therefore,
The high temperature combustion gas generated in the block 12 is
When the sensible heat in the gas is converted into a large amount of solid radiant heat by flowing into each air permeable solid 24, the obtained radiant heat is transferred to the combustion conductor on the upstream side of the combustion gas, similar to the embodiment shown in FIG. It will be injected towards the thermal block 12. Moreover, in the case of this embodiment, since the radiant heat is emitted from both sides of the block 12, the heat transfer efficiency to the heat transfer medium 18 is the best.

発明の効果 以上、本発明に係る熱交換装置によれば、混気
燃料を均一な温度分布で燃焼させることができる
ため、サーマルNOxや、CO、UHC等の未燃分
の発生を抑制することが可能である。また、燃焼
帯域中に伝熱管のような温度降下要素を存在させ
ても、均一燃焼により未燃分が発生しないので、
燃焼帯域と伝熱帯域とを一体化することが可能と
なり、極めてコンパクトな構成の熱交換装置が得
られる。更に、大量の輻射熱が得られるため、熱
交換効率も一層向上する等、多くの有益な効果を
奏する。
Effects of the Invention As described above, according to the heat exchange device according to the present invention, mixed fuel can be combusted with a uniform temperature distribution, so generation of unburned components such as thermal NOx, CO, and UHC can be suppressed. is possible. Furthermore, even if a temperature-reducing element such as a heat transfer tube is present in the combustion zone, no unburned matter is generated due to uniform combustion.
It becomes possible to integrate the combustion zone and the heat transfer zone, and a heat exchange device with an extremely compact configuration can be obtained. Furthermore, since a large amount of radiant heat can be obtained, there are many beneficial effects such as further improvement in heat exchange efficiency.

なお前述した好適実施例については、燃料ガス
と空気との混合物からなる混気燃料を、共通の混
気燃料供給管を介して燃焼伝熱ブロツクに送り込
む場合につき説明したが、燃料ガス供給管および
空気供給管を独立して設け、夫々の供給管を前記
燃焼伝熱ブロツクに接続して、該燃焼伝熱ブロツ
ク中で燃料ガスと空気との混合および燃焼を行な
うようにしてもよい。更に前記燃焼伝熱ブロツク
に入る以前、または該ブロツク中で燃料ガスと混
合される気体は、一般に空気とされるが、その他
酸素を含有している気体が適宜使用されるもので
ある。
In the preferred embodiment described above, a case has been described in which a mixture of fuel gas and air is sent to the combustion heat transfer block through a common fuel mixture supply pipe, but the fuel gas supply pipe and Air supply pipes may be provided independently, and each supply pipe may be connected to the combustion heat transfer block, so that the fuel gas and air are mixed and combusted in the combustion heat transfer block. Further, the gas mixed with the fuel gas before entering the combustion heat transfer block or in the combustion heat transfer block is generally air, but other gases containing oxygen may be used as appropriate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通気性固体の輻射熱射出状態を示す模
式図、第2図は本発明に係る熱交換装置の概略構
成図、第3図は別の発明に係る熱交換装置の概略
構成図である。 10……混気燃料供給管、12……燃焼伝熱ブ
ロツク、14……開口部、16……整流手段、1
8……伝熱媒体、20……耐火性断熱材、22,
24……通気性固体、26……点火手段。
FIG. 1 is a schematic diagram showing a radiant heat emission state of a breathable solid, FIG. 2 is a schematic diagram of a heat exchange device according to the present invention, and FIG. 3 is a schematic diagram of a heat exchange device according to another invention. . 10... Air mixture fuel supply pipe, 12... Combustion heat transfer block, 14... Opening, 16... Rectifying means, 1
8... Heat transfer medium, 20... Fire-resistant heat insulating material, 22,
24... Breathable solid, 26... Ignition means.

Claims (1)

【特許請求の範囲】 1 燃料ガスおよび酸素含有気体を供給する管体
の開口側に、空隙率の充分大きい通気性固体から
なる燃焼伝熱ブロツクを接続し、この燃焼伝熱ブ
ロツク中に熱負荷としての伝熱媒体を介在させる
よう構成した熱交換装置において、 前記管体の開口側と燃焼伝熱ブロツクとの間
に、燃料ガスおよび酸素含有気体を均一に分散し
て流通させるための整流手段を介在させると共
に、 前記燃焼伝熱ブロツクの燃焼ガス排出側に、該
ブロツクを構成する通気性固体よりも空隙率の小
さい通気性固体を接続配置したことを特徴とする
熱交換装置。 2 燃料ガスおよび酸素含有気体を供給する管体
の開口側に、空隙率の小さい通気性固体を介して
空隙率の充分大きい通気性固体からなる燃焼伝熱
ブロツクを接続し、 この燃焼伝熱ブロツク中に熱負荷を構成する伝
熱媒体を介在させると共に、前記燃焼伝熱ブロツ
クの燃焼ガス排出側に、該ブロツクを構成する通
気性固体よりも空隙率の小さい通気性固体を接続
配置したことを特徴とする熱交換装置。
[Scope of Claims] 1. A combustion heat transfer block made of an air-permeable solid having a sufficiently large porosity is connected to the opening side of a pipe body for supplying fuel gas and oxygen-containing gas, and a heat load is applied to the combustion heat transfer block. In the heat exchange device configured to have a heat transfer medium interposed therebetween, a rectifying means for uniformly distributing and circulating fuel gas and oxygen-containing gas between the opening side of the tube and the combustion heat transfer block. A heat exchange device characterized in that a gas permeable solid having a lower porosity than the gas permeable solid constituting the block is connected and arranged on the combustion gas discharge side of the combustion heat transfer block. 2. A combustion heat transfer block made of an air permeable solid with a sufficiently large porosity is connected to the opening side of the tube for supplying fuel gas and oxygen-containing gas via an air permeable solid with a small porosity, and this combustion heat transfer block A heat transfer medium constituting a heat load is interposed therein, and a permeable solid having a smaller porosity than the permeable solid constituting the block is connected and arranged on the combustion gas discharge side of the combustion heat transfer block. Features of heat exchange equipment.
JP16045582A 1982-09-14 1982-09-14 Heat exchanger Granted JPS5949494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16045582A JPS5949494A (en) 1982-09-14 1982-09-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16045582A JPS5949494A (en) 1982-09-14 1982-09-14 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS5949494A JPS5949494A (en) 1984-03-22
JPH0259363B2 true JPH0259363B2 (en) 1990-12-12

Family

ID=15715302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16045582A Granted JPS5949494A (en) 1982-09-14 1982-09-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS5949494A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110875A (en) * 1984-11-01 1986-05-29 三菱油化エンジニアリング株式会社 Radiant heater
JPS61225507A (en) * 1985-03-29 1986-10-07 Kawasaki Steel Corp Flame holding device for heat exchanging
JPS61276658A (en) * 1985-05-30 1986-12-06 Isuzu Motors Ltd Heat exchanger
JPH0735565Y2 (en) * 1990-06-12 1995-08-16 株式会社久電舎 oven
US5476375A (en) * 1993-07-12 1995-12-19 Institute Of Gas Technology Staged combustion in a porous-matrix surface combustor to promote ultra-low NOx Emissions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123088U (en) * 1974-08-07 1976-02-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123088U (en) * 1974-08-07 1976-02-20

Also Published As

Publication number Publication date
JPS5949494A (en) 1984-03-22

Similar Documents

Publication Publication Date Title
US5938427A (en) Combustion apparatus
US3832122A (en) Reduction of nitrogen oxides from products of hydrocarbon combustion with air
JP3568964B2 (en) Catalytic combustion device
US5890886A (en) Burner for heating systems
CN108458337A (en) A kind of gas combustion apparatus of near zero pollutant discharge, method and its application
JPH0259363B2 (en)
JPH0222285B2 (en)
US4981089A (en) Process for the reduction of nitrogen monoxide emissions during the combustion of solid fuels
US5785930A (en) Apparatus for burning a wide variety of fuels in air which produces low levels of nitric oxide and carbon monoxide emissions
JPS6260605B2 (en)
JP2839165B2 (en) Immersion tube heater
JPS58190513A (en) Effective utilization of exhaust gas of internal- combustion engine
JPH0623606B2 (en) Combustion device
JPS591918A (en) Heating device for promoting radiation
JP3732034B2 (en) Hybrid catalytic combustion apparatus and combustion method
JPH0463964B2 (en)
RU2079782C1 (en) Heat generator
JPH0733892B2 (en) Combustion device
JPS58173302A (en) Improved gas combustion with low nox discharge
JPH059362B2 (en)
FI108746B (en) Catalytic heating device
JPH01111161A (en) Combustion device
JPH0617733B2 (en) Catalyst burner
JPH0472574B2 (en)
JPS62716A (en) Catalyst combustion device